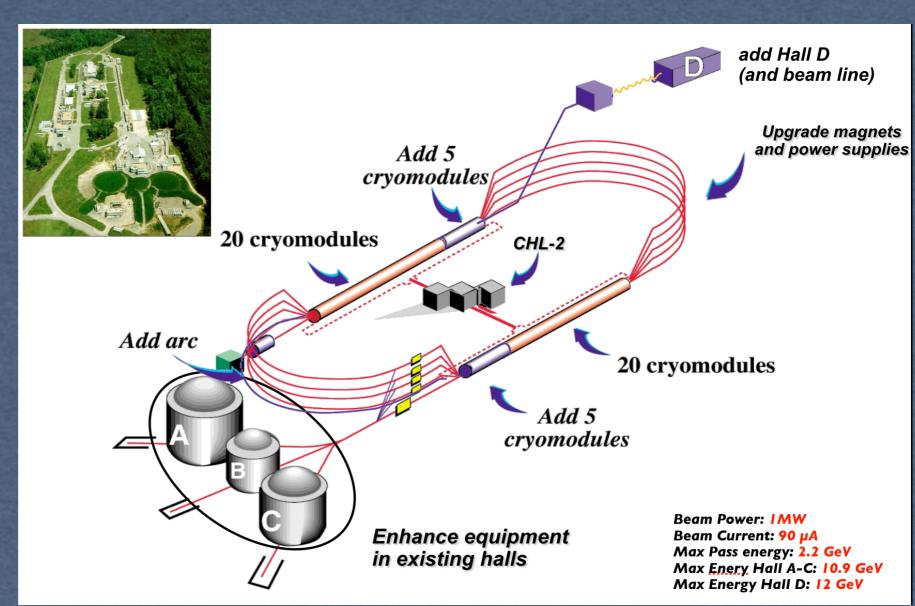


XXVIII International Workshop on Deep-Inelastic Scattering and Related Subjects

12-16 April 2021 Stony Brook, NY

Present and future of JLab CLAS 12 physics program

M.Battaglieri Jefferson Lab / INFN



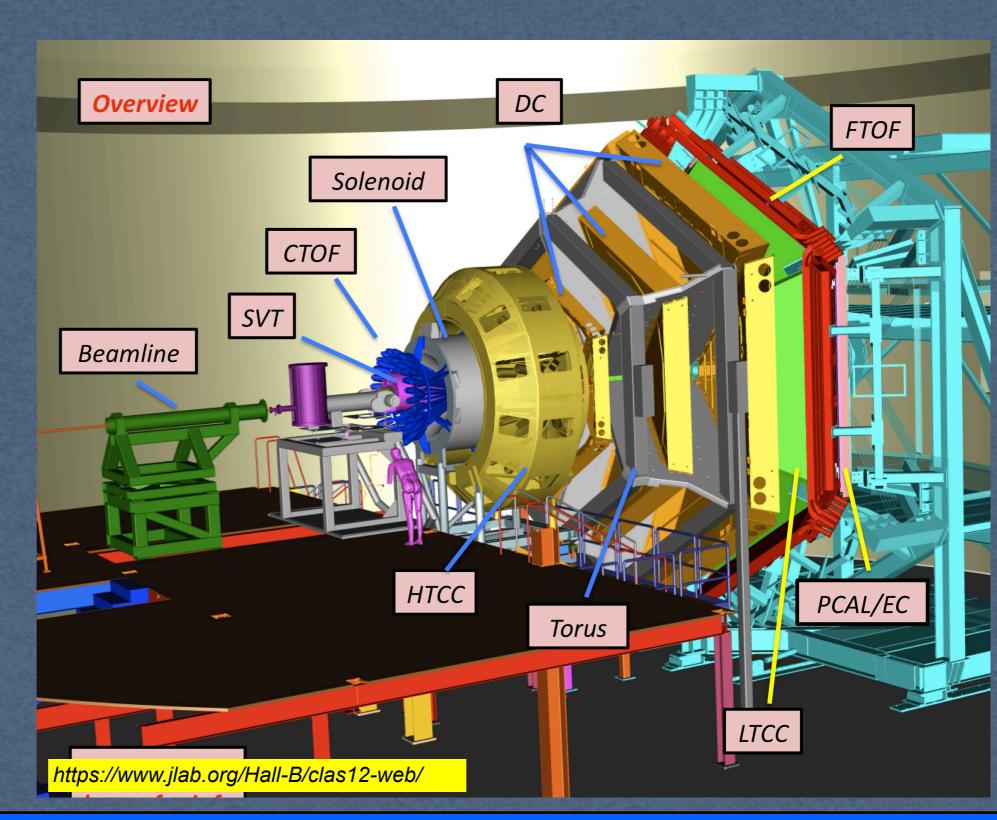
Jefferson Lab

- * Primary Beam: Electrons
- * Beam Energy: 12 GeV
 - 10 > λ > 0.1 fm nucleon → quark transition baryon and meson excited states
- *100% Duty Factor (cw) Beam
 - coincidence experiments
 - Four simultaneous Beams with
 - Independently Variable Energy and Intensity
 - complementary, long experiments
- * Polarization (beam and reaction products)
 - spin degrees of freedom
 - weak neutral currents

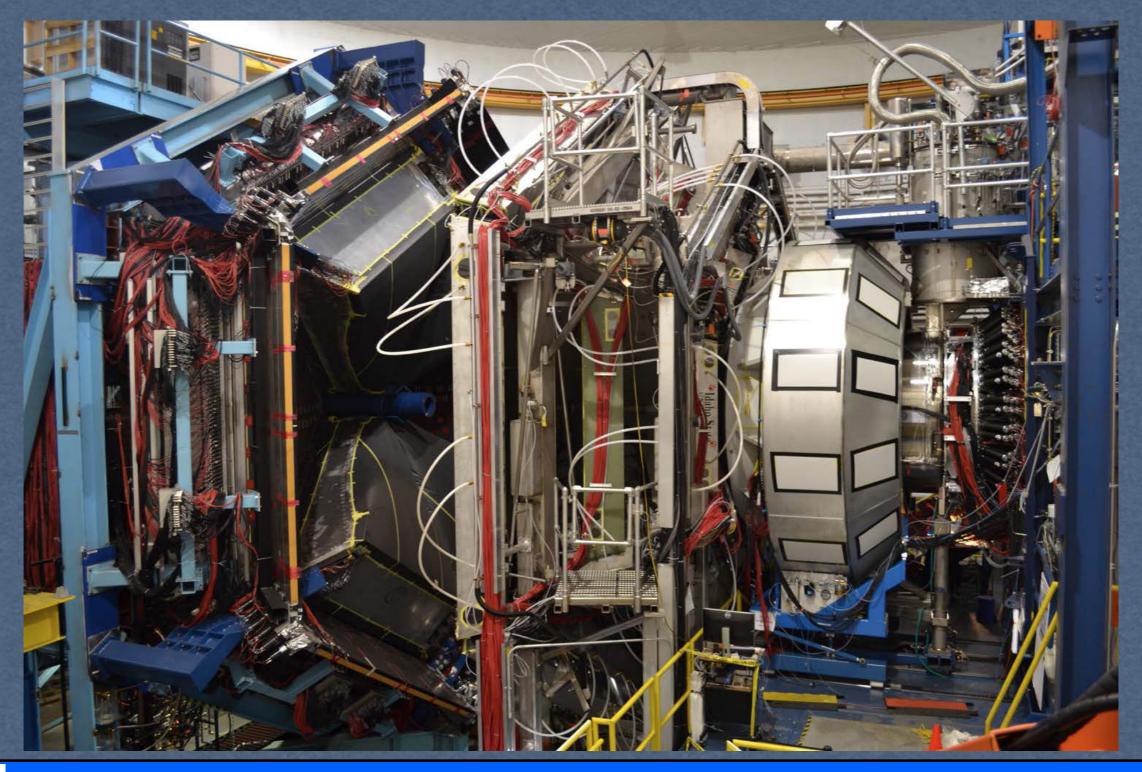
L > 107 - 108 x SLAC at the time of the original DIS experiments!

The CLAS12 detector

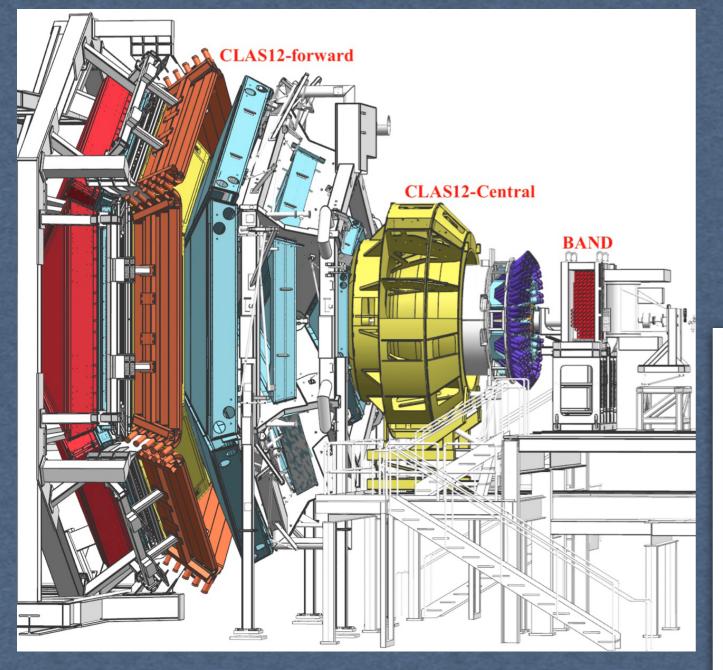
Forward Detector:

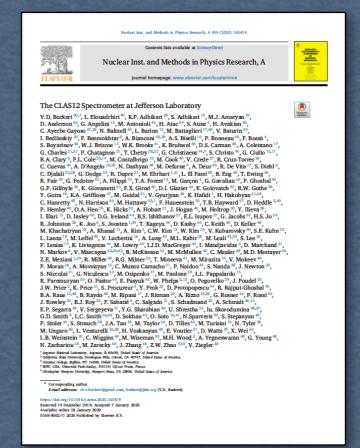

- -TORUS magnet
- HT Cherenkov Counter
- Drift chamber system
- LT Cherenkov Counter
- Forward ToF System
- Preshower calorimeter
- E.M. calorimeter (EC)

Central Detector:


- SOLENOID magnet
- Barrel Silicon Tracker
- Central Time-of-Flight

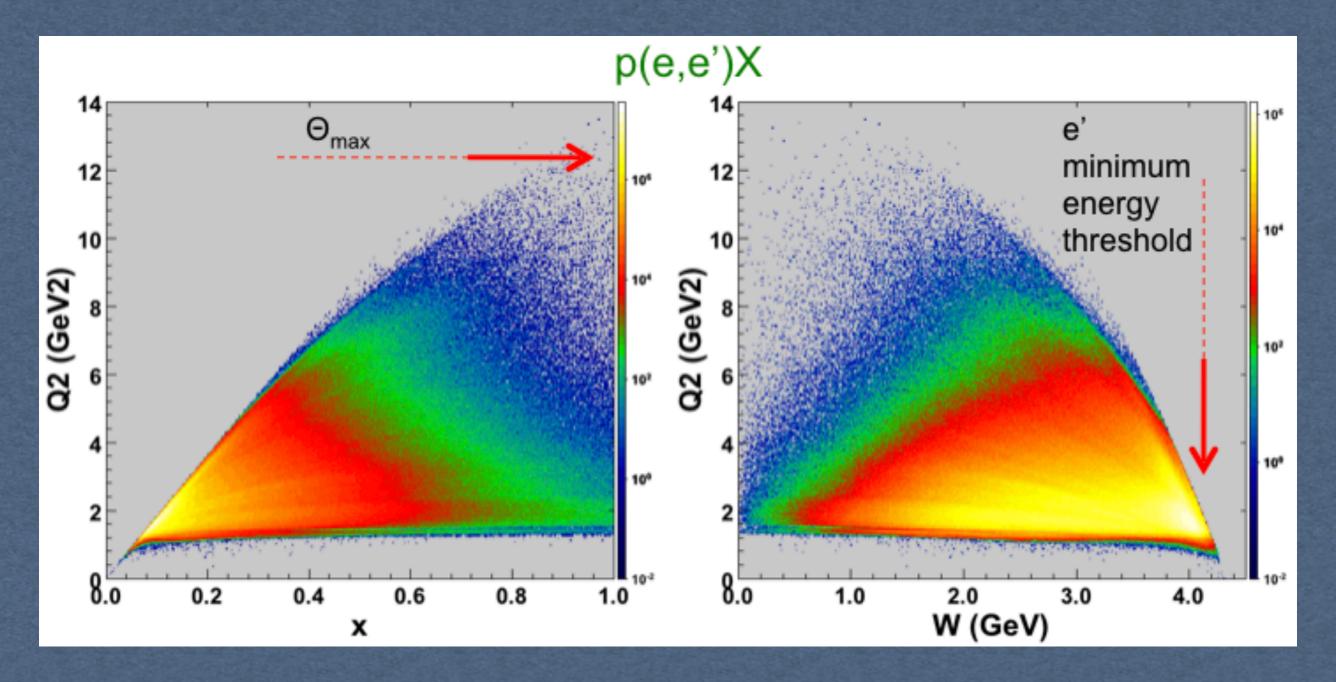
Upgrades:


- Micromegas (CD)
- Neutron detector (CD)
- RICH detector (FD)
- Forward Tagger (FD)



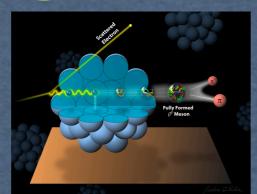
The CLAS12 detector fully operational!

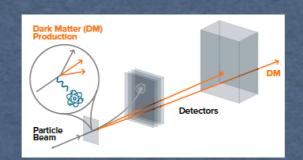
CLAS12 performance



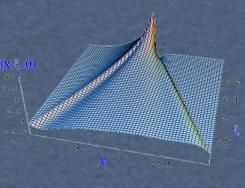
System	Reference/Status
SVT	M.A. Antonioli et al., Nucl. Inst. and Meth. A 962, 163701 (2020)
MVT	A. Acker et al., Nucl. Inst. and Meth. A 957, 163423 (2020)
CTOF	D.S. Carman et al., Nucl. Inst. and Meth. A 960, 163626 (2020)
CND	P. Chatagnon et al., Nucl. Inst. and Meth. A, 959, 163441 (2020)
HTCC	Y.G. Sharabian et al., @ proof stage
DC	M.D. Mestayer et al., Nucl. Inst. and Meth. A 959, 163518 (2020)
LTCC	M. Ungaro et al., Nucl. Inst. and Meth. A 957, 163420 (2020)
RICH	M. Contalbrigo et al., Nucl. Inst. and Meth. A 964, 163791 (2020)
FTOF	D.S. Carman et al., Nucl. Inst. and Meth. A 960, 163629 (2020)
ECAL	G. Asryan et al., Nucl. Inst. and Meth. A 959, 163425 (2020)
FT	A. Acker et al., Nucl. Inst. and Meth. A 959, 163475 (2020)
Beamline	N. Baltzell et al., Nucl. Inst. and Meth. A 957, 163421 (2020)
DAQ	S. Boyarinov et al., Nucl. Inst. and Meth. A, in press
Trigger	B. Raydo et al., Nucl. Inst. and Meth. A 960, 163529 (2020
Sim	M. Ungaro et al., Nucl. Inst. and Meth. A 959, 163422 (2020)
Recon	V. Ziegler et al., Nucl. Inst. and Meth. A 959, 163472 (2020)
Magnets	R. Fair et al., Nucl. Inst. and Meth. A 962, 163578 (2020).
Overview	V.D. Burkert et al. (CLAS Collaboration), Nucl. Inst. and Meth. A 959, 163419 (2020)

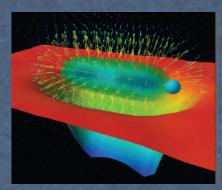
CLAS12 Kinematic reach


Beam energy at 10.6 GeV Torus current 3770 A, electrons in-bending, Solenoid magnet at 2416 A.


Plots based on 200 min. of data taking

Hall-B physics program


The strong interaction in nuclei
 evolution of quark
 hadronization, nuclear
 transparency of hadrons


 BSM physics: search for light dark matter

 The 3D structure of the nucleon – from form factors and PDFs to GPDs and TMDs

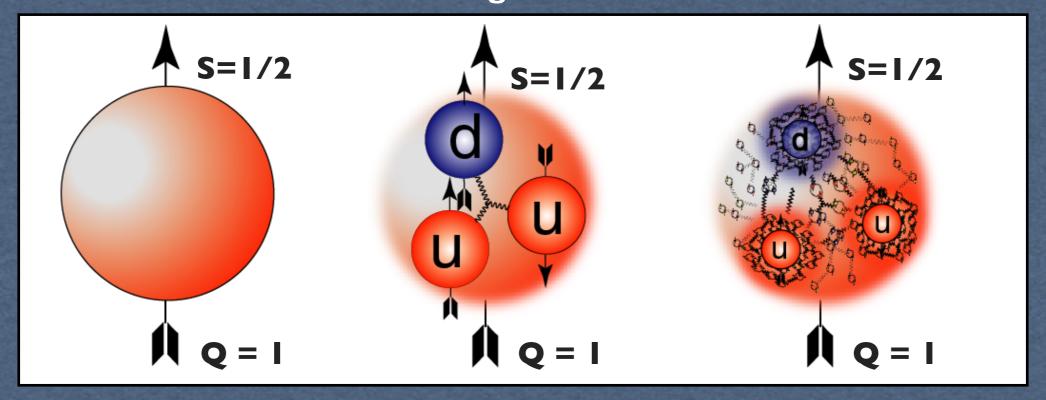
Quark confinement and the role of the glue in meson and baryon spectroscopy

Hall-B physics program organised in 'Run Groups'

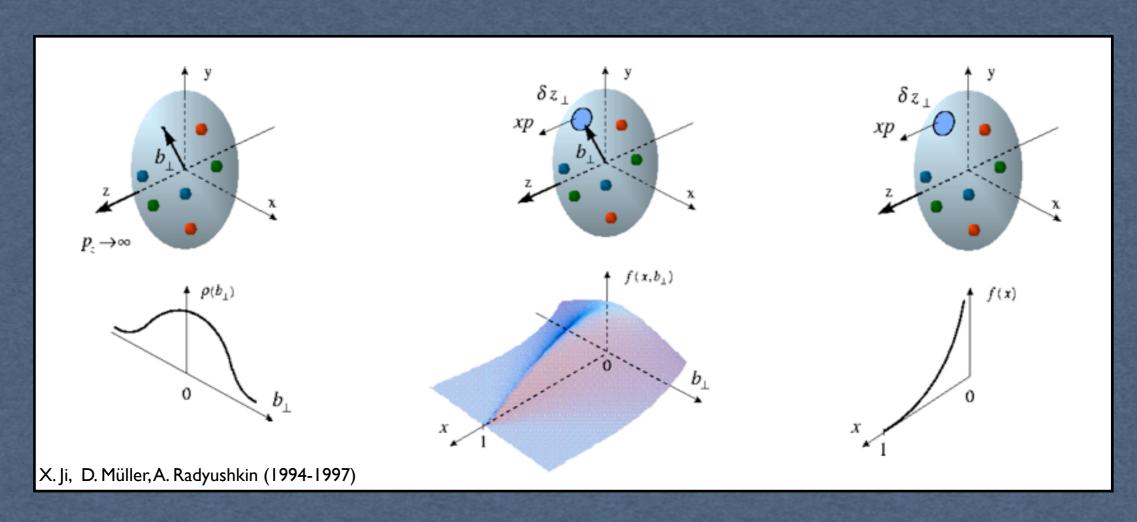
- CLASI2
 - RG-A/K: LH₂ target, 3D structure functions, MesonEx
 - RG-B: Ld₂ target, as RG-A on n
 - RG-C: NH3/ND3 pol target, L p & n polarized structure functions
 - RG-D/E/M/L: nuclear target, hadroniz., color transparency, SRC, v
 - RG-F: BONUS detector, n structure functions
 - RG-H: transverse pol target, T p & n polarized structure functions
 - RG-N: 3He polarized target for neutron DIS and TMD program
- HPS
 - RG-I: nuclear target, HPS detector A' search (LDM)
- PRAD/PRAD-II
 - RG-J: H₂ gas, Primex detector, proton radius

Proposal	Physics	Contact	Rating	Days	Group	Equipment	Energy	Run Group	Target
E12-06-108	Hard exclusive electro-production of π ⁰ , η	Stoler	В	80		RICH (1 sector) Forward tagger	11		liquid
E12-06-108A	Exclusive N*->KY Studies with CLAS12	Carman		(60)					H ₂
E12-06-108B	Transition Form Factor of the η' Meson with CLAS12	Kunkel		(80)					
E12-06-112	Proton's quark dynamics in SIDIS pion production	Avakian	Α	60					
E12-06-112A	SIDIS A productioon in target fragmentation region	Mirazita		(60)				F. Sabatié	
E12-06-112B	Colinear nucleon structure at twist-3	Pisano		(60)					
E12-06-119(a)	Deeply Virtual Compton Scattering	Sabatie	Α	80					
E12-09-003	Excitation of nucleon resonances at high Q ²	Gothe	B+	40	Ī				
E12-11-005	Hadron spectroscopy with forward tagger	Battaglieri	Α-	119	Ī				
E12-11-005A	Photoproduction of the very strangest baryon	Guo		(120)	<u> </u>				
E12-12-001	Timelike Compton Scatt. & J/ψ production in e+e	Nadel-Turonski	A-	120					
E12-12-001A	J/ψ Photoproduction & study of LHCb pentaquarks	Stepanyan		(120)					
E12-12-007	Exclusive φ meson electroproduction with CLAS12	Girod	B+	60					
E12-07-104	Neutron magnetic form factor	Gilfoyle	A-	30		Neutron detector RICH (1 sector) 11 Forward tagger	11	B K. Hafidi	liquid
E12-09-007(a)	Study of partonic distributions in SIDIS kaon production	Hafidi	Α-	30	90				D₂ targ
E12-09-008	Boer-Mulders asymmetry in K SIDIS w/ H and D targets	Contalbrigo	A-	56					
E12-09-008A	Hadron production in target fragmentation region	Mirazita		(60)					
E12-09-008B	Colinear nucleon structure at twist-3	Pisano		(60)					
E12-11-003	DVCS on neutron target	Niccolai	Α	90					
E12-11-003A	In medium structure functions, SRC, and the EMC effect	Hen		(90)					
E12-11-003B	J/Psi production on deuterium	llieva	N/A	(80)	İ				
Beam time par	ff-1			765 (1555)	229				

Proposal Count	Experiment Days	Run Groups	RG days
43	3288	13	1136


NUCLEON STRUCTURE from elastic form factors to GPDs

The Proton and Neutron are the "Hydrogen Atoms" of QCD


What we "see" changes with spatial resolution

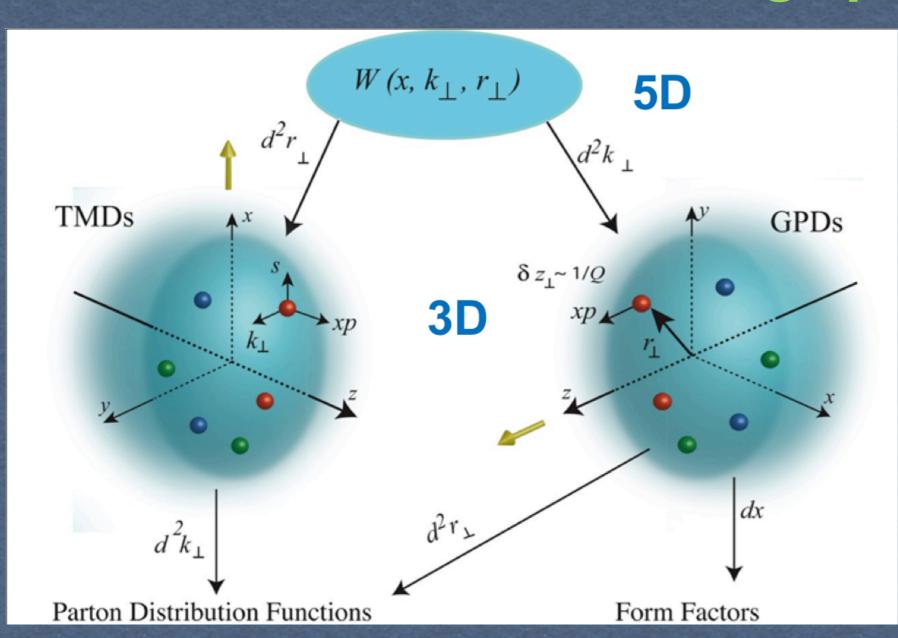
>I fm Nucleons 0.1 — I fm
Constituent quarks
and glue

< 0.1 fm "bare" quarks and glue

NUCLEON STRUCTURE from elastic form factors to GPDs

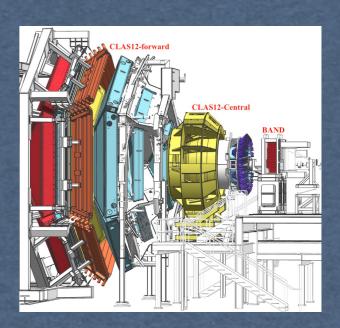
Elastic Scattering

transverse quark distribution in Coordinate space (charge and current densities) (Generalized Parton Distributions)


Deep Exclusive Scattering fully-correlated quark

distribution in both coordinate and momentum space

Deep Inelastic Scattering

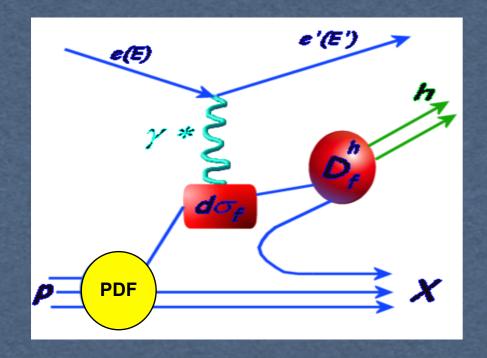

longitudinal quark distribution in momentum space (momentum and helicity distributions)

NUCLEON STRUCTURE Nuclear Femtography

Requires

- High luminosity
- Polarized beams and targets
- Sophisticated detector systems

Major new capability with CLAS12


Transverse Momentum Dist. (TMD)

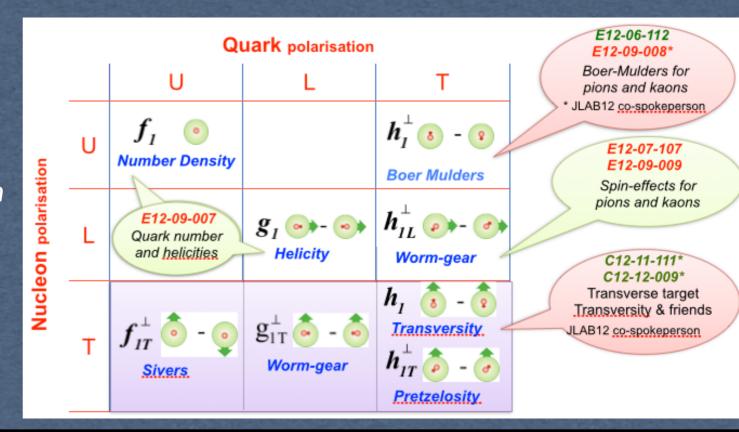
- Confined motion in a nucleon
- semi-inclusive DIS

Generalized Parton Dist. (GPD)

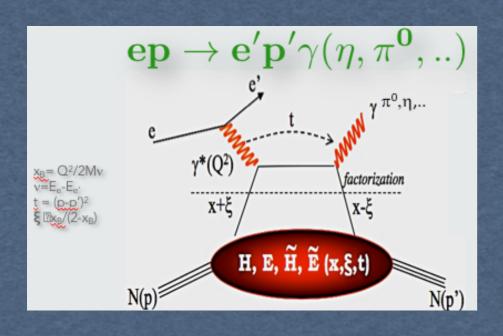
- Spatial imaging
- exclusive DVCS

Studying the Nucleon Structure: Transverse Momentum Distributions

Semi Inclusive Deep Inelastic Scattering

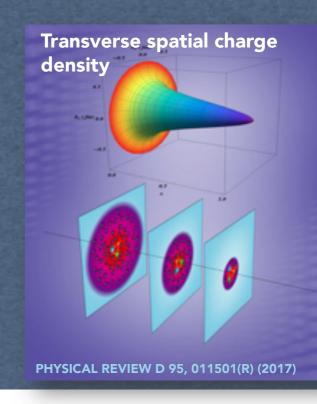

$$\mathbf{e}\mathbf{p} \to \mathbf{e}'\mathbf{h}\mathbf{X}$$

$$\mathbf{d}\sigma^{\mathbf{h}} \propto \mathbf{\Sigma}\mathbf{f}^{\mathbf{q}}(\mathbf{x}, \mathbf{k}_{\perp}) \otimes \mathbf{d}\sigma^{\mathbf{q}}(\mathbf{y}) \otimes \mathbf{D}^{(\mathbf{q} \to \mathbf{h})}(\mathbf{z}, \mathbf{p}_{\perp})$$

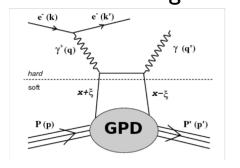

- *The nature of the spin of the nucleon
- *The nature of transverse motion of quarks and gluons
- *3D tomography of the nucleon by using TMDs

CLAS I 2 can access all of them through specific azimuthal modulations (ϕ, ϕ_s) of the cross-section thanks to the polarized beam and target

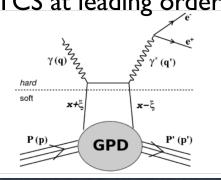
Probability to find a quark q in a nucleon P with a certain polarization



Studying the Nucleon Structure: **Generalized Parton Distributions**



Exclusive Deep Inelastic Scattering


General parton distributions: correlations of longitudinal momentum and transverse position. "Bidimensional version" of elastic form-factors

DVCS at leading order

TCS at leading order

- Accessible via Deep Inelastic exclusive processes: DVCS and TCS
 - DVCS: $e^-N \rightarrow e^-N\gamma$
 - TCS: $\gamma N \rightarrow e^- N e^+ e^-$

GPDs appear in DVCS / TCS through the Compton Form Factor: the two processes are sensitive to different parts of it.

- Imaginary part: DVCS spin asymmetries
- Real part: DVCS cross-section / TCS angular distribution

$$\mathcal{H} = \sum_{q} e_{q}^{2} \left\{ \mathcal{P} \int_{-1}^{1} dx H^{q}(x, \xi, t) \left[\frac{1}{\xi - x} - \frac{1}{\xi + x} \right] + i\pi \left[H^{q}(\xi, \xi, t) - H^{q}(-\xi, \xi, t) \right] \right\}$$

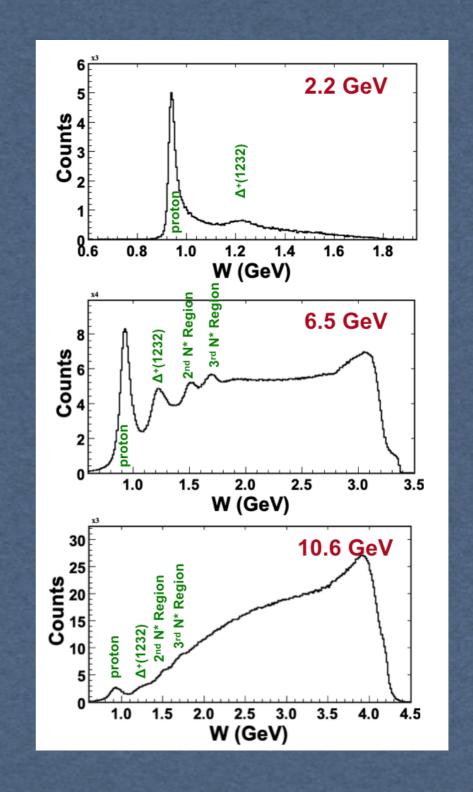
CLAS12 data taking

- CLASI2 data taking
- from Feb 2017 (KPP) to Spring 2019 (physics runs)

-Run Group A:

- 13 experiments
- 10.2-10.6 GeV polarized electrons
- Liquid-hydrogen target
- ~300 mC, ~50% of approved beam time

- Run Group K:


- 3 experiments
- 6.5, 7.5 GeV polarized electrons
- Liquid-hydrogen target
- ~45 mC, ~12% of approved beam time

-Run Group B:

- 7 experiments
- 10.2-10.5 GeV polarized electrons
- Liquid-deuterium target
- ~155 mC, ~43% of approved beam time

—Run Group F (BONUS):

- I experiments
- 10.2 GeV polarized electrons (+2.2 GeV for calibration)
- Gas-deuterium target + BONUS RTPC
- ~92% of approved beam time (Run concluded!)

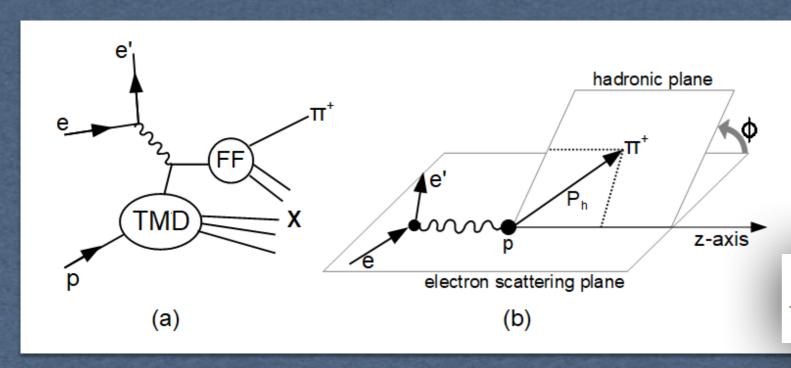
Run Group A experiments (LH₂)

Comprises 13 different experiments

- TMDs
- GPDs
- Fracture functions
- Form Factors
- hard exclusive meson production
- baryon and meson spectroscopy
- nucleon resonances

- strange baryons
- J/psi
- exotics

Proposal	Physics
E12-06-108	Hard exclusive electro-production of π ⁰ , η
E12-06-108A	Exclusive N*->KY Studies with CLAS12
E12-06-108B	Transition Form Factor of the η' Meson with CLAS12
E12-06-112	Proton's quark dynamics in SIDIS pion production
E12-06-112A	SIDIS A productiuon in target fragmentation region
E12-06-112B	Colinear nucleon structure at twist-3
E12-06-119(a)	Deeply Virtual Compton Scattering
E12-09-003	Excitation of nucleon resonances at high Q ²
E12-11-005	Hadron spectroscopy with forward tagger
E12-11-005A	Photoproduction of the very strangest baryon
E12-12-001	Timelike Compton Scatt. & J/ψ production in e+e
E12-12-001A	J/ψ Photoproduction & study of LHCb pentaquarks
E12-12-007	Exclusive φ meson electroproduction with CLAS12


- Different experiments have different patterns in CLASI2

 Trigger decision based on PMT detectors and DC, configured for 3 sets of experiments: "electrons", "MesonEx", "muons"
- Original DAQ requirements: I0kHz event rate, I00MB/sec data rate, LT= 0.9
- Production rates at 50nA beam, FT=ON: I2kHz event rate, 550MB/sec data rate, LT=0.94% Electron trigger 5kHz (40%), muon trigger 2.7kHz (20%), MesoEx trigger 4.5kHz (40%)
- Data Reconstruction: 342 of the accumulated statistics ready for physics analyses (cooked data) 60G triggers, 1.2 PB raw data → 160TB DST → 100TB DST (16M core/hours processing time, 62.5M jobs processed)
- Preparing a better version of data cooking (Pass 2) to recook the entire data set Pass I data suffer from CD mis-alignment and other issues solved in the new cooking

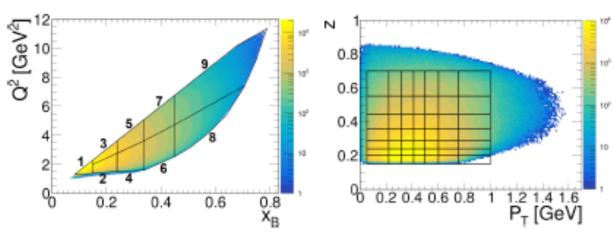
CLAS12 first results

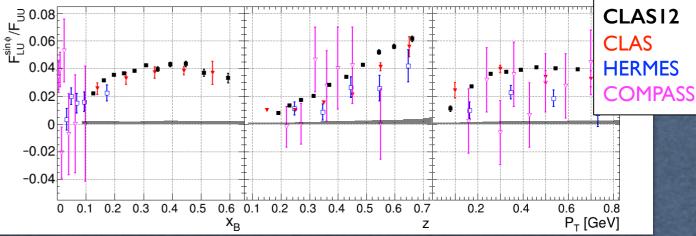
First multidimensional, high precision measurements of semiinclusive π^+ beam single spin asymmetries from the proton over a wide range of kinematics

- So far, good mapping of ID PDF (longitudinal momentum dependence)
- Are the q carrying an orbital angular momentum? how is it connected to the spin of the nucleon? q correlations?
- 3-D structure accessed trough Transverse Momentum dep. Distributions (TMDs)
- Semi Inclusive DIS (SIDIS) to study the transverse structure of the nucleon
- Single Spin Asymmetries (SSA) sensitive to TMDs and Fragmentation Functions (FF)
- Beam SSA: twist-3, subleading, O(M/Q), accessible in fixed target, medium energy (~10 GeV) experiments

$$SSA(z, P_T, \phi, x_B, Q^2) = \frac{d\sigma^+ - d\sigma^-}{d\sigma^+ + d\sigma^-}$$
$$= \frac{A_{LU}^{\sin \phi} \sin \phi}{1 + A_{UU}^{\cos \phi} \cos \phi + A_{UU}^{\cos 2\phi} \cos 2\phi},$$

spin asymmetries from the proton over a wide range of kinematic

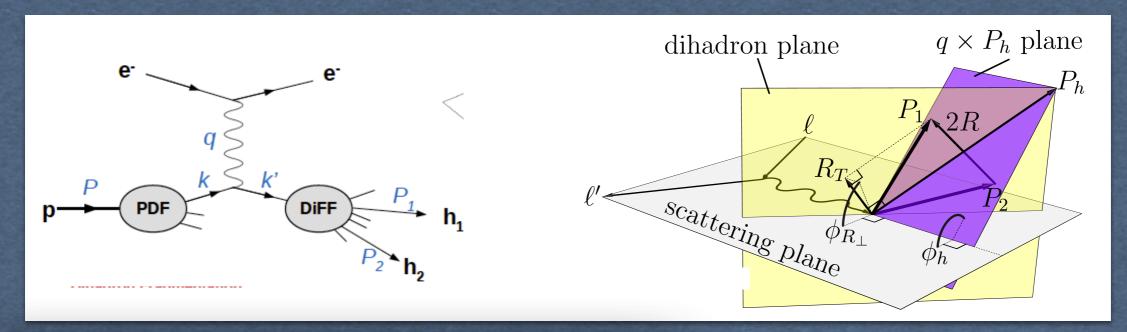



- = 0.03-0.03

100 150 200


• x_B= proton momentum fraction carried by the struck q

- $z = \gamma_v$ energy fraction carried by π
- PT = π transverse momentum
- $F_{LU} = q-g$ correlation (genuine tw-3) = Convolution (Collins, Boers-Mulders, tw-3 TMD pol and unpol FF)


- Good kinematic coverage necessary for multi-D mapping
- Existing data are sparse and limited in kinematics
- CLAS12: Ee=10.6 GeV, Pe \sim 86% δ A_{LU} \sim 6%
- Models:
 - I) active q + spectator di-q (scalar)
 - 2) active q + spectator di-q (ax-vector) (best fit)
 - 3) H (parametrized) + e (chiral soliton)
- Model-dep extraction of Collins (dashed) and TMD tw-3 (dotted)
- ★ First multi-D measurement over a wide kinematic range
- ★ Extraction of Collins and TMD functions

CLAS12 first results

First Observation of Beam Spin Asymmetries in the Process e $p \rightarrow e' \pi^+ \pi^- X$ with CLAS 12

- SIDIS ingredients: q in the nucleon (PDF), hadronization (Fragmentation Functions)
- Fragmentation in 2h is sensitive to several TMDs and Dihadron Fragmentation Functions (DiFFs)
- Spin-momentum correlations in hadronization
- Access to PDF e(x) (transv polarized q in a unp nucleon, tw-3) and Dihadron FF GI-perp (helicity of fragmenting q)
- Complement single-hadron SIDIS, with the advantage of another degree of freedom

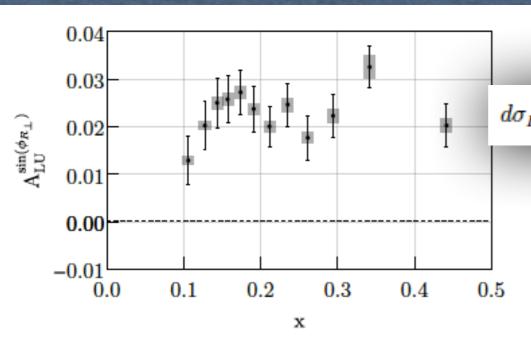
$$\begin{split} A_{LU} &= \frac{1}{P_{\text{beam}}} \frac{N^{+}(\phi_{h}, \phi_{R_{\perp}}) - N^{-}(\phi_{h}, \phi_{R_{\perp}})}{N^{+}(\phi_{h}, \phi_{R_{\perp}}) + N^{-}(\phi_{h}, \phi_{R_{\perp}})} = \\ A_{LU}^{\sin(\phi_{h} - \phi_{R_{\perp}})} \sin(\phi_{h} - \phi_{R_{\perp}}) + A_{LU}^{\sin(\phi_{R_{\perp}})} \sin(\phi_{R_{\perp}}), \end{split}$$

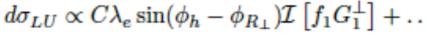
- Ph = PI + P2 pions 3-mom
- RT is the component of R perpendicular to Ph

$$oldsymbol{R}_T = \left(z_2 oldsymbol{P}_1^{\perp} - z_1 oldsymbol{P}_2^{\perp}\right)/z$$

- $\Phi h = azimuthal angle of q \times Ph plane$
- $\Phi R \perp$ = azimuthal angle of di-hadron plane

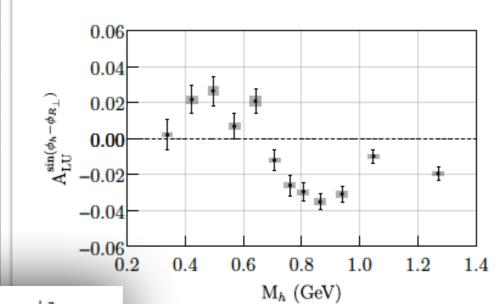
Observation of Beam Spin Asymmetries in the Process $ep \rightarrow e'\pi^+\pi^-X$ with CLAS12 T.B. Hayward, ¹ C. Dilks, ² A. Vossen, ² H. Avakian, ³ S. Adhikari, ⁴ G. Angelini, ⁵ M. Arratia, ^{6,3} H. Atac, ⁷ T.B. Hayward, C. Dinks, A. Vossen, B. A. Lasam, Gayoso, I. N. Baltzellei, S. P. Benmokht, M. Baitzellei, S. Bellinskiy, M. Bende, M. Bende, M. Bian, M. Biselli, M. Bondi, F. Bossh, M. Boidrinov, W. J. Briscoe, W. K. Brooks, M. Broks, M. Bello, S. B. Bolarinov, W. J. Briscoe, M. K. Brooks, M. Bende, M. Bello, S. B. Bola, M. Bello, S. B. Bello, S. Bello, S. B. Bello, S. Bello,

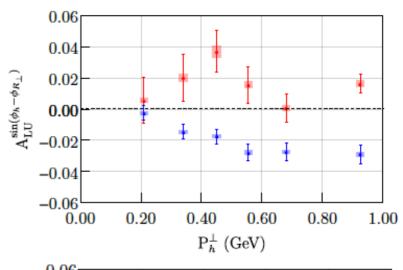

D.S. Carrinan, J.C. Carvaja, A. Ceienano, F. Canagagou, A. Cassa, C. Carrinan, D.P.L. Cole, 2^aM. Contalbrigo, ⁸G. Costantini, ¹/₂, ¹/₂ V. Crede, ²d. A. D'Angelo, ¹/₂ N. Dashyan, ²⁷ R. De Vita, ⁵ M. Defurne, ¹⁵ A. Deur, ³ S. Diehl, ²⁸, ²² C. Djalali, ²⁰ R. Dupre, ¹⁸ M. V. geer, ³ H. Egiyan, ³ M. Ehrhart, ³⁰, ¹⁸

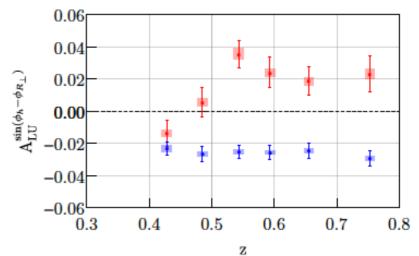

P.L. Cole, ²³ M. Contalbrigo, ⁸ G. Costantini, ¹², ¹³ V. Crede, ²⁴ A. D'Anaelo, ⁷ S. Dashyan, ²⁷ R. De Vita, ⁹ M. Defurne, ¹⁵ A. Deur, ¹⁸ S. Diehl, ²⁸, ²² C. Djalai, ²⁰ R. Dupred, ⁸ M. Corger, ⁵⁶ H. Egiyan, ³ M. Erhrart, ³⁰, ¹⁸ A. El Alaoui, ¹⁶ L. El Fassi, ¹⁹ L. Elouadrhiri, ³ S. Fegan, ³¹ G. Filk, ³¹ F. Forest, ³¹ G. Cavalian, ³ G.P. Gilfoyle, ³⁴ F.X. Girod, ³ D.I. Glazier, ³⁵ A.A. Golubenko, ³⁶ R.W. Gorge, ⁵ Y. Gotra, ⁵ K.A. Griffleen, ¹ M. Guidal, ¹⁸ K. Hafdi, ³⁰ H. Hakobyan, ¹⁶, ²⁷ M. Hattawy, ¹⁷ K. Hickh ²⁰ G. Josert, ¹⁸ M. Holtrop, ³⁸ D.G. Ireland, ³⁵ E.L. Isupov, ³⁶ H.S. Jo, ³⁰ K. Joo, ²² S. Joosten, ³⁰ G. Gebra, ³⁰ M. Khachatryan, ¹⁷ A. Khanal, ⁴ A. Kim, ²² W. Kim, ³⁰ A. Kripko, ²⁸ V. Kubarovsky, ³ S. E. oh, ¹⁰ L. Lanza, ²⁸ M. Leali, ¹², ¹³ S. Lee, ⁴¹ P. Lenisa, ⁸, ²¹ K. Livingston, ³⁵ I.J.D. MacGregor, ²⁵ D. Monay, ⁵ N. Markov, ³, ²² I. Marsicano, ⁵ V. Mascagna, ⁴², ¹³ J. B. McKinnon, ³⁵ Z.E. Meziani, ³⁰, ⁷ M. Tovin ⁴³ Y. Mokeev, ³ A Movsisyan, ⁸ C. Munoz Camacho, ¹⁸ P. Nadel-Turonski, ³ P. Naidoo, ³⁵ S. Nanda, ¹⁹ K. N. Alao, ³⁷ S. Niccolai, ¹⁸ G. Niculescu, ⁴⁴ T.R. O'Connell, ²² M. Osipenko, ⁹ M. Paolone, ⁶⁸, ⁷ L. L. L. Repealed, ⁵⁸ M. Parotone, ⁵⁸ R. Parotenyanon, ³³ E. Parotenyanon, ³³ E. Parotenyanon, ³³ E. Parotenyanon, ³³ E. Parotenyanon, ³⁴ E. Parotenyanon, ³⁴ P. Parotenyanon, ³⁴ P. Parotenyanon, ³⁵ P. Parotenyano

M. Ripani, J. J. Ritman, ⁴⁷ A. Rizzo, ²⁰, ²⁶ P. Rossi, ³, ⁴³ J. Rowley, ²⁰ F. Sabatié, ¹⁵ C. Salgado, ⁴⁸ A. Schmidt, ⁵ E.P. Segarra, ⁴¹ Y.G. Sharabian, ³ U. Shrestha, ²⁰ O. Soto, ⁴³, ¹⁶ N. Sparveris, ⁷ S. Stepanyan, ³ I.I. Strakovsky, S. Strauch, ³⁷ A. Thornton, ³⁵ N. Tyler, ³⁷ R. Tyson, ³⁵ M. Ungaro, ³ L. Venturelli, ¹², ¹³ H. Voskanyan, ²⁷ E. Voutier, ¹⁸ D.P. Watts, ³¹ K. Wei, ²² X. Wei, ³ M.H. Wood, ⁴⁹ B. Yale, ¹ N. Zachariou, ³¹ and J. Zhang⁴ (The CLAS Collaboration)

R. Paremuzyan, 3,38 E. Pasyuk, W. Phelps, 46 O. Pogorelko, 10 Y. Prok, 17 B.A. Raue, 4,3

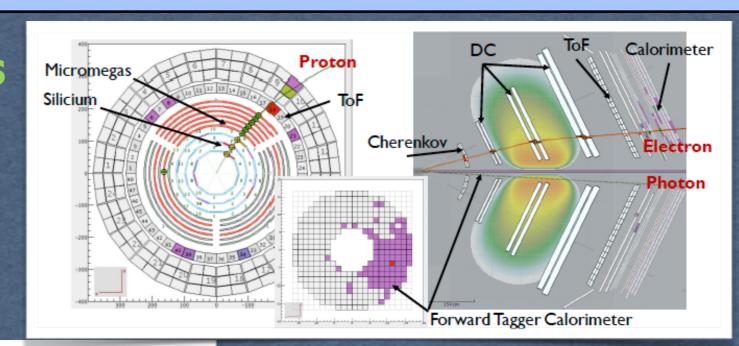

$$d\sigma_{LU} \propto$$
 (4)
 $W\lambda_e \sin(\phi_{R_\perp}) \left(xe(x) H_1^{\triangleleft}(z, M_h) + \frac{1}{z} f(x) \tilde{G}^{\triangleleft}(z, M_h) \right)$

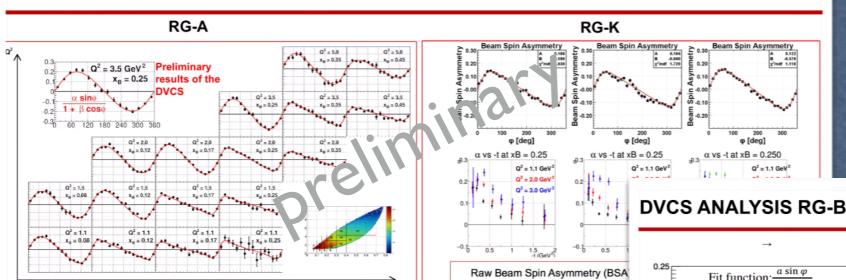




- Change of sign around ρ mass
- First measurement of TMD fragmentation in 2πs

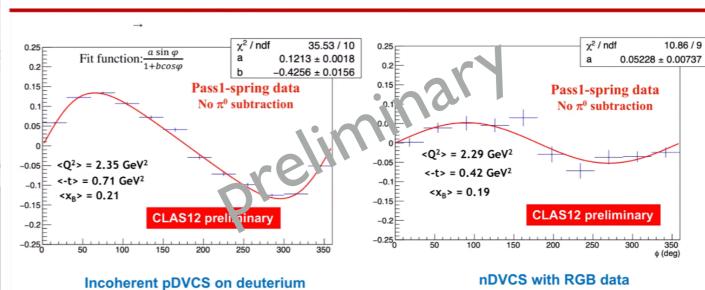
- $e(x) \neq 0$ in valence region
- From known H-function, e(x) can be extracted
 - ★ First measurement of BSA in di-h production
 - \star Sub-leading PDF e(x) different from 0
 - ★ First helicity-deg FF G₁[⊥] observation




CLAS12 preliminary results

Typical DVCS event:

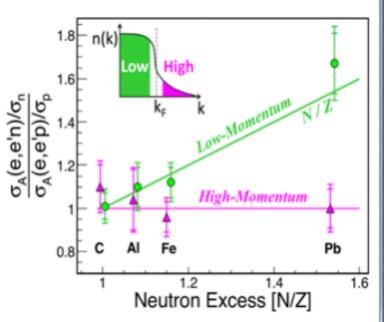
- Electron in the forward detector (torus, DC, ToF, Cherenkov, Calorimeter)
- Photon in the forward tagger (calorimeter)
- Proton in the central detector (solenoid, Silicium, Micromegas and ToF)



DEEPLY VIRTUAL COMPTON SCATTERING

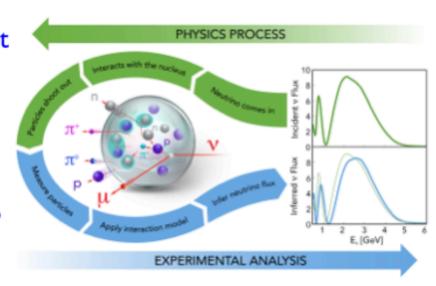
Requires understanding of the tracking/PID in Central tracking Requires understanding the photon/pi0 reconstruction in the calorimeter Requires understanding physics background in particular the pi0

Note: Common problems to all run groups (A, B and K) and the groups are worl


CLASI2 FY21 schedule

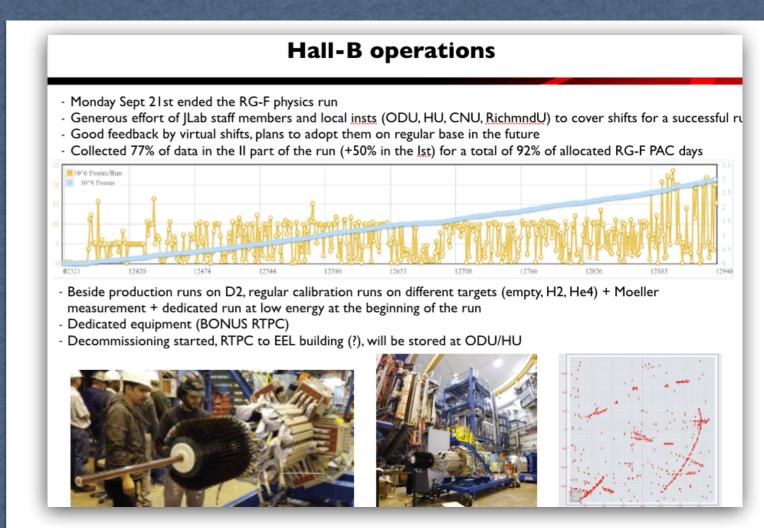
RG-M status

- Scheduled for 30 PAC days: October-December 2021
- D, 4He, C, [O,] 40Ar, 40Ca, 48Ca, Sn
 - Targets designed and under development
 - Standard liquid target cell
 - Short 0.5-cm Ar liquid target cell
 - Solid target C, Sn insertion mechanism
 - Special Ca target holders
 - [1,] 2, 4, 6 GeV
 - Outbending at 2 GeV
 - Standard CLAS12 plus BAND, no FT or LTCC
 - Simulations underway to optimize
 - Trigger
 - Torus field


Short Range Correlations

- Build on the tremendous success of the CLAS6 data mining SRC program (Science, several Nature, ...)
- Take far more (e,e'pN) and (e,e'pNN) data on a wider range of nuclei
 - Three nucleon SRCs?
 - Constraining the NN interaction at short distances
 - Understanding factorized effective theories
 - SRC formation mechanisms
 - SRCs and the EMC Effect

Electrons for neutrinos


- Take (e,e'X) data to test vector-current part of neutrino-nucleus event generators
 - Energy reconstruction techniques
 - Event generators key to reconstructing oscillation parameters

Conclusions

- *A comprehensive hadron physics program just started with CLASI2 at JLab
- * Nucleon structure (GPD, TMD), light-quark meson spectroscopy (hybrids, exotics, penta-q), nuclear structure (correlated pairs)
- * Reach and long (~10y!) physics program exploiting CLAS12 excellent resolution and particle ID paired to high luminosity e-/ γ and beam/target polarization available in Hall-B
- * A significant kinematic coverage assessing many final states will cover a parameter space that will be further investigated by future initiatives (EIC)
- * The CLASI2 detector is performing well providing the first physics results

First CLAS 12 results ready for publications, many more to come!

Despite COVID-19 CLAS12 accomplished the planned physics program