

NLO inclusive J/ψ photoproduction at large P_T at HERA and the EIC

Carlo Flore

Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), CNRS, Orsay

> DIS 2021 (virtual meeting) 13 Apr 2021

Phys.Rept. 889 (2020) 1-106 & EPJC (2016) 76:107 for reviews

Phys.Rept. 889 (2020) 1-106 & EPJC (2016) 76:107 for reviews

• No agreement on which mechanism is dominant

[see C. Van Hulse talk on Monday]

Phys.Rept. 889 (2020) 1-106 & EPJC (2016) 76:107 for reviews

- No agreement on which mechanism is dominant [see C. Van Hulse talk on Monday]
- Differences in the treatment of the hadronization

Phys.Rept. 889 (2020) 1-106 & EPJC (2016) 76:107 for reviews

• No agreement on which mechanism is dominant

[see C. Van Hulse talk on Monday]

- Differences in the treatment of the hadronization
- 3 common models:

Phys.Rept. 889 (2020) 1-106 & EPJC (2016) 76:107 for reviews

• No agreement on which mechanism is dominant

[see C. Van Hulse talk on Monday]

- Differences in the treatment of the hadronization
- 3 common models:
 - 1. COLOR SINGLET MODEL:

hadronization w/o gluon emission; colour and spin are preserved during the hadronization

Phys.Rept. 889 (2020) 1-106 & EPJC (2016) 76:107 for reviews

No agreement on which mechanism is dominant

[see C. Van Hulse talk on Monday]

- Differences in the treatment of the hadronization
- 3 common models:
 - 1. COLOR SINGLET MODEL:

hadronization w/o gluon emission; colour and spin are preserved during the hadronization

2. NRQCD AND COLOR OCTET MECHANISM:

higher Fock states of the mesons taken into account; $Q\bar{Q}$ can be produced in octet states with different quantum number as the meson;

Phys.Rept. 889 (2020) 1-106 & EPIC (2016) 76:107 for reviews

No agreement on which mechanism is dominant

[see C. Van Hulse talk on Monday]

- Differences in the treatment of the hadronization
- 3 common models:
 - 1. COLOR SINGLET MODEL:

hadronization w/o gluon emission; colour and spin are preserved during the hadronization

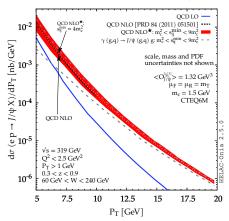
2. NROCD AND COLOR OCTET MECHANISM:

higher Fock states of the mesons taken into account; $Q\bar{Q}$ can be produced in octet states with different quantum number as the meson;

3 COLOR EVAPORATION MODEL:

based on quark-hadron duality; only the invariant mass matters; semi-soft gluons emissions; color-wise decorrelated cc prod. and hadr.

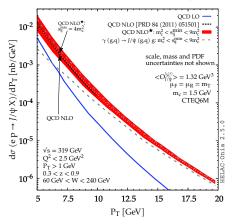
P. Artoisenet et al., PRL 101 (2008) 152001, J.-P. Lansberg, EPJC 61 (2009) 693 & PLB 679 (2009) 340


P. Artoisenet et al., PRL 101 (2008) 152001, J.-P. Lansberg, EPJC 61 (2009) 693 & PLB 679 (2009) 340

• NLO* only contains the real-emission contributions with an IR cut-off, $\sqrt{s_{ij}^{\min}}$, and is expected to account for the leading P_T contributions at NLO (P_T^{-6})

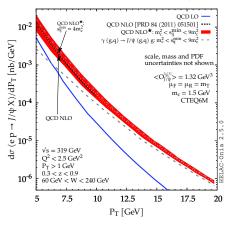
P. Artoisenet et al., PRL 101 (2008) 152001, J.-P. Lansberg, EPJC 61 (2009) 693 & PLB 679 (2009) 340

- NLO* only contains the real-emission contributions with an IR cut-off, $\sqrt{s_{ij}^{\min}}$, and is expected to account for the leading P_T contributions at NLO (P_T^{-6})
- It has been successfully checked against full NLO computations for P_T > 3 GeV


P. Artoisenet et al., PRL 101 (2008) 152001, J.-P. Lansberg, EPJC 61 (2009) 693 & PLB 679 (2009) 340

CSM QCD NLO from PRD 84 (2011) 051501

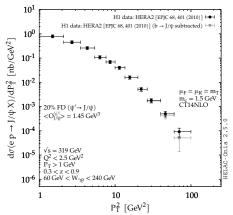
- NLO* only contains the real-emission contributions with an IR cut-off, $\sqrt{s_{ij}^{\min}}$ and is expected to account for the leading P_T contributions at NLO (P_T^{-6})
- It has been successfully checked against full NLO computations for P_T > 3 GeV


P. Artoisenet et al., PRL 101 (2008) 152001, J.-P. Lansberg, EPJC 61 (2009) 693 & PLB 679 (2009) 340

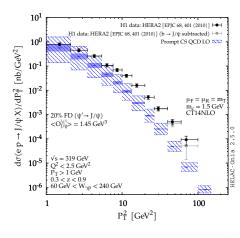
CSM QCD NLO from PRD 84 (2011) 051501

- NLO* only contains the real-emission contributions with an IR cut-off, $\sqrt{s_{ij}^{\min}}$, and is expected to account for the leading P_T contributions at NLO (P_T^{-6})
- It has been succesfully checked against full NLO computations for $P_T > 3$ GeV
- $\sqrt{s_{ij}^{\min}}/m_c \in [1:3]$ suitable for our study; $\sqrt{s_{ij}^{\min}} = 2m_c$ remarkably reproduces NLO results

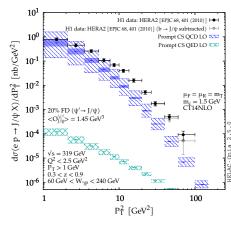
P. Artoisenet et al., PRL 101 (2008) 152001, I.-P. Lansberg, EPIC 61 (2009) 693 & PLB 679 (2009) 340



CSM QCD NLO from PRD 84 (2011) 051501

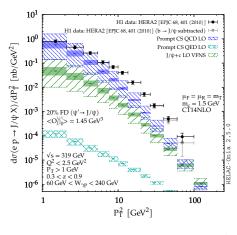

- NLO* only contains the real-emission contributions with an IR cut-off, $\sqrt{s_{ii}^{\min}}$, and is expected to account for the leading P_T contributions at NLO (P_T^{-6})
- It has been succesfully checked against full NLO computations for $P_T > 3$ GeV
- $/s_{ii}^{\min}/m_c \in [1:3]$ suitable for our study; $\sqrt{s_{ii}^{min}} = 2m_c$ remarkably reproduces NLO results

Let's revisit HERA data!


All the computations are done with HELAC-ONIA [H.-S. Shao, CPC198 (2016) 238]. See also https://nloaccess.in2p3.fr

CF, J.-P. Lansberg, H.-S. Shao, Y. Yedelkina, PLB 811 (2020) 135926

$$\gamma + g \rightarrow \psi + g \otimes \alpha \alpha_s^2$$


All the computations are done with HELAC-ONIA [H.-S. Shao, CPC198 (2016) 238]. See also https://nloaccess.in2p3.fr Scale and mass uncertainties are shown by the hatched and solid bands respectively.

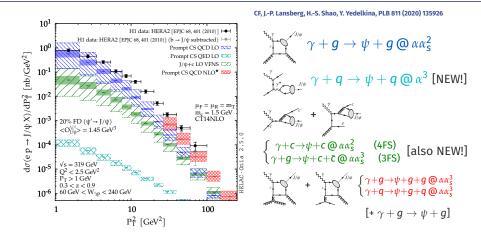
CF, J.-P. Lansberg, H.-S. Shao, Y. Yedelkina, PLB 811 (2020) 135926

$$\gamma+g o\psi+g$$
 @ $\alphalpha_{
m S}^2$ $\gamma+q o\psi+q$ @ $lpha^3$ [NEW!]

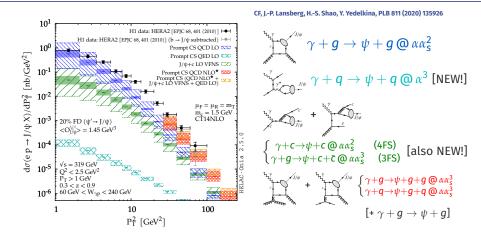
All the computations are done with HELAC-ONIA [H.-S. Shao, CPC198 (2016) 238]. See also https://nloaccess.in2p3.fr Scale and mass uncertainties are shown by the hatched and solid bands respectively.

CF, J.-P. Lansberg, H.-S. Shao, Y. Yedelkina, PLB 811 (2020) 135926

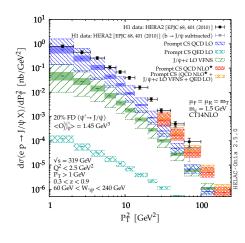
$$\gamma + g \rightarrow \psi + g @ \alpha \alpha_{s}^{2}$$


$$\gamma + q \rightarrow \psi + q @ \alpha^{3} \text{ [NEW!]}$$

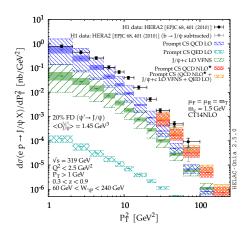
$$\gamma + q \rightarrow \psi + q @ \alpha^{3} \text{ [NEW!]}$$


$$\gamma + c \rightarrow \psi + c @ \alpha \alpha_{s}^{2} \qquad \text{(4FS)}$$

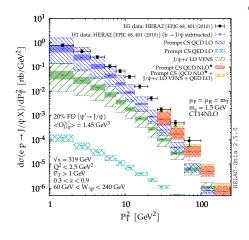
$$\gamma + g \rightarrow \psi + c + \bar{c} @ \alpha \alpha_{s}^{3} \qquad \text{(3FS)} \text{ [also NEW!]}$$


All the computations are done with HELAC-ONIA [H.-S. Shao, CPC198 (2016) 238]. See also https://nloaccess.in2p3.fr Scale and mass uncertainties are shown by the hatched and solid bands respectively.

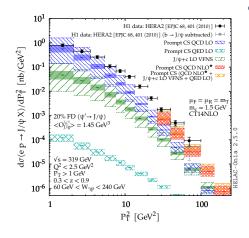
All the computations are done with HELAC-ONIA [H.-S. Shao, CPC198 (2016) 238]. See also https://nloaccess.in2p3.fr Scale and mass uncertainties are shown by the hatched and solid bands respectively.

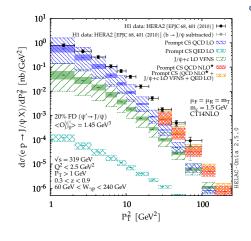


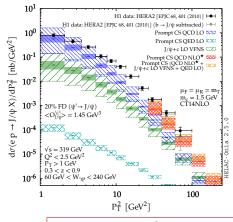
All the computations are done with HELAC-ONIA [H.-S. Shao, CPC198 (2016) 238]. See also https://nloaccess.in2p3.fr Scale and mass uncertainties are shown by the hatched and solid bands respectively.



CF, J.-P. Lansberg, H.-S. Shao, Y. Yedelkina, PLB 811 (2020) 135926

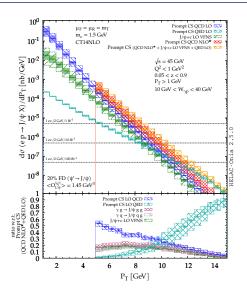

LO QCD works well at low P_T


- LO QCD works well at low P_T
- LO QED small, but much harder spectrum


- LO QCD works well at low P_T
- LO QED small, but much harder spectrum
- J/ψ +charm matters at large P_T

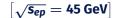
- LO QCD works well at low P_T
- LO QED small, but much harder spectrum
- J/ψ +charm matters at large P_T
- NLO^(*) close to the data, the overall sum nearly agrees with them

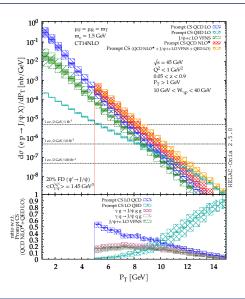
- LO QCD works well at low P_T
- LO QED small, but much harder spectrum
- $J/\psi+$ charm matters at large P_T
- NLO^(*) close to the data, the overall sum nearly agrees with them
- Agreement with the last bin when the expected b → J/ψ feed down A (in gray) is subtracted


CF, J.-P. Lansberg, H.-S. Shao, Y. Yedelkina, PLB 811 (2020) 135926

- LO QCD works well at low P_T
- LO QED small, but much harder spectrum
- J/ψ +charm matters at large P_T
- $NLO^{(\star)}$ close to the data, the overall sum nearly agrees with them
- Agreement with the last bin when the expected $b \rightarrow J/\psi$ feed down A (in gray) is subtracted

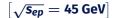
The CSM up to $\alpha \alpha_s^3$ reproduces J/ψ photoproduction at HERA

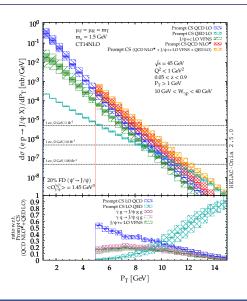

 \rightarrow we will restrict to CSM for our EIC predictions



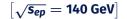
CF, J.-P. Lansberg, H.-S. Shao, Y. Yedelkina, PLB 811 (2020) 135926

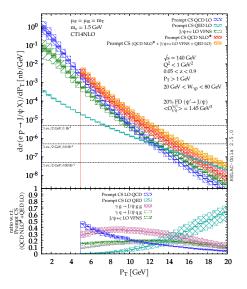
At $\sqrt{s_{ep}} = 45$ GeV, one gets into valence region

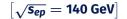


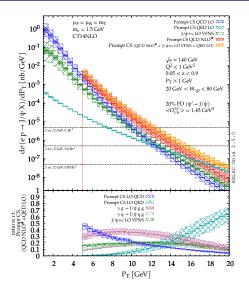


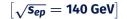
CF, J.-P. Lansberg, H.-S. Shao, Y. Yedelkina, PLB 811 (2020) 135926

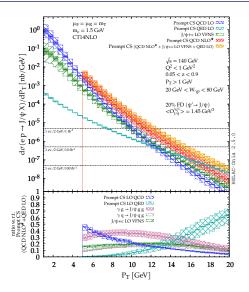

- At $\sqrt{s_{ep}} = 45$ GeV, one gets into valence region
- Yield steeply falling with P_T
- Yield can be measured up to $P_T \sim 11 \text{ GeV}$ with $\mathcal{L} = 100 \text{ fb}^{-1}$

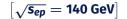

[using both ee and $\mu\mu$ decay channels and $\varepsilon_{I/\psi} \simeq$ 80%]

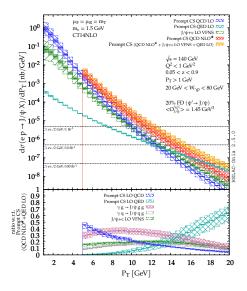

- At $\sqrt{s_{ep}} = 45$ GeV, one gets into valence region
- Yield steeply falling with P_T
- Yield can be measured up to $P_T \sim 11 \text{ GeV}$ with $\mathcal{L} = 100 \text{ fb}^{-1}$ [using both ee and $\mu\mu$ decay channels and $\varepsilon_{I/\psi} \simeq$ 80%]
- QED contribution leading at the largest reachable P_T
- $\gamma + q$ fusion contributes more than 30% for $P_T > 8$ GeV

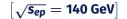


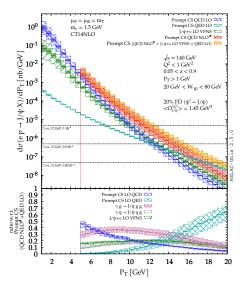

CF, J.-P. Lansberg, H.-S. Shao, Y. Yedelkina, PLB 811 (2020) 135926

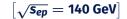

At $\sqrt{s_{ep}} = 140 \text{ GeV}$ larger P_T range, up to \sim 18 GeV

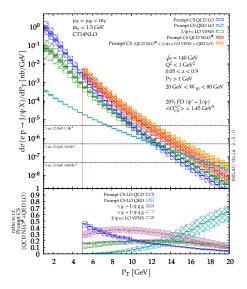


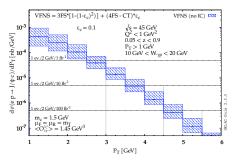

- At $\sqrt{s_{ep}} = 140$ GeV larger P_T range, up to \sim 18 GeV
- QED contribution also leading at the largest reachable P_T
- $\gamma + g$ fusion contributions dominant up to $P_T \sim 15 \text{ GeV}$




- At $\sqrt{s_{ep}} = 140$ GeV larger P_T range, up to \sim 18 GeV
- QED contribution also leading at the largest reachable P_T
- $\gamma + q$ fusion contributions dominant up to $P_T \sim 15 \text{ GeV}$
- $J/\psi + 2$ hard partons [i.e. $J/\psi + \{gg, qg, c\bar{c}\}$] dominant for $P_T \sim 8-15$ GeV

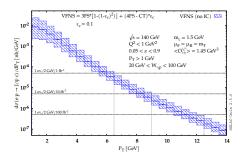



- At $\sqrt{s_{ep}} = 140$ GeV larger P_T range, up to \sim 18 GeV
- QED contribution also leading at the largest reachable P_T
- $\gamma + a$ fusion contributions dominant up to $P_T \sim 15 \text{ GeV}$
- $J/\psi + 2$ hard partons [i.e. $J/\psi + \{qq, qq, c\bar{c}\}$] dominant for $P_T \sim 8-15$ GeV
- It could lead to the observation of $J/\psi + 2$ jets with moderate P_{τ}^{Jet}


- At $\sqrt{s_{ep}} = 140$ GeV larger P_T range, up to \sim 18 GeV
- QED contribution also leading at the largest reachable P_T
- $\gamma + a$ fusion contributions dominant up to $P_T\sim 15~{\rm GeV}$
- $J/\psi + 2$ hard partons [i.e. $J/\psi + \{qq, qq, c\bar{c}\}$] dominant for $P_T \sim 8-15$ GeV
- It could lead to the observation of $J/\psi + 2$ jets with moderate P_{τ}^{jet}
- with a specific topology where the leading jet₁ recoils on the J/ψ + jet₂ pair

- At $\sqrt{s_{ep}} = 140$ GeV larger P_T range, up to \sim 18 GeV
- QED contribution also leading at the largest reachable P_T
- $\gamma + a$ fusion contributions dominant up to $P_T\sim 15~{\rm GeV}$
- $J/\psi + 2$ hard partons [i.e. $J/\psi + \{qq, qq, c\bar{c}\}$] dominant for $P_T \sim 8-15$ GeV
- It could lead to the observation of $J/\psi + 2$ jets with moderate P_{τ}^{jet}
- with a specific topology where the leading jet₁ recoils on the J/ψ + jet₂ pair
- We expect the $d\sigma$ to vanish when iet₁

J/ψ +charm associated production at the EIC

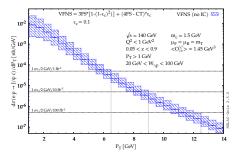


CF, J.-P. Lansberg, H.-S. Shao, Y. Yedelkina, PLB 811 (2020) 135926

 Same LO VFNS computation previously shown in green except for the charm-detection efficiency ε_c:

$$\text{d}\sigma^{\text{VFNS}} = \text{d}\sigma^{\text{3FS}}\big[1-(1-\epsilon_{\text{c}})^2\big] + \big(\text{d}\sigma^{\text{4FS}} - \text{d}\sigma^{\text{CT}}\big)\epsilon_{\text{c}}$$

- At $\sqrt{s_{ep}} = 45$ GeV, yield limited to low P_T even with $\mathcal{L} = 100$ fb⁻¹
- But it is clearly observable if $\varepsilon_c = 0.1$ with $\mathcal{O}(500, 50, 5)$ events for $\mathcal{L} = (100, 10, 1)$ fb⁻¹

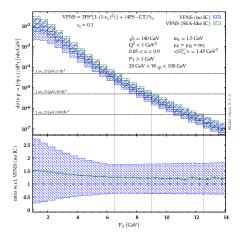


CF, J.-P. Lansberg, H.-S. Shao, Y. Yedelkina, PLB 811 (2020) 135926

 Same LO VFNS computation previously shown in green except for the charm-detection efficiency ε_c :

$$d\sigma^{VFNS} = d\sigma^{3FS} \left[1 - (1 - \varepsilon_c)^2 \right] + \left(d\sigma^{4FS} - d\sigma^{CT} \right) \varepsilon_c$$

- At $\sqrt{s_{ep}} = 45$ GeV, yield limited to low P_{T} even with $\mathcal{L} = 100 \text{ fb}^{-1}$
- But it is clearly observable if $\varepsilon_c = 0.1$ with $\mathcal{O}(500, 50, 5)$ events for $\mathcal{L} = (100, 10, 1) \text{ fb}^{-1}$
- At $\sqrt{s_{ep}} = 140$ GeV, P_T range up to 10 GeV with up to thousands of events with $\mathcal{L} = 100 \text{ fb}^{-1}$
- Could be observed via charm jet

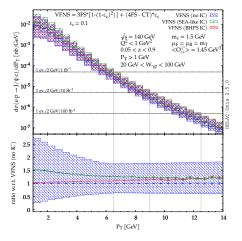

CF, J.-P. Lansberg, H.-S. Shao, Y. Yedelkina, PLB 811 (2020) 135926

 Same LO VFNS computation previously shown in green except for the charm-detection efficiency ε_c :

$$\textit{d}\sigma^{VFNS} = \textit{d}\sigma^{3FS} \left[1 - (1 - \epsilon_c)^2 \right] + \left(\textit{d}\sigma^{4FS} - \textit{d}\sigma^{CT} \right) \epsilon_c$$

- At $\sqrt{s_{ep}} = 45$ GeV, yield limited to low P_T even with $\mathcal{L} = 100 \text{ fb}^{-1}$
- But it is clearly observable if $\varepsilon_c = 0.1$ with $\mathcal{O}(500, 50, 5)$ events for $\mathcal{L} = (100, 10, 1) \text{ fb}^{-1}$
- At $\sqrt{s_{ep}} = 140$ GeV, P_T range up to 10 GeV with up to thousands of events with $\mathcal{L} = 100 \text{ fb}^{-1}$
- Could be observed via charm jet

• 4FS $\gamma c \rightarrow J/\psi c$ depends on c(x) and could be enhanced by intrinsic charm

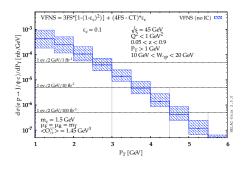


CF, J.-P. Lansberg, H.-S. Shao, Y. Yedelkina, PLB 811 (2020) 135926

 Same LO VFNS computation previously shown in green except for the charm-detection efficiency ε_c :

$$\textit{d}\sigma^{VFNS} = \textit{d}\sigma^{3FS} \left[1 - (1 - \epsilon_c)^2 \right] + \left(\textit{d}\sigma^{4FS} - \textit{d}\sigma^{CT} \right) \epsilon_c$$

- At $\sqrt{s_{ep}} = 45$ GeV, yield limited to low P_T even with $\mathcal{L} = 100 \text{ fb}^{-1}$
- But it is clearly observable if $\varepsilon_c = 0.1$ with $\mathcal{O}(500, 50, 5)$ events for $\mathcal{L} = (100, 10, 1) \text{ fb}^{-1}$
- At $\sqrt{s_{ep}} = 140$ GeV, P_T range up to 10 GeV with up to thousands of events with $\mathcal{L} = 100 \text{ fb}^{-1}$
- Could be observed via charm jet
- 4FS $\gamma c \rightarrow J/\psi c$ depends on c(x) and could be enhanced by intrinsic charm
- Small effect at $\sqrt{s_{ep}} = 140 \text{ GeV}$

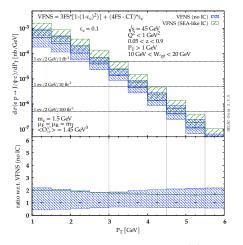


CF, J.-P. Lansberg, H.-S. Shao, Y. Yedelkina, PLB 811 (2020) 135926

 Same LO VFNS computation previously shown in green except for the charm-detection efficiency ε_c :

$$\textit{d}\sigma^{VFNS} = \textit{d}\sigma^{3FS} \left[1 - (1 - \epsilon_c)^2 \right] + \left(\textit{d}\sigma^{4FS} - \textit{d}\sigma^{CT} \right) \epsilon_c$$

- At $\sqrt{s_{ep}} = 45$ GeV, yield limited to low P_T even with $\mathcal{L} = 100 \text{ fb}^{-1}$
- But it is clearly observable if $\varepsilon_c = 0.1$ with $\mathcal{O}(500, 50, 5)$ events for $\mathcal{L} = (100, 10, 1) \text{ fb}^{-1}$
- At $\sqrt{s_{ep}} = 140$ GeV, P_T range up to 10 GeV with up to thousands of events with $\mathcal{L} = 100 \text{ fb}^{-1}$
- Could be observed via charm jet
- 4FS $\gamma c \rightarrow J/\psi c$ depends on c(x) and could be enhanced by intrinsic charm
- Small effect at $\sqrt{s_{ep}} = 140 \text{ GeV}$

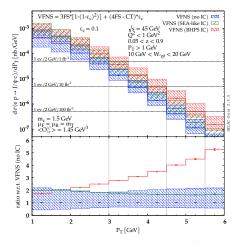

CF, J.-P. Lansberg, H.-S. Shao, Y. Yedelkina, PLB 811 (2020) 135926

 Same LO VFNS computation previously shown in green except for the charm-detection efficiency ε_c :

$$d\sigma^{VFNS} = d\sigma^{3FS} \big[1 - (1 - \varepsilon_c)^2 \big] + \big(d\sigma^{4FS} - d\sigma^{CT} \big) \varepsilon_c$$

- At $\sqrt{s_{ep}} = 45$ GeV, yield limited to low P_T even with $\mathcal{L} = 100 \text{ fb}^{-1}$
- But it is clearly observable if $\varepsilon_c = 0.1$ with $\mathcal{O}(500, 50, 5)$ events for $\mathcal{L} = (100, 10, 1) \text{ fb}^{-1}$
- At $\sqrt{s_{ep}} = 140$ GeV, P_T range up to 10 GeV with up to thousands of events with $\mathcal{L} = 100 \text{ fb}^{-1}$
- Could be observed via charm jet
- 4FS $\gamma c \rightarrow J/\psi c$ depends on c(x) and could be enhanced by intrinsic charm
- Small effect at $\sqrt{s_{ep}} = 140 \text{ GeV}$

Measurable effect at $\sqrt{s_{ep}} = 45 \text{ GeV}$


CF, J.-P. Lansberg, H.-S. Shao, Y. Yedelkina, PLB 811 (2020) 135926

 Same LO VFNS computation previously shown in green except for the charm-detection efficiency ε_c :

$$d\sigma^{VFNS} = d\sigma^{3FS} \big[1 - (1 - \varepsilon_c)^2 \big] + \big(d\sigma^{4FS} - d\sigma^{CT} \big) \varepsilon_c$$

- At $\sqrt{s_{ep}} = 45$ GeV, yield limited to low P_T even with $\mathcal{L} = 100 \text{ fb}^{-1}$
- But it is clearly observable if $\varepsilon_c = 0.1$ with $\mathcal{O}(500, 50, 5)$ events for $\mathcal{L} = (100, 10, 1) \text{ fb}^{-1}$
- At $\sqrt{s_{ep}} = 140$ GeV, P_T range up to 10 GeV with up to thousands of events with $\mathcal{L} = 100 \text{ fb}^{-1}$
- Could be observed via charm jet
- 4FS $\gamma c \rightarrow J/\psi c$ depends on c(x) and could be enhanced by intrinsic charm
- Small effect at $\sqrt{s_{ep}} = 140 \text{ GeV}$

Measurable effect at $\sqrt{s_{ep}} = 45 \text{ GeV}$

CF, J.-P. Lansberg, H.-S. Shao, Y. Yedelkina, PLB 811 (2020) 135926

 Same LO VFNS computation previously shown in green except for the charm-detection efficiency ε_c :

$$d\sigma^{VFNS} = d\sigma^{3FS} \big[1 - (1 - \varepsilon_c)^2 \big] + \big(d\sigma^{4FS} - d\sigma^{CT} \big) \varepsilon_c$$

- At $\sqrt{s_{ep}} = 45$ GeV, yield limited to low P_T even with $\mathcal{L} = 100 \text{ fb}^{-1}$
- But it is clearly observable if $\varepsilon_c = 0.1$ with $\mathcal{O}(500, 50, 5)$ events for $\mathcal{L} = (100, 10, 1) \text{ fb}^{-1}$
- At $\sqrt{s_{ep}} = 140$ GeV, P_T range up to 10 GeV with up to thousands of events with $\mathcal{L} = 100 \text{ fb}^{-1}$
- Could be observed via charm jet
- 4FS $\gamma c \rightarrow J/\psi c$ depends on c(x) and could be enhanced by intrinsic charm
- Small effect at $\sqrt{s_{ep}} = 140 \text{ GeV}$
- Measurable effect at $\sqrt{s_{ep}} = 45$ GeV:

[We used IC c(x) encoded in CT14NNLO]

BHPS valence-like peak visible!

No agreement on the quarkonium-inclusive-production mechanisms

- No agreement on the quarkonium-inclusive-production mechanisms
- For quarkonium production, QCD corrections with P_T -enhanced topologies are known to be important

We have revisited J/ψ photoproduction at HERA

- No agreement on the quarkonium-inclusive-production mechanisms
- For quarkonium production, QCD corrections with P_T -enhanced topologies are known to be important

We have revisited J/ψ photoproduction at HERA

 CSM can describe the latest HERA photoproduction data Agreement improved when accounting for J/ψ +charm and $b \to J/\psi$ FD contributions

- No agreement on the quarkonium-inclusive-production mechanisms
- For quarkonium production, QCD corrections with P_{τ} -enhanced topologies are known to be important

We have revisited J/ψ photoproduction at HERA

- CSM can describe the latest HERA photoproduction data Agreement improved when accounting for J/ψ +charm and $b \to J/\psi$ FD contributions
- We have presented the first QCD-correction study to inclusive J/ψ photoproduction at the EIC

[for leptoproduction ($Q^2 \neq 0$): See J.W. Qiu et al. 2005.10832 Or S. Rajesh talk (today, 10:37, Spin Phys. WG)]

- No agreement on the quarkonium-inclusive-production mechanisms
- For quarkonium production, QCD corrections with P_T-enhanced topologies are known to be important

We have revisited J/ψ photoproduction at HERA

- CSM can describe the latest HERA photoproduction data Agreement improved when accounting for J/ψ +charm and $b \to J/\psi$ FD contributions
- We have presented the first QCD-correction study to inclusive J/ψ photoproduction at the EIC

[for leptoproduction ($Q^2 \neq 0$): see J.W. Qiu et al. 2005.10832 OT S. Rajesh talk (today, 10:37, Spin Phys. WG)]

- $\sqrt{s_{ep}} = 140 \text{ GeV}$:
 - $\gamma + q$ QED contribution [new!] leading at large P_T
 - $\gamma + g$ fusion mostly dominant
 - J/ψ +charm jet accessible
 - $J/\psi + 2$ jets accessible

- No agreement on the quarkonium-inclusive-production mechanisms
- For quarkonium production, QCD corrections with P_T -enhanced topologies are known to be important

We have revisited J/ψ photoproduction at HERA

- CSM can describe the latest HERA photoproduction data Agreement improved when accounting for J/ψ +charm and $b \to J/\psi$ FD contributions
- We have presented the first QCD-correction study to inclusive J/ψ photoproduction at the EIC

[for leptoproduction ($Q^2 \neq 0$): See J.W. Qiu et al. 2005.10832 Of S. Rajesh talk (today, 10:37, Spin Phys. WG)]

- $\sqrt{s_{ep}} = 140 \text{ GeV}$:
 - $\gamma + q$ QED contribution [new!] leading at large P_T
 - $\gamma + g$ fusion mostly dominant
 - J/ψ +charm jet accessible
 - $J/\psi + 2$ jets accessible
- $\sqrt{s_{ep}} = 45 \text{ GeV}$:
 - $\gamma + q$ QED contribution [new!] leading at high P_T
 - $1/\psi$ +charm sensitive to charm PDFs

Backup

Kinematics and cross section

CF. I.-P. Lansberg, H.-S. Shao, Y. Yedelkina, PLB 811 (2020) 135926

•
$$s_{ep}=(P_e+P_p)^2=4E_eE_p;\ s_{\gamma p}=W_{\gamma p}^2=(P_\gamma+P_p)^2;\ P_\gamma=x_\gamma P_e,$$
 so $s_{\gamma p}=x_\gamma s_{ep}$

- $z = \frac{P_Q \cdot P_p}{P_Q \cdot P_p}$: fraction of the photon energy taken by the J/ψ in the proton rest frame
- cross section:

$$\begin{split} \frac{d\sigma}{dzdP_T} &= \int_{\chi_\gamma^{min}}^1 dx_\gamma \frac{2x_\alpha P_T f_{\gamma/e}(x_\gamma, Q_{max}^2) f_{\alpha/p}(x_\alpha(x_\gamma), \mu_F)}{z(1-z)} \\ &\times \frac{1}{16\pi\$^2} \overline{|\mathcal{M}(\gamma+\alpha\to\mathcal{Q}+k)|^2}, \end{split}$$

where
$$x_a = \frac{M_T^2 - m_Q^2 z}{x_\gamma s_{ep} z (1-z)}$$
 and $x_\gamma^{min} = \frac{M_T^2 - m_Q^2 z}{s_{ep} z (1-z)}$

WW distribution

$$f_{\gamma/e}(\mathbf{x}_{\gamma},\mathbf{Q}_{\mathsf{max}}^2) = \frac{\alpha}{2\pi} \left[\frac{1 + (1 - \mathbf{x}_{\gamma})^2}{\mathbf{x}_{\gamma}} \ln \frac{\mathbf{Q}_{\mathsf{max}}^2}{\mathbf{Q}_{\mathsf{min}}^2(\mathbf{x}_{\gamma})} + 2m_{\ell}^2 \mathbf{x}_{\gamma} \left(\frac{1}{\mathbf{Q}_{\mathsf{max}}^2} - \frac{1}{\mathbf{Q}_{\mathsf{min}}^2(\mathbf{x}_{\gamma})} \right) \right]$$

where $Q_{\min}^2(x_{\gamma}) = m_{\rho}^2 x_{\gamma}^2/(1-x_{\gamma})$

VFNS treatment of J/ψ +charm yield

CF. I.-P. Lansberg, H.-S. Shao, Y. Yedelkina, PLB 811 (2020) 135926

 J/ψ +charm production follows from

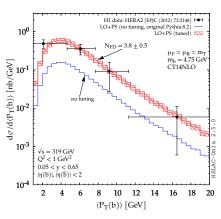
•
$$\gamma + g \rightarrow J/\psi + c + \bar{c} \alpha \alpha_s^3$$
 (3FS)

•
$$\gamma + \{c, \bar{c}\} \rightarrow J/\psi + \{c, \bar{c}\} \otimes \alpha \alpha_s^2$$
 (4FS)

$$d\sigma_{\gamma c \to J/\psi + c} = \frac{1}{2 \left(\hat{s} - m_c^2\right)} dx_c f_{c/p}(x_c, \mu_F^2) \times \overline{\left|\mathcal{M}_{\gamma c \to J/\psi c}\right|^2} d\Phi(p_\gamma, p_c \to P_Q, p_c'),$$

with

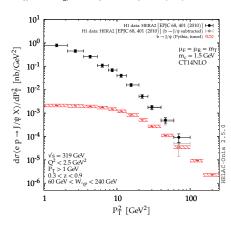
$$f_{c/p}(x_c, \mu_F^2) = \tilde{f}_{c/p}^{(1)}(x_c, \mu_F^2) + \mathcal{O}(\alpha_s^2),$$


where

$$\tilde{f}_{c/p}^{(1)}(x_c, \mu_F^2) = \frac{\alpha_s}{2\pi} \log \left(\frac{\mu_F^2}{m_c^2} \right) \int_{x_c}^1 \frac{dz}{z} P_{qg}(z) f_{g/p} \left(\frac{x_c}{z}, \mu_F^2 \right)$$

with AP splitting function $P_{qg}(z) = \frac{1}{2} \left[z^2 + (1-z)^2 \right]$. Overlap CT to be subtracted from 3FS:

$$d\sigma_{\mathsf{CT},\gamma\mathsf{c}\to J/\psi+\mathsf{c}} = \frac{1}{2\,(\hat{\mathsf{s}}-m_{\mathsf{c}}^2)} d\mathsf{x}_\mathsf{c} \, \tilde{f}_{\mathsf{c}/\mathsf{p}}^{(1)}(\mathsf{x}_\mathsf{c},\mu_{\mathsf{F}}^2) \overline{\left|\mathcal{M}_{\gamma\mathsf{c}\to J/\psi\mathsf{c}}\right|^2} d\Phi(\mathsf{p}_\gamma,\mathsf{p}_\mathsf{c}\to\mathsf{P}_\mathcal{Q},\mathsf{p}_\mathsf{c}').$$


$b \rightarrow J/\psi$ feed-down

H1 $b\bar{b}$ production from EPJC 72 (2012) 2148 $\left[\text{Note:}\left\langle P_T(b)\right\rangle = \sqrt{\left(P_{T,b}^2 + P_{T,b}^2\right)/2}\right]$

 N_{FD} = 3.8 \pm 0.5 estimated via χ^2 -minimisation

CF, J.-P. Lansberg, H.-S. Shao, Y. Yedelkina, PLB 811 (2020) 135926

 $b \rightarrow J/\psi$ tuned with PYTHIA 8.2