
Spectroscopy on conventional and non-conventional hadrons at Belle

Suxian Li (Fudan University)
On behalf of Belle Collaboration

XXVIII International Workshop on Deep-Inelastic Scattering and Related
Subjects
April 13, 2021

Belle Experiment and data samples

Data taking: 1999 - 2010

On/off/Scan Υ(nS) peaks

Total luminosity: 980 fb⁻¹

772M $B\bar{B}$ events @Y(4S)

Selected topics

Conventional hadrons at Belle:

- Branching fraction measurement of $\Lambda_c^+ \to p\eta/\pi^0$
- Radiative decays of excited Ξ_c baryons

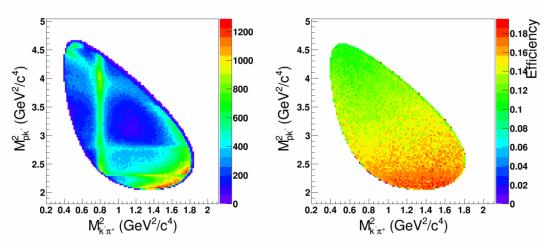
Non-Conventional hadrons at Belle:

• $X(3872) \rightarrow J/\psi \pi^+\pi^-$ in two-photon productions

Branching fraction measurement of $\Lambda_c^+ \to p\eta/\pi^0$

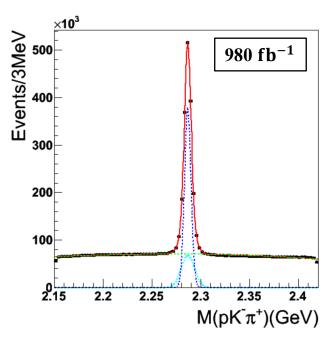
arxiv:2102.12226 Accepted by PRD

Motivation:


- The branching fractions of SCS decays of $\Lambda_c^+ \to p\eta$ and $\Lambda_c^+ \to p\pi^0$ are firstly measured by BESIII Collaboration. PRD 95, 111102 (2017)
 - $B(\Lambda_c^+ \to p\eta) = (1.24 \pm 0.28 \pm 0.10) \times 10^{-3}$ (with a statistical significance of 4.2 σ)
 - $B(\Lambda_c^+ \to p\pi^0) < 2.7 \times 10^{-4}$ at 90% C.L.
- ➤ The theoretical prediction with current-algebra approach gives (PRD 97, 074028 (2018))
 - $B(\Lambda_c^+ \to p\eta) = 1.28 \times 10^{-3}$
 - $B(\Lambda_c^+ \to p\pi^0) = 7.5 \times 10^{-5}$.
- To improve the measurement precision, we measure the branching fractions of the signal decays at Belle.

Measurement of Normalization mode

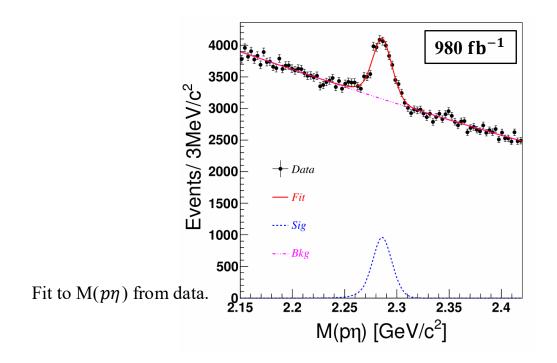
- Normalization mode: $\Lambda_c^+ \to pK^-\pi^+$ (Cabiboo-favored)
- Method:


$$\frac{B(SCS)}{B(CF)} = \frac{N^{obs}(SCS)}{\epsilon^{MC}(SCS)} \times \frac{\epsilon^{MC}(CF)}{N^{obs}(CF)}$$

Signal efficiency estimation: Dalitz method.

Left: Dalitz plot from data; Right: Dalitz plot of efficiency from signal MC.

$$\varepsilon = \sum s_i / \sum_j (s_j / \varepsilon_j) = (14.06 \pm 0.01)\%$$


Fit to $M(pK^-\pi^+)$ from data.

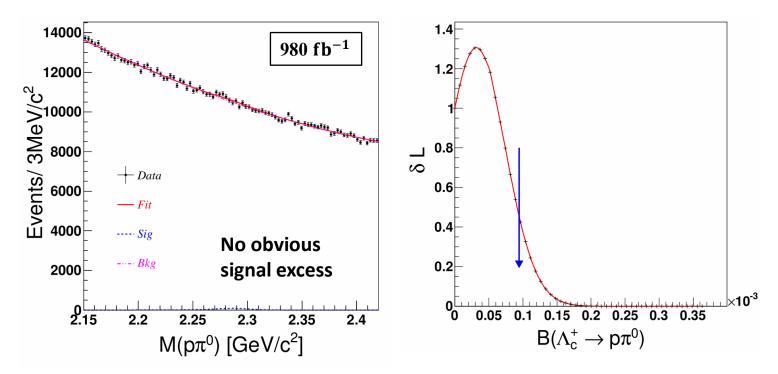
Double Gaussian + second-order polynomial

Yield:
$$1476200 \pm 1560$$

 $\chi^2/ndf = 1.06$

Measurement of $\Lambda_c^+ \to p\eta(\to \gamma\gamma)$ decay

- Reconstruct the signal mode: $\Lambda_c^+ \to p\eta(\to \gamma\gamma)$
- The signal detection efficiency : $(8.279 \pm 0.030)\%$.


Gaussian + CB for signal. Second-order polynomial for background.

Yield: 7734 ± 263 $\chi^2/ndf = 1.23$

- A significant Λ_c^+ signal is observed from data.
- Measured $B(\Lambda_c^+ \to p\eta) = (1.42 \pm 0.05 \pm 0.11) \times 10^{-3}$
- Consistent with BESIII result $(1.24 \pm 0.30) \times 10^{-3}$ with much improved precision.
- Consistent with theoretical prediction 1.28×10^{-3}

Measurement of $\Lambda_c^+ \to p\pi^0 \ (\to \gamma\gamma)$ decay

• The signal detection efficiency: $(8.891 \pm 0.030)\%$.

Left: fit to $M(p\pi^0)$ from data. Right: The likelihood distribution changing with the branching fraction with the systematic uncertainty involved.

- Measured $B(\Lambda_c^+ \to p\pi^0) < 8.0 \times 10^{-5}$ at 90% C.L.
- reducing the value to more than half of the BESIII result 2.7×10^{-4} .
- Consistent with theoretical prediction 7.5×10^{-5}

Radiative decays of excited Ξ_c baryons

Motivation:

PRD 102, 071103 (2020)

- A recent study reported measurement of the masses and widths of the $\Xi_c(2790)^{+/0}$ and $\Xi_c(2815)^{+/0}$ states. PRD 94, 052011 (2016)
- They can also decay via the π^0 decays that are harder to see, and the $\Xi_c(2815)$ has been seen in $\Xi_c'\pi$. PRD 94, 052011 (2016)
- ➤ But what about the radiative decays?

$$\Xi_c(2790)^{+/0} \to \Xi_c^{+/0} \gamma$$
 $\Xi_c(2815)^{+/0} \to \Xi_c^{+/0} \gamma$

- ➤ The theoretical predictions show: (PRD 96, 116016 (2017))
 - Neutral states (Γ ~200 keV) would be seen
 - Charged states (Γ < 10 keV) would not be seen

Basic technique

- [1.] Reconstruct the ground states $\Xi_c^{0/+}$
 - Ξ_c^0 : with ten decay modes.
 - Ξ_c^+ : with seven decay modes.
- [2.] Reconstruct the excited Ξ_c from $\Xi_c^{+/0} \gamma$ $E_{\gamma} > 0.55 \text{ GeV}$
- [3.] Fit the $M(\Xi_c^{+/0}\gamma)$ in the region of the $\Xi_c(2790)$ and $\Xi_c(2815)$.
- [4.] Divide by the yield in the known decay modes:

$$\Xi_c(2790)^0 \to \Xi_c^{\prime +} \pi^- \to (\Xi_c^+ \gamma) \pi^-;$$

 $\Xi_c(2815)^0 \to \Xi_c(2645)^+ \pi^- \to (\Xi_c^0 \pi^+) \pi^-$

PRD 94, 052011 (2016)

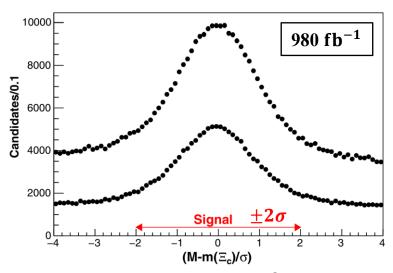


FIG. 1. Pull mass distribution for the Ξ_c^0 (upper data points), and Ξ_c^+ (lower data points) candidates.

FIG. 3. The signals used as normalization modes in the analysis.

Result:

$$\frac{\mathcal{B}[\Xi_c(2815)^0 \to \Xi_c^0 \gamma]}{\mathcal{B}[\Xi_c(2815)^0 \to \Xi_c(2645)^+ \pi^- \to \Xi_c^0 \pi^+ \pi^-]} = 0.41 \pm 0.05 \pm 0.03$$

$$\frac{\mathcal{B}[\Xi_c(2790)^0 \to \Xi_c^0 \gamma]}{\mathcal{B}[\Xi_c(2790)^0 \to \Xi_c'^+ \pi^- \to \Xi_c^+ \gamma \pi^-]} = 0.13 \pm 0.03 \pm 0.02$$

$$\frac{\mathcal{B}[\Xi_c(2815)^+ \to \Xi_c^+ \gamma]}{\mathcal{B}[\Xi_c(2815)^+ \to \Xi_c(2645)^0 \pi^+ \to \Xi_c^+ \pi^- \pi^+]} < 0.09 \text{ at } 90\% \text{ C. L.}$$

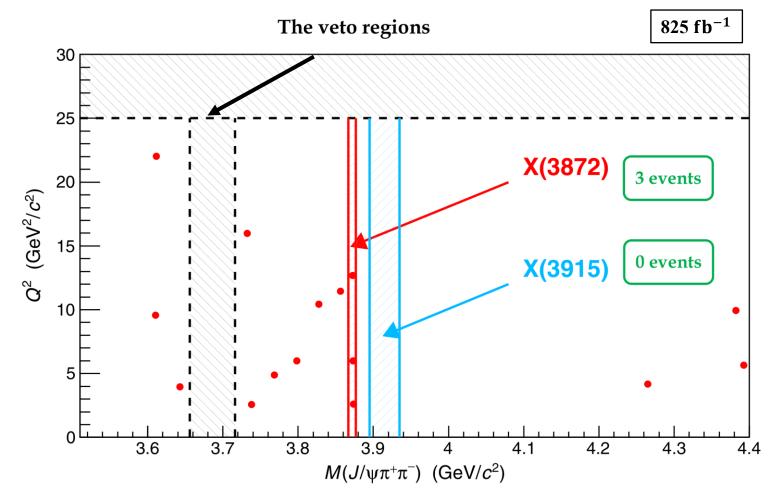
$$\frac{\mathcal{B}[\Xi_c(2790)^+ \to \Xi_c^+ \gamma]}{\mathcal{B}[\Xi_c(2790)^+ \to \Xi_c^{\prime 0} \pi^+ \to \Xi_c^0 \gamma \pi^+]} < 0.06 \text{ at } 90\% \text{ C. L.}$$

- \triangleright First observation of the radiative decays of excited Ξ_c .
- Give the BR.
- > Confirm the theoretical prediction.

$X(3872) \rightarrow J/\psi \pi^+\pi^-$ in single-Tag twophoton productions

- X(3872) with $J^{PC} = 1^{++}$ could be produced if one or both photons are highly virtual [Nucl. Phys. B 523, 423 (1998)].
- The measurement of X(3872) in two-photon reactions help to understand its internal structure.

PRL 126, 122001 (2021)


$$X(3872): J^{PC} = 1^{++}$$
 $\gamma \gamma \rightarrow X(3872) \longrightarrow \text{Not allowed}$

But, $\gamma^* \gamma \rightarrow X(3872) \longrightarrow \text{Allowed}$
 $e^- \text{ tag} X(3872) \rightarrow J/\psi \pi^+ \pi^-$

Single-tag

 $\gamma^* X(3872) \longrightarrow \chi^+ \chi^- \chi^ \gamma^* X(3872) \longrightarrow \chi^- \chi^- \chi^-$

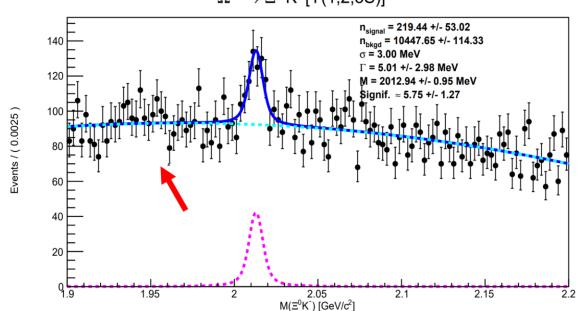
 $⁻Q^2$ is the invariant mass-squared of the virtual photon.

- $M(X(3872)) = (3.8723 \pm 0.0012) \text{ GeV}/c^2$
- With 0.11 ± 0.10 background events, the number of signal events is $N_{\text{sig}} = 2.9^{+2.2}_{-2.0}(\text{stat.}) \pm 0.1(\text{syst.})$ with a significance of 3.2σ (Feldman-Cousins method applied [Phys. Rev. D 57, 3873 (1998)]).
- $\tilde{\Gamma}_{\gamma\gamma}\mathcal{B}(X(3872)\to\pi^+\pi^-J/\psi)$ = 5. $5^{+4.1}_{-3.8}(stat.)\pm0.7(syst.)$ eV using the Q² dependence expected from a $c\bar{c}$ meson model.

Summary

- Although Belle has stopped data taking for ~10 years, we are still producing exciting results.
- We report the BR measurement of $\Lambda_c^+ \to p\eta/\pi^0$.
- We report the first observation of radiative decays of excited Ξ_c and give the BR.
- We report the first evidence for $X(3872) \rightarrow J/\psi \pi^+\pi^-$ produced in single-tag two-photon interactions.
- Belle II will provide greater sensitivity and precise measurements in hadron physics with 50 ab^{-1} .

Thanks for your attentions!

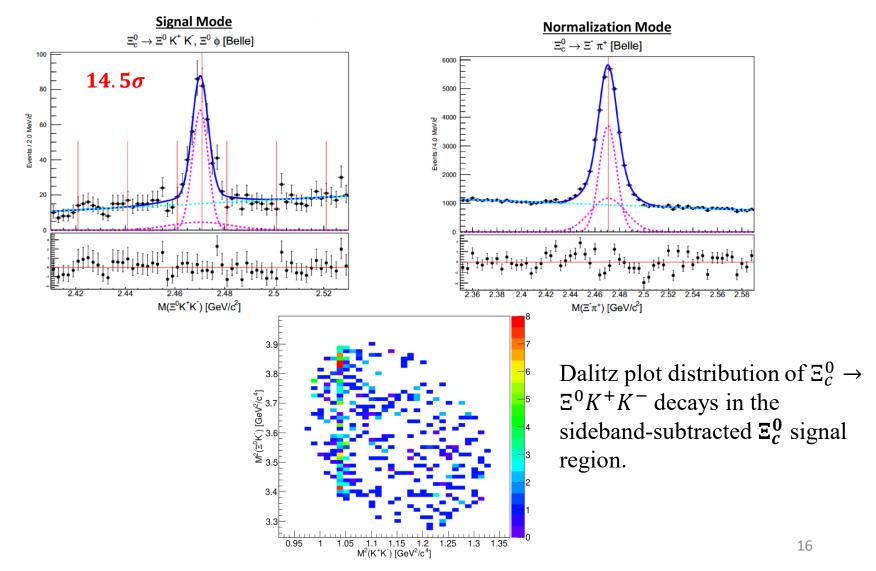

Backup

Study of $\Xi_c^0 \to \Xi^0 K^+ K^-$

arxiv:2012.05607 Submitted to PRD

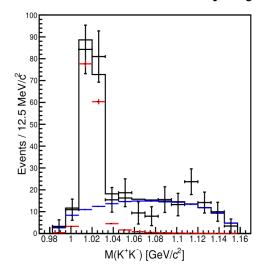
Background Motivation in Excited Ω Searches

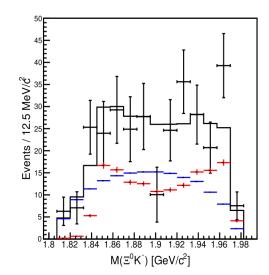
$$\Omega^{-^*} \rightarrow \Xi^0 \text{ K}^- [Y(1,2,3S)]$$

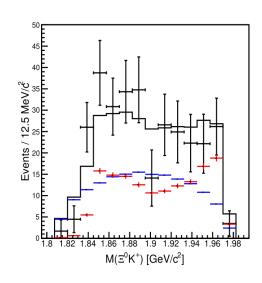

Recently, an excited $\Omega(2012)$ baryon was observed in narrow resonance data by the Belle Collaboration near 2.012 GeV/ c^2 . PRL 121, 052003 (2018)

From quark model prediction, it can be expected that $\Omega(2012)$ could have a partner near 1.95 GeV/ c^2 and low-statistics indications of an excess in $M(\Xi^0K^-)$ has been noticed. <u>PRD 100, 032006 (2019)</u>

It is then necessary to study all decays which could confuse future excited Ω searches in the $M(\Xi^0K^-)$


Decay channels of Ξ_c^0


- ightharpoonup The $\mathbf{\Xi}^{\mathbf{0}} \to \Lambda \pi^{\mathbf{0}}$ is reconstructed.
- ightharpoonup Normalization mode $\Xi_c^0 o \Xi^- \pi^+$



Amplitude analysis

- > The amplitude analysis is performed to measure the branching fractions of the
 - Resonant decay $\Xi_c^0 \to \Xi^0 \phi (\to K^+ K^-)$
 - non-resonant decay $\Xi_c^0 \to \Xi^0 K^+ K^-$

- Fit the Dalitz plot distribution as a coherent sum of resonant and non-resonant amplitudes outlined
- freely vary the helicity amplitude ratios of the resonant decay

$$\frac{B(\Xi_c^0 \to \Xi^0 \phi(\to K^+ K^-))}{B(\Xi_c^0 \to \Xi^0 K^+ K^-)} = (48.1 \pm 4.6)\% \qquad \frac{B(\Xi_c^0 \to \Xi^0 \phi K^+ K^- (\text{non}))}{B(\Xi_c^0 \to \Xi^0 \phi (\to K^+ K^-))} = (51.9 \pm 3.3)\%$$

$$\frac{B(\Xi_c^0 \to \Xi^0 \phi(\to K^+ K^-))}{B(\Xi_c^0 \to \Xi^- \pi^+)} = 0.036 \pm 0.004 \pm 0.002 \qquad \frac{B(\Xi_c^0 \to \Xi^0 \phi K^+ K^- (\text{non}))}{B(\Xi_c^0 \to \Xi^- \pi^+)} = 0.039 \pm 0.004 \pm 0.002$$

First determination of the spin and parity of $\Xi_c(2970)^+$

Ξ_c(2970) States

combinatorial background contributions.

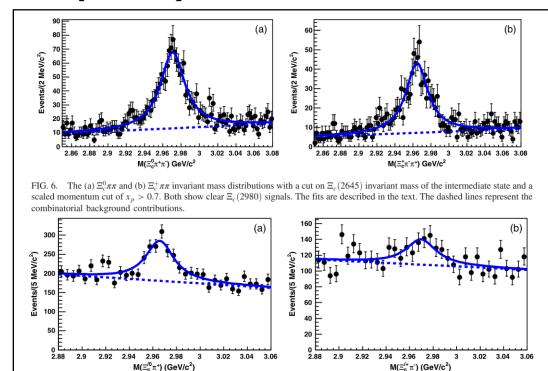


FIG. 9. The (a) $\Xi_c^0 \pi^+$ and (b) $\Xi_c^{\prime +} \pi^-$ invariant mass distributions. The fits are described in the text. The dashed lines represent the

arxiv:2007.14700 Submitted to PRL

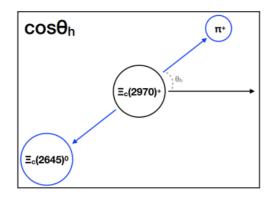
Mass and width were measured precisely via:

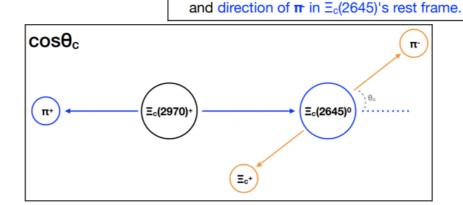
$$\Xi_{c}(2970) \rightarrow \Xi_{c}(2645)\pi \rightarrow \Xi_{c}\pi\pi$$

• The $\Xi_c(2970)$ is also observed from the decay:

$$\equiv_{c}(2970) \rightarrow \equiv_{c}'\pi \rightarrow \equiv_{c}\gamma\pi$$

PRD 94, 052011 (2016)


- Spin and parity of the Ξ_c(2970) is not determined yet.
- There is not even a presumed spin-parity.

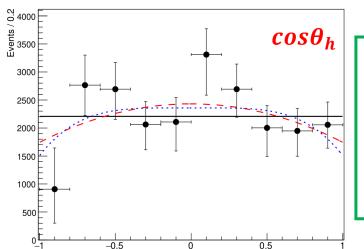

Principle of Determination

Spin

- For the decay $\Xi_c(2970)^+ \to \Xi_c(2645)^0 \pi_1^+ \to \Xi_c^+ \pi_1^- \pi_2^+$,
- Two decay angular distribution are studied.
 - cosθ_h: Helicity angle of Ξ_c(2970)+
 - $\cos\theta_c$: Helicity angle of $\Xi_c(2645)^0$

θ_h: angle bet.
 direction of Ξ_c(2970)+ in beam CM frame and direction of π+ in Ξ_c(2970)'s rest frame.
 θ_c: angle bet.
 direction of Ξ_c(2645)^o in Ξ_c(2970)'s rest frame

Parity


- Ratio of branching fractions is studied.
 - Compared with the prediction from Heavy Quark Spin Symmetry (HQSS)

$$R = \frac{\mathcal{B}(\Xi_c(2970)^+ \to \Xi_c(2645)^0 \pi^+)}{\mathcal{B}(\Xi_c(2970)^+ \to \Xi_c'^0 \pi^+)}$$

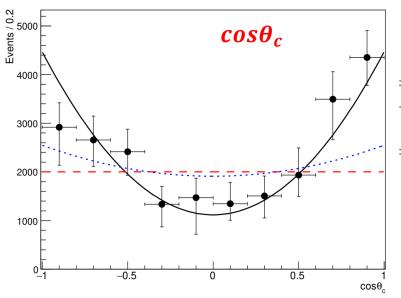
Full Belle data sample

Determination of the Spin

- Divide the data into 10 equal bins for $cos\theta_h$ and $cos\theta_c$.
- Fit $M(\Xi_c \pi \pi)$ in each bin.
- Fit the angular distributions with the expected decay angular distributions $W_{1/2}$, $W_{3/2}$, $W_{5/2}$

$W_{rac{1}{2}}=constant$
$W_{\frac{3}{2}} = \rho_{33} \left\{ 1 + T \left(\frac{3}{2} \cos^2 \theta_h - \frac{1}{2} \right) \right\} + \rho_{11} \left\{ 1 + T \left(-\frac{3}{2} \cos^2 \theta_h + \frac{1}{2} \right) \right\}$
$W_{\frac{5}{2}} = \frac{3}{32} [\rho_{55} 5\{(-\cos^4\theta_h - 2\cos^2\theta_h + 3) + T(-5\cos^4\theta_h + 6\cos^2\theta_h - 1)\}$
+ ρ_{33} { $(15\cos^4\theta_h - 10\cos^2\theta_h + 11) + T(75\cos^4\theta_h - 66\cos^2\theta_h + 7))$ }
+ ρ_{11} 2{ $(-5\cos^4\theta_h + 10\cos^2\theta_h + 3) + T(-25\cos^4\theta_h + 18\cos^2\theta_h - 1)$ }]

Spin hypothesis	1/2	3/2	5/2
$\chi^2/\text{n.d.f.}$	9.3/9	7.7/7	7.5/6
Probability	41%	36%	28%
${ m T}$	_	-0.5 ± 1.1	0.7 ± 1.6
$ ho_{11}$	0.5	0.13 ± 0.26	0.08 ± 0.27
$ ho_{33}$	_	0.37 ± 0.26	0.12 ± 0.09
$ ho_{55}$	_	_	0.30 ± 0.28


- Best fit is the spin 1/2 hypothesis
- Exclusion level of the spin 3/2 (5/2) hypothesis is as small as 0.8σ (0.5 σ).
 - Therefore, the result is inconclusive.

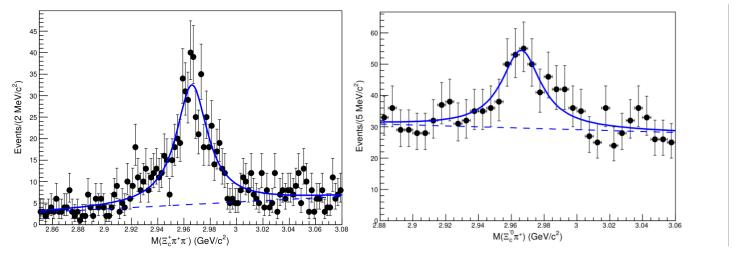
Full Belle data sample

Determination of the Spin

• To draw a more decisive conclusion, we fit angular distributions of $cos\theta_c$ with the expected angular distribution

$$W(\theta_c) = 3/2[\rho_{33}^* \sin^2 \theta_c + \rho_{11}^* (1/3 + \cos^2 \theta_c)], \rho_{33}^* + \rho_{11}^* = 1/2$$

J^P	$1/2^{\pm}$	$3/2^{-}$	$5/2^{+}$
$\chi^2/\text{n.d.f.}$	6.4/9	32.2/9	22.3/9
Exclusion level (s.d.)	-	5.5	4.8


- ➤ This result is most consistent with the spin ½ hypothesis.
- ightharpoonup The $1/2^{\pm}$ scenario is preferred over $3/2^{-}$ (5/2⁺) by 5.5 σ (4.8 σ).
- \triangleright Excludes the Ξ_c^* spin of 1/2 in which the distribution should be flat.

Determination of the Parity

■ The branching ratio R is sensitive to the parity.

$$R = \frac{\mathcal{B}(\Xi_c(2970)^+ \to \Xi_c(2645)^0 \pi^+)}{\mathcal{B}(\Xi_c(2970)^+ \to \Xi_c'^0 \pi^+)}$$

■ Fit the $M(\Xi_c^+\pi^-\pi^+)$ and $M(\Xi_c'^0\pi^+)$ for two mode.

■ Branching ratio $R = 1.67 \pm 0.29^{+0.15}_{-0.09} \pm 0.17$ (IS), where IS is Isospin symmetry.

Heavy-quark spin symmetry (HQSS) prediction

Parity	+	+	_	_
Brown-muck spin s_ℓ	0	1	0	1
R	1.06	0.26	0	≪1

Search for resonant states with *cc̄ss̄* quark content

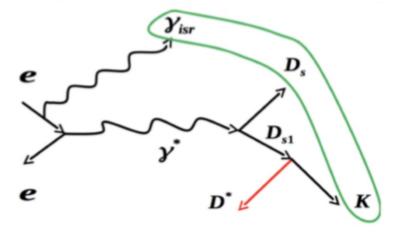
Motivation: Y(4260) and Y(4660) have a $c\overline{c}s\overline{s}$ component

- $Y(4260) \rightarrow f_0(980) (\rightarrow \pi^+\pi^-)J/\psi$, $Y(4660) \rightarrow f_0(980) (\rightarrow \pi^+\pi^-)\psi(2S)$ $f_0(980)$ has a $s\bar{s}$ component, and J/ψ has a $c\bar{c}$ component.
- It is natural to search for such Y states with a quark component of $(c\bar{s})(\bar{c}s)$, e.g., $D_s\bar{D}_{s1}(2536)$ and $D_s\bar{D}_{s2}^*(2536)$.

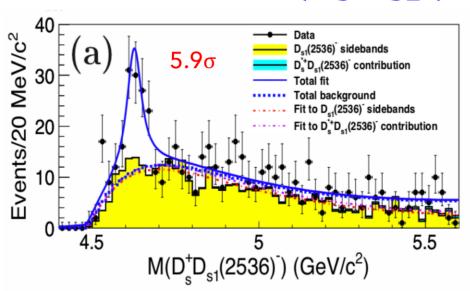
Analysis method

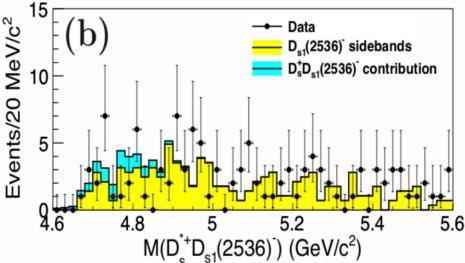
$$e^+e^- \rightarrow \gamma_{ISR}D_s^+D_{s1}(2536)^- (\rightarrow \overline{D}^{*0}K^-/D^{*-}K_S^0)$$

We require full reconstruction of the γ_{ISR} , D_s^+ , and K^-/K_S^0 .


- $D_s^+ \to \bar{\phi} \pi^+$, $\bar{K}^{*0} K^+$, $K_s^0 K^+$, $K^+ K^- \pi^+ \pi^0$, $K_s^0 \pi^0 K^+$, $K^{*+} K_s^0$, $\eta \pi^+$, and $\eta' \pi^+$
- For the signals, the spectrum of the mass recoiling against the $D_s^+K^-\gamma_{ISR}$ system should be accumulated at the \overline{D}^{*0}/D^{*-} nominal mass.

$$M_{rec} \big(\gamma_{ISR} D_s^+ K^- / K_S^0 \big) = \sqrt{ (E_{c.m.}^* - E_{\gamma_{ISR} D_s^+ K^- / K_S^0}^*)^2 - \left(p_{\gamma_{ISR} D_s^+ K^- / K_S^0}^* \right)^2 }$$

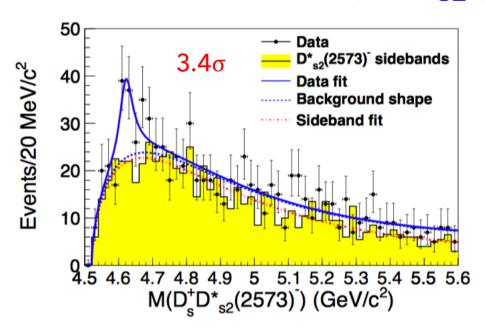

• To improve the $M_{rec}(\gamma_{ISR})$ resolution, $M_{rec}(\gamma_{ISR}D_s^+K^-/K_S^0)$ is constrained to be the nominal mass of the \overline{D}^{*0}/D^{*-} .

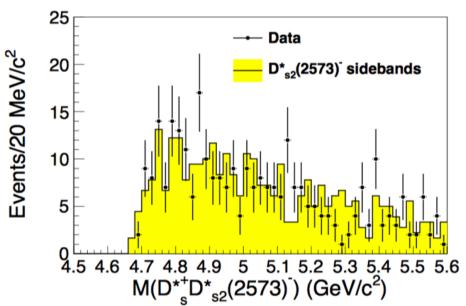

Data samples:

√s (GeV)	Luminosity (fb ⁻¹)	
10.52	89.5±1.3	
10.58	711±10	
10.867	121.4±1.7	
Total	921.9±12.9	

$M(D_s^+D_{s1}(2536)^-)$

PRD 100, 111103(R) (2019)

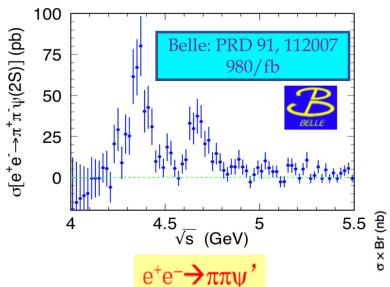

An unbinned simultaneous likelihood fit:

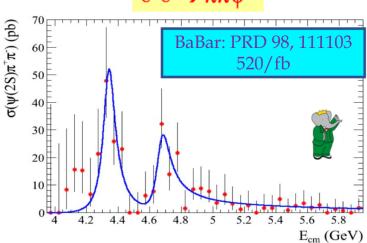

- Signal: a BW convolved with a Gaussian function, then multiplied by an efficiency function
- D_{s1}(2536)⁻ mass sidebands: a threshold function
- $e^+e^- \rightarrow D_s^{*+}D_{s1}(2536)^-$ background contribution: a threshold function
- A non-resonant contribution: a twobody phase space form

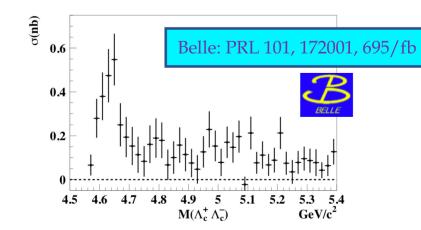
$$\begin{split} \mathsf{M} = & (4625.9^{+6.2}_{-6.0}(\mathrm{stat.}) \pm 0.4(\mathrm{syst.}) \ \mathsf{MeV/c^2} \\ & \Gamma = (49.8^{+13.9}_{-11.5}(\mathrm{stat.}) \pm 4.0(\mathrm{syst.}) \ \mathsf{MeV} \\ & \Gamma_{\mathrm{ee}} \times \mathcal{B}(\mathrm{Y} \to \mathrm{D_s^+D_{s1}}(2536)^-) \times \mathcal{B}(\mathrm{D_{s1}}(2536)^- \to \\ & \overline{\mathrm{D}}^{*0}\mathrm{K}^-) = (14.3^{+2.8}_{-2.6}(\mathrm{stat.}) \pm 1.5(\mathrm{syst.}) \ \mathsf{eV} \end{split}$$

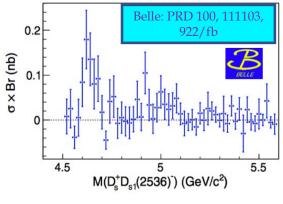
One possible background is from $e^+e^- \rightarrow D_s^{*+}(\rightarrow D_s^+\gamma)D_{s1}(2536)^-$. No obvious structure is observed in the $e^+e^- \rightarrow D_s^{*+}(\rightarrow D_s^+\gamma)D_{s1}(2536)^-$.

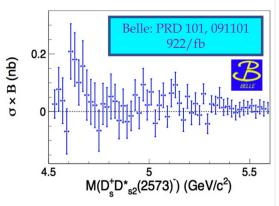
$M(D_s^+D_{s2}^*(2573)^-)$


PRD 101, 091101(R) (2020)


An unbinned simultaneous likelihood fit:


- Signal: a BW convolved with a Gaussian function, then multiplied by an efficiency function
- $D_{s2}^*(2573)^-$ mass sidebands: a threshold function
- A non-resonant contribution: a two-body phase space form


```
\begin{aligned} M &= (4619.8^{+8.9}_{-8.0}(\text{stat.}) \pm 2.3(\text{syst.}) \text{ MeV/c}^2 \\ \Gamma &= (47.0^{+31.3}_{-14.8}(\text{stat.}) \pm 4.6(\text{syst.}) \text{ MeV} \\ \Gamma_{\text{ee}} &\times \mathcal{B}(\text{Y} \rightarrow \text{D}_{\text{s}}^{+} \text{D}_{\text{s2}}^{*} (2573)^{-}) \times \mathcal{B}(\text{D}_{\text{s2}}^{*} (2573)^{-} \rightarrow \\ \bar{\text{D}}^{0} \text{K}^{-}) &= (14.7^{+5.9}_{-4.5}(\text{stat.}) \pm 3.6(\text{syst.}) \text{ eV} \end{aligned}
```


Y(4630) = Y(4660)?

Experiment	Mass (MeV)	Width (MeV)
Belle, $\Lambda_c^+\Lambda_c^-$	$4634^{+8}_{-7}{}^{+5}_{-8}$	$92^{+40}_{-24}{}^{+10}_{-21}$
Belle, $\pi^+\pi^-\psi(2S)$	4652±10±8	68±11±1
BaBar, $\pi^+\pi^-\psi(2S)$	4669 <u>±</u> 21 <u>±</u> 3	104 <u>±</u> 48 <u>±</u> 10
Belle, D _s ⁺ D _{s1} (2536) ⁻	$4626^{+7}_{-7}\pm1$	$49.8^{+14}_{-12} \pm 4$
Belle, $D_s^+ D_{s2}^* (2573)^-$	$4620^{+9}_{-8} \pm 3$	$47.0^{+32}_{-15} \pm 5$