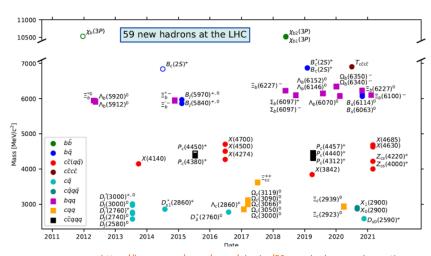


ATLAS results on exotic heavy hadrons

Paolo IENGO (CERN)

On behalf on the ATLAS Collaboration



Outline

- Selected results on tetra- and penta-quark state searches with heavy hadrons
- Pentaquark: Study of Λ⁰_b → J/ψpK⁻ (ATLAS-CONF-2019-048)
 - Experimental status
 - ATLAS analysis strategy
 - Results and comparison with LHCb results
- Tetraquark:
 - Search for $X^{\pm}(5568) \rightarrow B_{s}^{0}\pi^{\pm}$ resonance (Phys.Rev.Lett. 120(2018)202007)
 - o Perspective for Z_c^+ (4200)
- Conclusions

Hadron spectroscopy boosted by LHC

https://home.cern/news/news/physics/59-new-hadrons-and-counting

B-physics selected results among the many published by the Collaboration

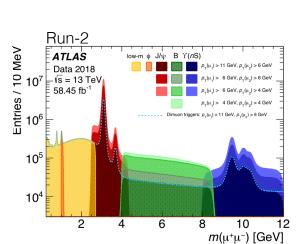
Entries / 50 MeV

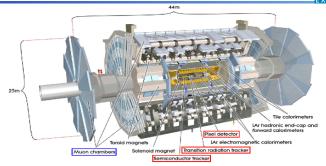
10⁴

10³

Detector and trigger

- Trigger selection for heavy flavor studies mostly based on di-muon signature
 - Muon p_⊤ threshold (4 or 6 GeV)


ATLAS Preliminary


12

m,,, [GeV]

10

- Di-muon vertex reconstruction
- Invariant mass window
- No $\pi^{\pm}/K^{\pm}/p$ separation capability

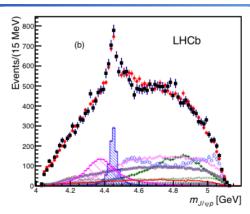
- Run-2 improvements
 - Trigger upgrade → maintain low muon threshold at high lumi
 - IBL (new vertex detector) → improves vertexing reconstruction
 - Increased statistics
- → Great potential for new results in heavy flavor physics studies

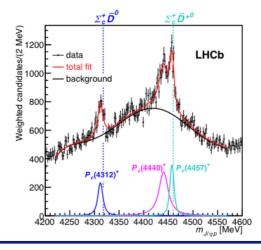
Di-µ invariant mass spectrum

 $\sqrt{s} = 7 \text{ TeV}$ L dt ~ 2.3 fb⁻¹

Run-1

Study of $\Lambda_b^0 \rightarrow J/\psi p K^-$




Experimental status

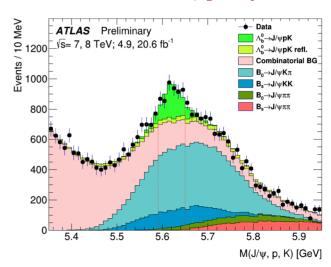
- Driven by LHCb
 - 0 2015: 2 structures observed in (J/ψp) mass spectrum in $Λ_b^0$ → J/ψpK-decay (PRL 115 (2015) 072001)
 - 0 2016: Evidence in $\Lambda_b^0 \rightarrow J/\psi p \pi$ with preferred $J^p = 3/2$ and 5/2
 - o 2016: Model-independent evidence (PRL 117 (2016) 082003)
 - 2019 (Run2 data): P_c(4450)⁺ resolved into 2 states (4440-4457);
 discovered P_c(4312)⁺ and hint for a 4th broader state P_c(4380)⁺ (PRL 122 (2019) 222001)
- Not observed by GLUEX in γp → J/ψp s-channel (PRL 123 (2019) 072001)
- Recent 3.1σ evidence reported by D0 at Moriond '21
 - 0 Unresolved $P_c(4440)+P_c(4457)$ peak in inclusive P_c → J/ψp channel (no reconstruction of $Λ_b^0$) (arXiv:1910.11767)

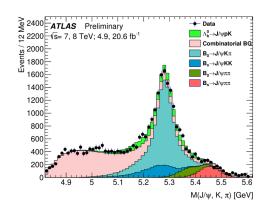
Confirmation from another experiment would be very welcome

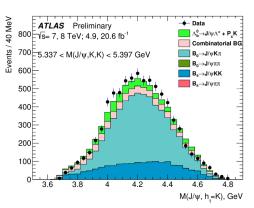
Dataset & Event selection

- Dataset: pp at $\sqrt{s} = 7 \text{ TeV} (4.9 \text{ fb}^{-1})$ and 8 TeV (20.6 fb⁻¹)
- No $\pi^{\pm}/K^{\pm}/p$ separation \rightarrow all $H_b \rightarrow J/\psi h_1 h_2$ candidates considered
- J/ψ → μ+μ- selection
 - o $p_T(\mu^{\pm}) > 4 \text{ GeV}; |\eta(\mu^{\pm})| < 2.3$
 - $\circ |M(J/\psi)_{WA}-m(\mu^{+}\mu^{-})| < 290 \text{ MeV}$
- B-hadron ($H_h = \Lambda_h$, B^0 , B_s) candidate selection
 - o Di-muon (J/ψ) candidate + 2 charged particles with $|\eta|$ < 2.5
 - o $p_T(H_h) > 12 \text{ GeV}; |\eta(H_h)| < 2.1$
- Combinatorial bkg (modeled with analytical matrix elements)
 - $\circ \Lambda_b^0 \rightarrow J/\psi \Lambda^*/P_c \rightarrow J/\psi pK^-$
 - $B^0 \rightarrow J/\psi K^*/Z_c \rightarrow J/\psi K^+\pi^-$
 - o $B_s \rightarrow J/\psi f/\phi \rightarrow J/\psi K^+K^-$
 - o Suppressed by requiring m(Kπ) >1.55 GeV (→ m(pK) > 2 GeV)
- Same-sign h₁h₂ combinations subtracted

Region definition	Mass interval (GeV)
Λ ⁰ _b Signal Region	$5.59 < m(J/\psi pK) < 5.65$
B ⁰ Control Region	$5.25 < m(J/\psi K\pi) < 5.31$
B _s Control Region	5.337 < m(J/ψKK) < 5.397
Comb. bkg shape	$5.35 < m(J/\psi pK) < 5.45$




Fit procedure



Fit to all kinematic distributions

- M(J/ψ Kπ)
- M(J/ψ πK)
- M(J/ψ KK)
- M(J/ψ ππ)
- M(J/ψ h) & M(h₁h₂) in B⁰ CR
- $M(J/\psi h) \& M(h_1h_2) in B_s CR$

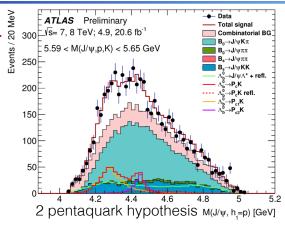
Fitted Yields

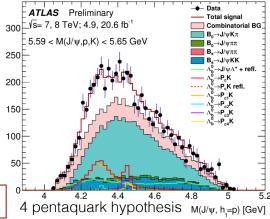
$$N(\Lambda_b^0 \to J/\psi p K^-) = 2270 \pm 300$$

 $N(B^0 \to J/\psi K^+ \pi^-) \approx 10770$
 $N(B_s^0 \to J/\psi K^+ K^-) \approx 2290$
 $N(B^0 \to J/\psi \pi^+ \pi^-) \approx 1070$
 $N(B_s^0 \to J/\psi \pi^+ \pi^-) \approx 1390$

 $\Lambda^0_b \rightarrow J/\psi$ pK yields in Signal Region: 1010±140 for right mass assignment 160±20 for wrong mass assignment

Fit results




Fit results for 2 pentaguarks (3/2-, 5/2+)

Parameter	Value	LHCb value [5]		
$N(P_{c1})$	$400^{+130}_{-140}(\text{stat})^{+110}_{-100}(\text{syst})$	-		
$N(P_{c2})$	$150^{+170}_{-100}(\text{stat})^{+50}_{-90}(\text{syst})$	-		
$N(P_{c1} + P_{c2})$	$540^{+80}_{-70}(\text{stat})^{+70}_{-80}(\text{syst})$	_		
$\Delta\phi$	$2.8^{+1.0}_{-1.6}(\text{stat})^{+0.2}_{-0.1}(\text{syst}) \text{ rad}$	_		
$m(P_{c1})$	$4282_{-26}^{+33}(\text{stat})_{-7}^{+28}(\text{syst}) \text{ MeV}$	$4380 \pm 8 \pm 29 \ \mathrm{MeV}$		
$\Gamma(P_{c1})$	$140^{+77}_{-50} \text{ (stat)}^{+41}_{-33} \text{ (syst) MeV}$	$205\pm18\pm86~\mathrm{MeV}$		
$m(P_{c2})$	$4449^{+20}_{-29} \text{ (stat)}^{+18}_{-10} \text{ (syst) MeV}$	$4449.8 \pm 1.7 \pm 2.5 \text{ MeV}$		
$\Gamma(P_{c2})$	$51_{-48}^{+59} \text{ (stat)}_{-46}^{+14} \text{ (syst) MeV}$	$39 \pm 5 \pm 19 \text{ MeV}$		

- Good description of data: $\chi^2/ndf = 37.1/39$ (p = 55.7%)
- 4-pentaquark hypothesis
 - can't be distinguished because of low mass resolution and limited stat
 - Tested by fixing parameters to LHCb ones
 - o $\chi^2/ndf = 37.1/42 (p = 68.6\%)$

2- and 4-pentaquark models both consistent with data

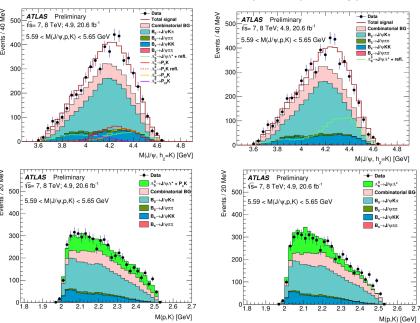
Systematics

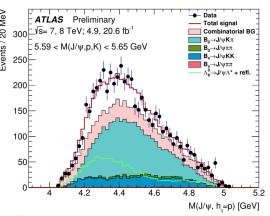
• Four main source of systematics affecting signal yields, relative phase, masses and widths

Source	$N(P_{c1})$	$N(P_{c2})$	$N(P_{c1} + P_{c2})$	$\Delta \phi$	$m(P_{c1})$	$\Gamma(P_{c1})$	$m(P_{c2})$	$\Gamma(P_{c2})$
Number of $\Lambda_b^0 \to J/\psi p K^-$ decays	$^{+1.8}_{-0.6}\%$	+6.6 -9.2%	$^{+1.6}_{-0.8}\%$	+0.3 -0.0%	+0.06 -0.03%	$^{+3.5}_{-2.5}\%$	$^{+0.07}_{-0.04}\%$	$^{+7}_{-13}\%$
Pentaquark modelling	$^{+21}_{-0}\%$	$^{+1}_{-22}\%$	+8.7% -4.4%	$^{+1.6}_{-0.0}\%$	+0.6%	$^{+18}_{-0}\%$	+0.2 -0.0%	+0 -33%
Non-pentaquark $\Lambda_b^0 \to J/\psi p K^-$ modelling	$^{+14}_{-2}\%$	$^{+5}_{-44}\%$	$^{+9.2}_{-9.1}\%$	$^{+3.6}_{-1.6}\%$	$^{+0.23}_{-0.05}\%$	$^{+9.2}_{-1.2}\%$	$^{+0.24}_{-0.02}\%$	$^{+2}_{-62}\%$
Combinatorial background	$^{+0.7}_{-4.0}\%$	$^{+18}_{-5}\%$	$^{+4.2}_{-4.8}\%$	+3.2 % -0.0 %	$^{+0.03}_{-0.15}\%$	$^{+0}_{-11}\%$	$^{+0.01}_{-0.17}\%$	$^{+22}_{-4}\%$
B meson decays modelling	$^{+13}_{-25}\%$	$^{+28}_{-35}\%$	$^{+1.6}_{-9.3}\%$	$^{+0.5}_{-2.1}\%$	$^{+0.24}_{-0.00}\%$	$^{+21}_{-21}\%$	$^{+0.27}_{-0.14}\%$	$^{+17}_{-57}\%$
Total systematic uncertainty	$^{+28}_{-25}\%$	$^{+35}_{-61}\%$	$^{+14}_{-15}\%$	$^{+5.1}_{-2.7}\%$	$^{+0.7}_{-0.2}\%$	$^{+30}_{-24}\%$	$^{+0.4}_{-0.2}\%$	$^{+28}_{-91}\%$

- Pentaguark modeling includes:
 - o alternative Jp hypotheses for 2 pentaquarks,
 - P_c decay models with all possible orbital momentum between their decay products
 - o model with 4 pentaquark

- Non-pentaquark $\Lambda^0_b \rightarrow J/\psi p K$ modeling includes the extended $\Lambda^0_b \rightarrow J/\psi \Lambda^{*0}$ decay model
- B meson decay modeling includes:
 - \circ Contribution from $Z_c(4200)$ intermediate state


Systematic uncertainties comparable to statistical ones: $N(P_{c1}+P_{c2}) = 540^{+80}_{-70}(stat)^{+70}_{-80}(syst)$

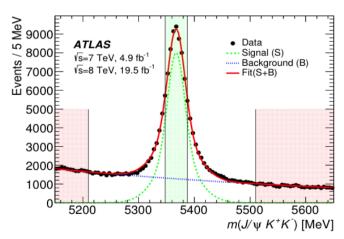

No-pentaquark test hypothesis

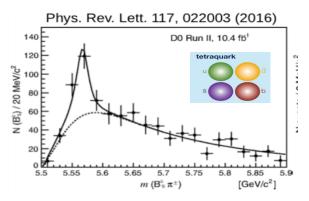
- Iterative fit procedure repeated using the $\Lambda^0_h \rightarrow J/\psi p K$ decay model w/o pentaguarks
 - o $\chi^2/ndf = 69.2/37 (p = 1.0x10^{-3})$
- Control distributions for 2- and 0- pentaguark hypotheses:

Model without pentaquark strongly disfavored but can't be excluded yet

 χ^2 fit of the m(J/ ψ p) distribution in the signal region for the hypothesis without pentaquarks with the extended $\Lambda^0_b \rightarrow J/\psi \Lambda^{*0}$ decay model

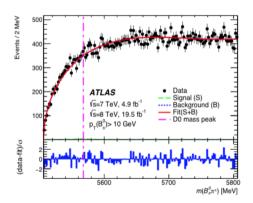
Ongoing analysis with Run-2 data ~5x more Λ⁰_b candidate statistic and improved mass resolution

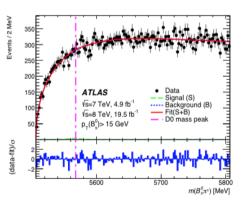

Searches for tetraquark states


Search for $X^{\pm} \rightarrow B^{0}_{s} \pi^{\pm}$ resonance

- D0 published evidence of a (tetraquark) state X(5568) in the $B_s\pi^{\pm}$ spectrum via $B_s^0 \rightarrow J/\psi \phi$, $J/\psi \rightarrow \mu^+\mu^-$, $\phi \rightarrow K^+K^-$
- Also seen in semi-leptonic decays: $X^{\pm}(5568) \rightarrow B^{0}_{s} \pi^{\pm}$ where $B^{0}_{s} \rightarrow \mu^{\pm}D^{\pm}_{s}X$, $D^{\pm}_{s} \rightarrow \phi \pi^{\pm}$
- Not seen by LHCb, nor CDF, nor CMS
- LHC experiments have enough statistic to observe a signal or set precise limits on production cross-section

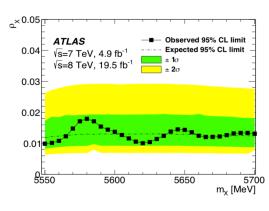
 B_{s}^{0} yield from fit: $N(B_{s}^{0}) = 52750\pm280$


ATLAS uses 4.9 fb⁻¹ at 7 TeV + 19.5 fb⁻¹ at 8 TeV data


- B⁰_sπ[±] candidates selected by requiring a charged track, with p_T>500 MeV + track quality cuts, from the same PV as the B⁰_s
- Analysis repeated for $p_T(B_s^0)>10$ GeV and for $p_T(B_s^0)>15$ GeV

Search for $X^{\pm} \rightarrow B^{0}_{s} \pi^{\pm}$ resonance

Number of X[±] candidates from unbinned max-likelihood fit

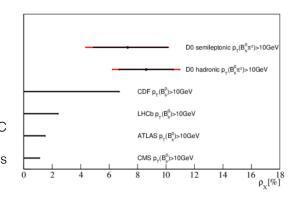

$$N(X) p_T(B_s^0) > 10 \text{ GeV}$$

 $N(X) p_T(B_s^0) > 15 GeV$

 30 ± 150

■ No signal evidence \rightarrow set upper limits set on cross-section ratio of X(5568) to B_s^0

$$\rho_{\rm X} \equiv \frac{\sigma({\rm pp} \to {\rm X + anything}) \, \mathcal{B}({\rm X} \to {\rm B_s^0} \pi^\pm)}{\sigma({\rm pp} \to {\rm B_s^0 + anything})} = \frac{N_{\rm X}}{\epsilon_{\rm rel} N_{\rm B_s^0}}$$

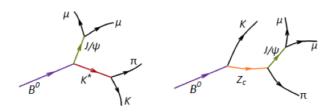


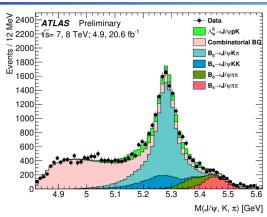
10.04.19

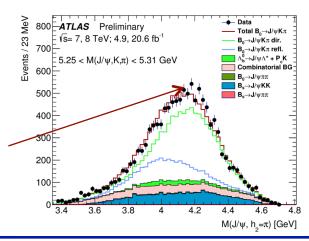
Asymptotic CLs method

$$\rho_X < 1.5\%$$
 at 95% CL for $p_T(B_s^0) > 10 \text{ GeV}$
 $\rho_X < 1.6\%$ at 95% CL for $p_T(B_s^0) > 15 \text{ GeV}$

Comparison of X(5568) searches from Tevatron and LHC experiments (arXiv:2010.00676) for p_T>10 GeV bin. Combination of LHC results gives p_X <1% for both p_T bins




Perspective on $Z_c(4200)$



- Study of Z_c(4200) exotic state with ATLAS Run2 data is ongoing
- Purity of B⁰ \rightarrow J/ ψ K π sample >70%
- ~30-40k events in high m(p,K) mass region for ~140 fb⁻¹ at \sqrt{s} =13 TeV
- Promising for exotic states searches

 Hint on Z_c(4200) contribution from B⁰ control region of Run-1 pentaguark analysis

Summary

- ATLAS has a rich physics program for studies of exotic heavy hadrons
- Here presented selected results on
- Pentaquark: Study of $\Lambda_b^0 \rightarrow J/\psi p K^- (ATLAS-CONF-2019-048)$ with Run-1 data
 - Model with 2 pentaquarks P_c→J/ψp consistent with data (and with LHCb results) with 540 candidate events found
 - Model with 4 pentaguarks consistent with data too, but can't be resolved
 - Model with 0 pentaquark strongly disfavored but can't be totally excluded → more stat needed
 - Analysis of Run-2 data ongoing. Large improvement expected from larger statistics and better resolution
- Search for $X^{\pm}(5568) \rightarrow B_{s}^{0} \pi^{\pm}$ resonance (Phys.Rev.Lett. 120(2018)202007)
 - No evidence; strong limits set on cross-section
- Searches of Z_c state with Run-2 data ongoing
 - o Results to come soon

More studies ongoing; more results to come in the next months

Thank you!