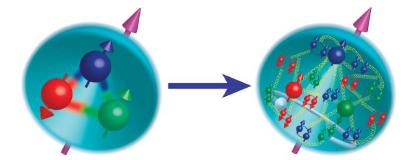
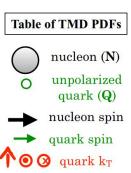
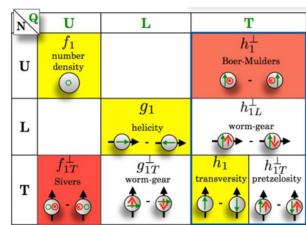


Transverse Single Spin Asymmetries of Heavy Flavor Electrons and Charged Pions in 200 GeV p[↑]+p Collisions at Midrapidity from PHENIX

Dillon Fitzgerald for the PHENIX Collaboration 04/13/2021

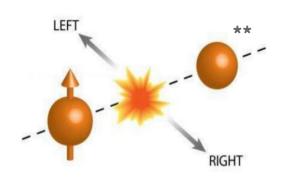


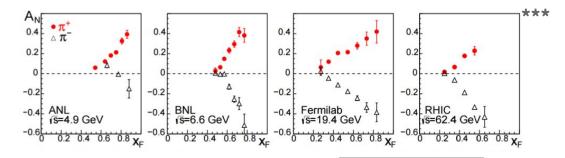



Spin Physics and Proton Structure

Our understanding of proton structure in terms of constituent quarks and gluons has evolved greatly in the past few decades

- We know that valence quarks do not carry all of the proton spin...
 - How is the spin of quarks and gluons correlated with proton spin?
 - How is the orbital motion of quarks and gluons correlated with proton spin?





Transverse Single Spin Asymmetries (TSSAs)

- p[↑] + p initial state
- Quantify counts on either side of the polarized proton-going direction (measure azimuthal asymmetry)
- Perturbative QCD predicted to contribute negligibly to TSSAs (<1%)*
- Large TSSA measurements imply nonperturbative spin-momentum and spin-spin correlations within proton

$$A_N = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R}$$

*G. L. Kane, J. Pumplin, and W. Repko PRL 41, 1689 (1978).

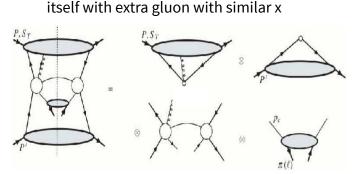
**https://www.bnl.gov/newsroom/news.php?a=111699

 $x_F = 2p_Z/\sqrt{s}$

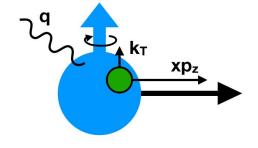
Transverse Single Spin Asymmetries (TSSAs)

Theoretical frameworks for describing measured TSSAs

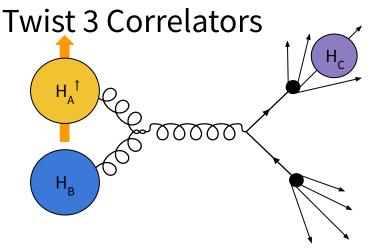
Higher Twist Effects

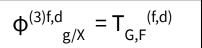

- Collinear, so only need one hard scale (Q)
 - Access via p_→ of measured particle
- Need higher twist (i.e. twist 3) to describe observed TSSAs
 - **Higher Twist:** Power suppressed terms in factorization expansion by $(1/Q)^{n-2}$
 - Twist 3 suppressed by 1/Q

Transverse Momentum Dependent Functions (TMDs)


- Explicit dependence on transverse momentum of partons within the proton
- Need access to both a hard and soft scale with sufficient scale separation (i.e. Q and k_{τ} with Q >> k_{τ})

Unification of two frameworks has been demonstrated


$$T_{q,F}(x,x) = \frac{1}{M_p} \int d^2\vec{k}_\perp \vec{k}_\perp^2 q_T(x,k_\perp)^*$$
 Twist 3 correlator (qgq) Sivers TMD PDF


Quantum interference between $2 \rightarrow 2$ process and

- Terms with A, B in subscript → initial state effects
- Terms with C in subscript → final state effects
- Terms with (3) in superscript → twist 3 correlators

$$A_N \propto \sum_{abc} \phi_{a/A}^{(3)}(x_1, x_2, \vec{s}_\perp) \otimes \phi_{b/B}(x') \otimes \hat{\sigma} \otimes D_{c \to C}(z) +$$

$$\sum_{abc} \delta q_{a/A}(x, \vec{s}_\perp) \otimes \phi_{b/B}^{(3)}(x'_1, x'_2) \otimes \hat{\sigma}' \otimes D_{c \to C}(z) +$$

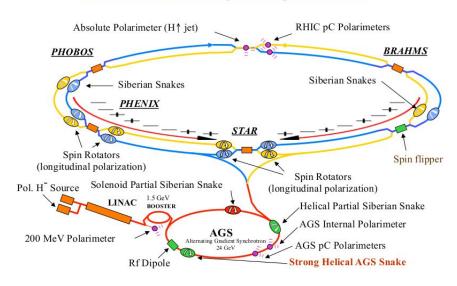
$$\sum_{abc} \delta q_{a/A}(x, \vec{s}_\perp) \otimes \phi_{b/B}(x') \otimes \hat{\sigma}'' \otimes D_{c \to C}^{(3)}(z_1, z_2).$$

Measuring A_N for different final state particles gives access to specific terms in the sum

Heavy flavor electron production dominated by gg fusion @ 200 GeV midrapidity \rightarrow gluon transversity distributions = 0 \rightarrow access to trigluon correlator $\varphi^{(3)}_{g/X}$

Charged pion production dominated by qg scattering @ 200 GeV midrapidity → sensitivity to quark flavor (u,d)

Spin Physics at RHIC

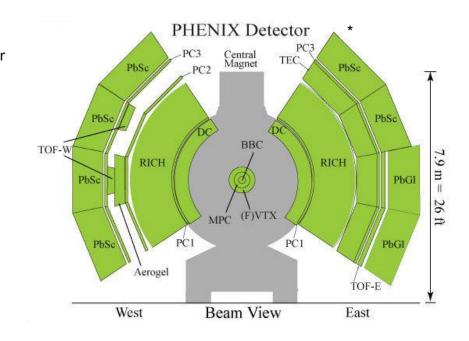

Extremely versatile collider!

- World's first polarized p+p collider
 - As well as p[↑]+He, p[↑]+Al, p[↑]+Au
- Capable of running with various collision energies and collision species
- Home to general purpose detectors (s)PHENIX and STAR

Collisions with polarized proton beams allow for a vast spin physics program

 Nonperturbative initial and final state functions become more complicated when polarization is taken into account

RHIC is the world's first polarized proton collider



Midrapidity Charged Particle Detection at PHENIX

- Acceptance: $\Delta \phi = 0.5\pi$ per arm, $|\eta| < 0.35$
- Tracks are fitted with hit information from the drift chamber (DC), pad chambers (PCs), and VTX
- RICH used for PID
 - Cherenkov threshold of γ = 35, corresponding to p = 20
 MeV/c for electrons and 4.9 GeV/c for charged pions
- EMCal measures energy deposits
 - Triggers used to select electrons and charged pions
- Hit pattern measured by the VTX
 - Require hit in inner two layers of VTX to veto photonic electron conversions

Analysis Procedure

TSSA Observable

A_N is calculated using the Relative Luminosity formula, integrating over the ϕ ranges of the east and west arms

$$A_N = rac{1}{\langle |\cos\phi|
angle} rac{1}{P} rac{N_L^{\uparrow} - R \cdot N_L^{\downarrow}}{N_L^{\uparrow} + R \cdot N_L^{\downarrow}} \; ext{where} \; R = rac{\mathcal{L}^{\uparrow}}{\mathcal{L}^{\downarrow}}$$

Background Sources (Heavy Flavor e^{+/-})

- Photonic: π^0 , η , γ
 - Asymmetries measured to be $0 \rightarrow$ treated as dilution
- Nonphotonic: J/ψ, Ke3
 - Ke3 is a negligible fraction
 - $J/\psi A_{N}$ taken from **PRD 82, 112008**
 - Large source of statistical uncertainty
- Hadron contamination: h^{+/-}
 - h^{+/-} A_N taken from **PRL 95, 202001**

Cross checks and systematic studies (Heavy Flavor e^{+/-})

- Square Root formula
 - A_{N}^{sqrt} A_{N}^{Lumi} taken as systematic
- cosφ modulation fit

modulation fit
$$A_N \cdot \cos \phi_S = \frac{1}{P} \frac{N^{\uparrow}(\phi_S) - R \cdot N^{\downarrow}(\phi_S)}{N^{\uparrow}(\phi_S) + R \cdot N^{\downarrow}(\phi_S)}$$

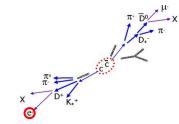
- Bunch shuffling
 - Randomize polarization direction, measure A_{N}/σ_{AN}
- Propagation of systematics on background fractions through background correction formula

$$A_N^{OHF \to e} = \frac{A_N^e - f_{h^{\pm}} A_N^{h^{\pm}} - f_{J/\psi \to e} A_N^{J/\psi \to e}}{1 - f_{h^{\pm}} - f_{J/\psi \to e} - f_{\pi^0 \to e} - f_{\eta \to e} - f_{\gamma \to e}} \qquad A_N^{NPe} = \frac{A_N^e - f_{h^{\pm}} A_N^{h^{\pm}}}{1 - f_{h^{\pm}} - f_{\pi^0 \to e} - f_{\eta \to e} - f_{\gamma \to e}}$$

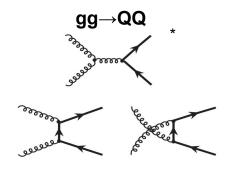
$$\sigma_{A_N^{OHF o e}} = rac{\sqrt{(\sigma_{A_N^e})^2 + (f_{h^\pm}\sigma_{A_N^{h^\pm}})^2 + (f_{J/\psi o e}\sigma_{A_N^{J/\psi o e}})^2}}{1 - f_{h^\pm} - f_{J/\psi o e} - f_{e^0 o e} - f_{e^0 o e} - f_{e^0 o e}}$$

$$A_{N}^{OHF \to e} = \frac{A_{N}^{e} - f_{h^{\pm}} A_{N}^{h^{\pm}} - f_{J/\psi \to e} A_{N}^{J/\psi \to e}}{1 - f_{h^{\pm}} - f_{J/\psi \to e} - f_{\pi^{0} \to e} - f_{\eta \to e} - f_{\gamma \to e}}$$

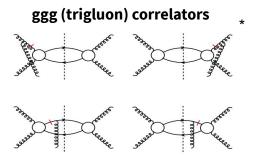
$$\sigma_{A_{N}^{OHF \to e}} = \frac{\sqrt{(\sigma_{A_{N}^{e}})^{2} + (f_{h^{\pm}} \sigma_{A_{N}^{h^{\pm}}})^{2} + (f_{J/\psi \to e} \sigma_{A_{N}^{J/\psi \to e}})^{2}}}{1 - f_{h^{\pm}} - f_{J/\psi \to e} - f_{\pi^{0} \to e} - f_{\eta \to e} - f_{\gamma \to e}}}$$

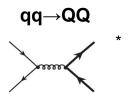

$$\sigma_{A_{N}^{NPe}} = \frac{A_{N}^{e} - f_{h^{\pm}} A_{N}^{h^{\pm}}}{1 - f_{h^{\pm}} - f_{\pi^{0} \to e} - f_{\eta \to e} - f_{\gamma \to e}}}$$

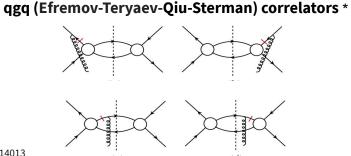
$$\sigma_{A_{N}^{NPe}} = \frac{\sqrt{(\sigma_{A_{N}^{e}})^{2} + (f_{h^{\pm}} \sigma_{A_{N}^{h^{\pm}}})^{2}}}{1 - f_{h^{\pm}} - f_{\pi^{0} \to e} - f_{\eta \to e} - f_{\gamma \to e}}}$$



Open Heavy Flavor Production

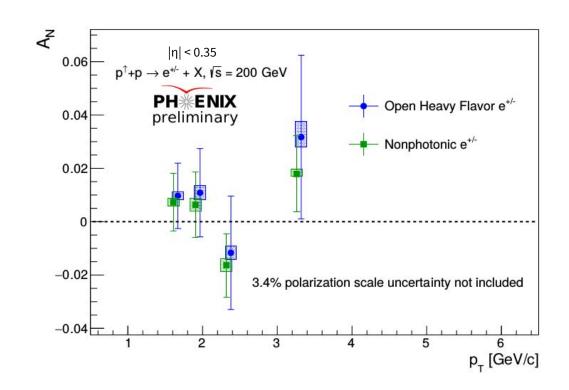

Open charm production is dominant contribution





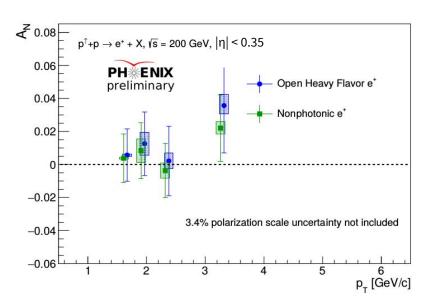
Dominant contribution @ 200 GeV midrapidity! ggg correlator not well constrained from previous measurements

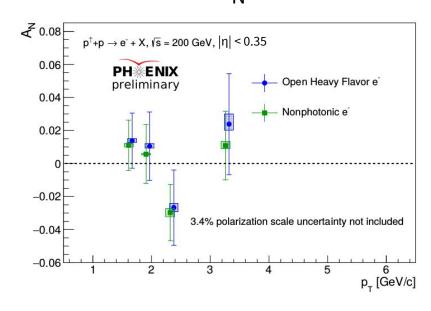
Small contribution @ 200 GeV midrapidity! qgq correlator somewhat constrained from previous measurements


*Kang, Qiu, Vogelsang, Yuan, PRD78, 114013

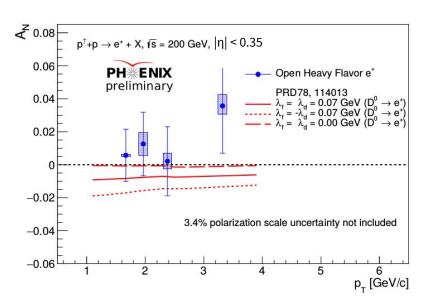
Charge Combined Open Heavy Flavor Electron A_N

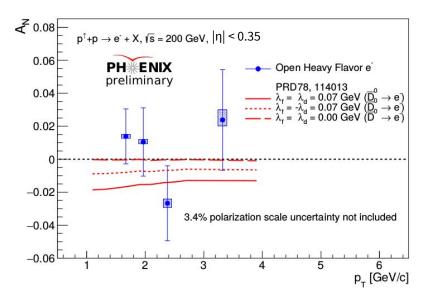
 Most precise measurement of open heavy flavor and nonphotonic electron TSSA at midrapidity


 Consistent with zero in measured range



Charge Separated Open Heavy Flavor Electron A_N




Charge separated results also consistent with zero in measured range

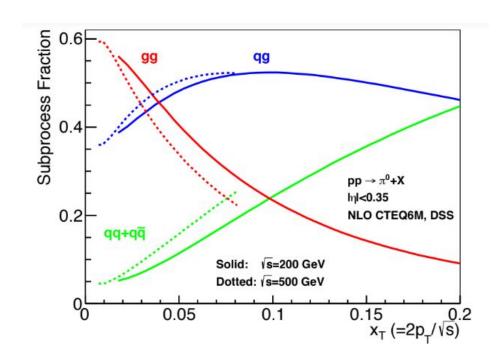
Charge Separated Open Heavy Flavor Electron A,

- Open heavy flavor results plotted alongside $D^0 \rightarrow e^{+/-}$ contributions as calculated in **PRD78**, **114013**
 - Ordering of curves is different for different charges \rightarrow sensitivity to constrain λ parameters
- λ parameters correspond to normalizations of trigluon correlators with respect to unpolarized gluon PDF

$$\hspace{0.5cm} \circ \hspace{0.5cm} \Phi^{(3),f}_{g}(\mathbf{x},\mathbf{x}) = \hspace{0.5cm} \lambda_{f} \hspace{0.1cm} \mathbf{g}(\mathbf{x}), \hspace{0.2cm} \Phi^{(3),d}_{g} \hspace{0.1cm} (\mathbf{x},\mathbf{x}) = \hspace{0.1cm} \lambda_{d} \hspace{0.1cm} \mathbf{g}(\mathbf{x}) \hspace{1.5cm} d^{abc}, \hspace{0.2cm} i \hspace{0.1cm} f^{abc} \hspace{0.2cm} \Longrightarrow \hspace{0.2cm} T^{(d)}_{G,F}(x_{1},x_{2}), \hspace{0.2cm} T^{(f)}_{G,F}(x_{1},x_{2})$$

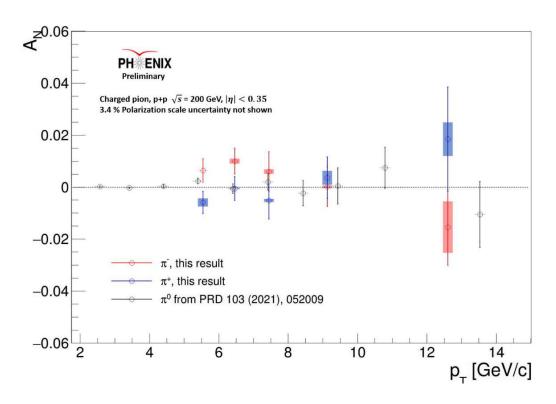
$$d^{abc}, if^{abc} \Longrightarrow$$

$$T_{G,F}^{(d)}(x_1,x_2),$$


$$T_{G,F}^{(f)}(x_1,x_2)$$

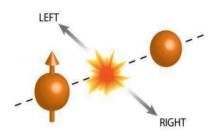
Charged Pion Production

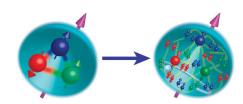
- Produced via qg, gg, qq 2 → 2 processes dominated by qg @ 200 GeV midrapidity
 (until high p_T)
 - \circ $\pi^0 \sim (\pi^+ + \pi^-)/2$
 - o qg contributions are sensitive to quark flavors when looking at $\pi^{+/-}$ separately
- π^+ , π^- , π^0 is an isospin triplet -- comparing A_N in these different systems is a good test for theoretical models



Charged Pion A_N

- First results of midrapidity charged pion A_N from PHENIX
- Compared with $\pi^0 A_N$ from **PRD 103, 052009**
- π^{+/-} A_N consistent with zero in measured range, but there is an indication that π^{+/-} behave differently (potential flavor dependence)

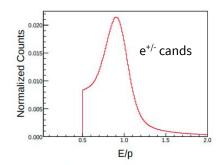


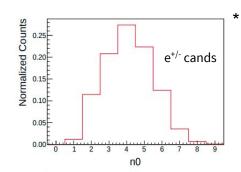


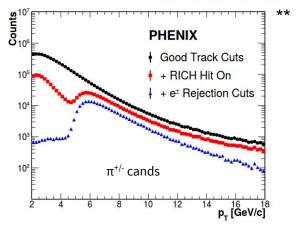
Summary

- Transverse single spin asymmetries provide access to nonperturbative spin-momentum and spin-spin correlations within the proton
 - \circ Twist 3 correlators require only a single hard scale, for which the measured particle's p_{τ} is taken as a proxy
- Most precise measurement of open heavy flavor e^{+/-} A_N
 - $p^+ + p$, $\sqrt{s} = 200$ GeV, $|\eta| < 0.35$
 - Consistent with zero in measured range
 - Compared with theoretical predictions from PRD78, 114013
- First measurement of $\pi^{+/-}$ A_N at midrapidity at RHIC
 - o p^+ + p, \sqrt{s} = 200 GeV, $|\eta|$ < 0.35
 - Consistent with zero in measured range
 - Compared with $\pi^0 A_N$ from **PRD 103, 052009**
- Both results presented are in preparation for publication
- Other results in preparation
 - Forward heavy flavor muon $A_N (p^+ + p)$
 - o Forward charged hadron A_N ($p^+ + p, p^+ + Al, p^+ + Au$)

BACKUP

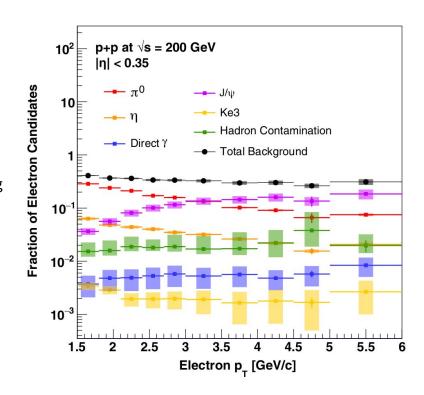

$e^{+/-}$ and $\pi^{+/-}$ Identification at PHENIX


e^{+/-} identification


- $|(E/p \langle E/p \rangle)/\sigma_{F/p}| < 2 (\langle E/p \rangle \sim 1)$
- Track matching to EMCal energy deposits and RICH shower ring center
- >1 photomultiplier firing in RICH -- p = > 20 MeV/c
- EM shower shape probability > 0.01
- Hit requirement in inner 2 layers of VTX
- Conversion veto cut on opening angle of nearby e^{+/-} candidates

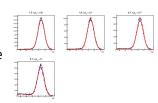
$\pi^{+/-}$ identification**

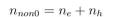
- 0.2 < E/p < 0.8 preselection rule
- Logical OR of EMCal triggers
- Track matching to EMCal energy deposits
- >1 photomultiplier firing in RICH -- p_{π} > 4.9 GeV/c
- EM shower shape probability < 0.1



Heavy Flavor e^{+/-} Background Fractions

- Largest contribution from photonic electron background sources $(\pi^0 + \eta + \gamma)$ at $p_{\tau} < 3$ GeV/c
 - Asymmetries for these sources well constrained to be zero at 200 GeV midrapidity PRD 103, 052009, arXiv:2102.13585
- Largest contribution from J/ψ at $p_{\tau} > 3$ GeV/c
 - \circ σ_{AN} affected significantly in this region due to $A_N^{J/\psi}$ suffering from large statistical uncertainty **PRD 82, 112008**
- Ke3 is a negligible contribution -- not considered in background correction
- Hadron contamination is a consistently small contribution
 - \circ Increase in 4.5-5.0 GeV/c bin shown here due to $\pi^{\text{+/-}}$ RICH threshold of 4.9 GeV/c
 - Input asymmetries from PRL 95, 202001





Heavy Flavor e^{+/-} Background Fractions

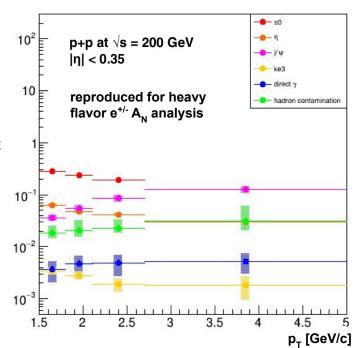
Hadron contamination

- Fit e^{+/-} candidate E/p spectrum with Gaussian + template extracted from hadrons in data with free normalization parameter
- Calculate algebraically using RICH n0 selection requirements
- Average value from two methods, values taken as upper and lower systematics

$$n_{n0} = \epsilon_e n_e + \epsilon_h n_h$$

$$n_{h_{n0}} = \epsilon_h \frac{n_{n0} - \epsilon_e n_{nor}}{\epsilon_h - \epsilon_e}$$

Photonic background fractions

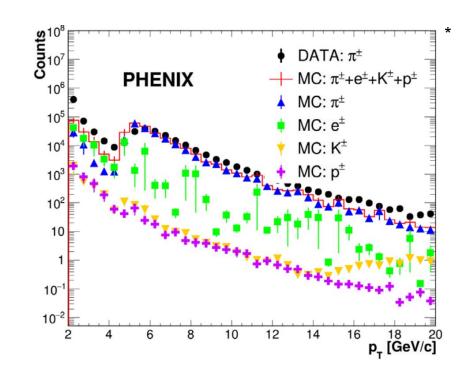

Calculate fraction of nonphotonic electrons using conversion veto cut
 (~ means with conversion veto) -- use to calculate photonic background fractions

$$F_{np} = \frac{\tilde{n}_{np}}{\tilde{n}_{np} + \tilde{n}_p} = \frac{n_{np}}{n_{np} + \epsilon_p n_p} = \frac{\epsilon_{uc} \epsilon_p n_e - \tilde{n}_e - \epsilon_{uc} \epsilon_p n_{hc} + \tilde{n}_{hc}}{(\epsilon_p - 1)(\tilde{n}_e - \tilde{n}_{hc})} \qquad f_i = (1 - \tilde{f}_{hc})(1 - F_{np}) \frac{\tilde{n}_i}{\tilde{n}_{\pi^0} + \tilde{n}_{\eta} + \tilde{n}_{\gamma}}$$

• Nonphotonic background fractions

Signal open heavy flavor $e^{+/-}$ is nonphotonic, so calculate nonphotonic background fractions w.r.t. π^0 fraction

$$f_j = f_{\pi^0} \frac{\tilde{n}_j}{\tilde{n}_{\pi^0}}$$



$\pi^{+/-}$ Background Fractions

• Spectrum dominated by $e^{+/-}$ below 4.9 GeV/c (RICH threshold for $\pi^{+/-}$)

- e^{+/-} are main source of background in range of A_N measurement 5 GeV/c < p_T < 15 GeV/c
 - Only source considered in background subtraction
 - Charged kaons and protons are an insignificant contribution

