

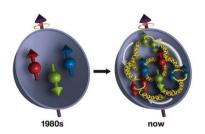
Longitudinal double helicity asymmetry A_{LL} from direct photon, jet and charged pion production in polarized $\vec{p} + \vec{p}$ collisions

Zhongling Ji for the PHENIX Collaboration

Stony Brook University

Deep Inelastic Scattering 2021

April 14, 2021

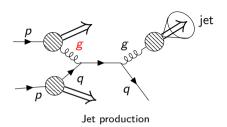

Probing the gluon spin inside the proton

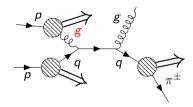


■ The proton spin can be decomposed as

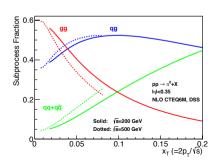
$$rac{1}{2} = rac{1}{2} \sum_{q} \Delta q + rac{\Delta g}{2} + L_q + L_g$$

■ Gluon spin Δg is important for the proton spin puzzle.

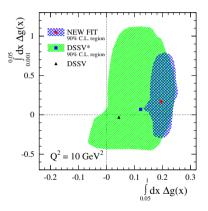



- $\blacksquare A_{LL} = \frac{\Delta \sigma}{\sigma} = \frac{\sigma_{++} \sigma_{+-}}{\sigma_{++} + \sigma_{+-}}$
- Little fragmentation contributions to direct photon production.

Jet and charged pion production

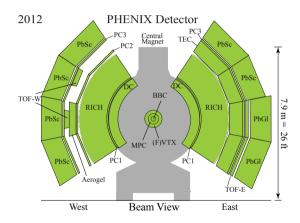


- Larger statistics: not suppressed by small QED coupling.
- \blacksquare π^{\pm} : separate u and d quark.
- RHIC 200 GeV data probe 0.05 < x < 0.2.
- RHIC 510 GeV data probe 0.02 < x < 0.08.


Charged pion production

From A_{LL} to Δg

- **E**xisting RHIC data mainly probe $0.05 < x_{\sigma} < 0.2$.
- PHENIX π^0 A_{LL} at 510 GeV confirms a nonzero Δg and extend x_g to 0.01.
- STAR jet data clearly imply a polarization of gluons in this range.
- Results from γ , jet and π^{\pm} will add additional independent constraints on the Δg .

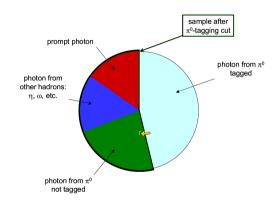


PRL 113, 012001 (2014)

PHENIX detector

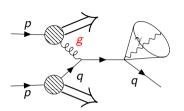
- \blacksquare $|\eta| < 0.35$ and π coverage for ϕ .
- EMCal: primary detector for photons.
- EMCal trigger: select high energy particles.
- DC: measure charged particles.
- PC3: track matching.
- RICH: PID from Čerenkov light.

Direct photon identification


Source of direct photon:

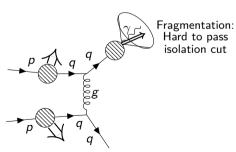
- Compton scattering: $g + q \rightarrow \gamma + q$.
- Annihilation: $q + \bar{q} \rightarrow \gamma + g$.
- Parton fragmentation to photon.
- Quark bremsstrahlung.

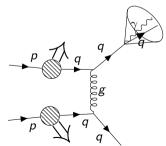
Source of direct photon background:


■ Decay photons from hadrons $(\pi^0, \eta, \omega, \eta')$.

Direct photon yield:

Isolation cut for direct photon

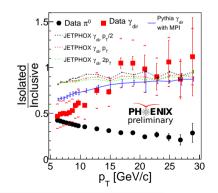


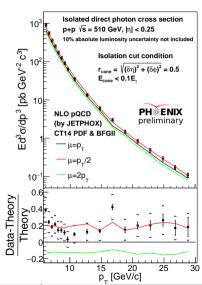

$$r_{cone} = \sqrt{(\delta \eta)^2 + (\delta \phi)^2} = 0.5$$

Isolation cut requirement:

$$\sum E_{in\,cone} < 0.1 E_{\gamma}$$

Quark-gluon Compton scattering: Easy to pass isolation cut

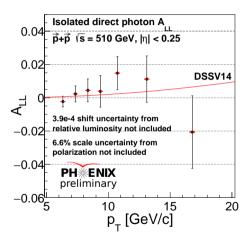




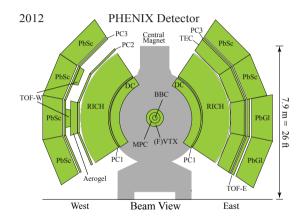
Bremsstrahlung: Hard to pass isolation cut

Direct photon cross section

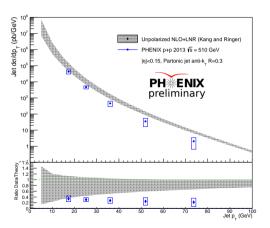
- Consistent with NLO pQCD.
- MPI and parton shower are important for inclusive direct photon production.
- Constrain unpolarized gluon PDF.



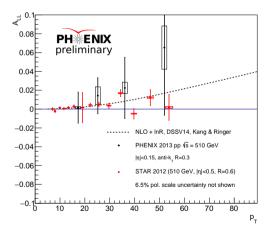
Direct photon A_{LL}


- Consistent with NLO DSSV14.
- Will be the first published direct photon A_{LL} .
- Constrain polarized gluon PDF Δg .

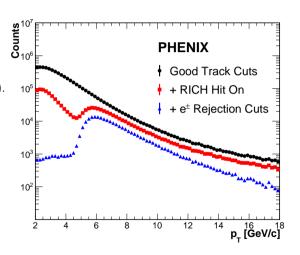
Jet identification


- BBC and EMCal trigger.
- DC match in PC3 or EMCal.
- EMCal energy > 1 GeV.
- Time of flight < 10 ns.
- Cluster-track matching.
- Only keep the jet with the largest p_T .
- \blacksquare Algorithm: anti- k_T .
- Unfolding: Bayes iteration method implemented by RooUnfold $N(p_T^{reco}) = \mathbf{R}(p_T^{reco}, p_T^{truth})N(p_T^{truth})$

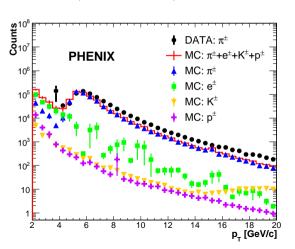
Jet cross section

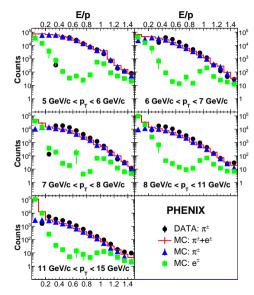

- Calculation from NLO + In(R) resummation overestimates data.
- The calculation is at partonic level: MPI and parton shower are important.
- Similar observation from CMS, for small R anti- k_T .

Jet A_{LL}

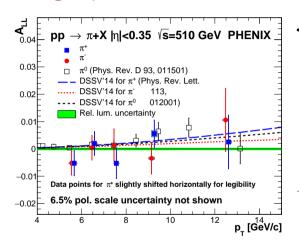

- Consistent with DSSV14 at NLO + In(R) resummation.
- Independent constraint on polarized gluon PDF Δg .
- Uncertainty are correlated due to unfolding.

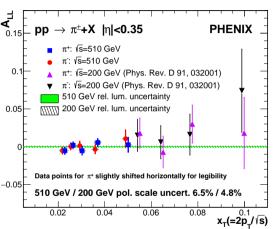
Charged pion identification


- Preselection rule: 0.2 < E/p < 0.8.
- Logical OR of EMCal triggers.
- Matching track in DC with EMCal.
- >1 photomultiplier in RICH ($E_{\pi} \gtrsim 4.9$ GeV).
- \blacksquare EM shower shape probability < 0.1.
- PRD 102, 032001 (2020)



Charged pion background


- 4.9 to 17.3 GeV: electrons are main BG
- 0.2 < E/p < 0.8: best S/B ratio.



Charged pion A_{LL}

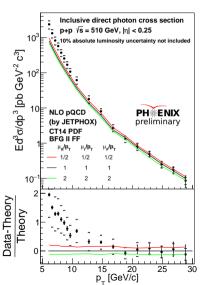
- PRD 102, 032001 (2020)
- Consistent with DSSV14.

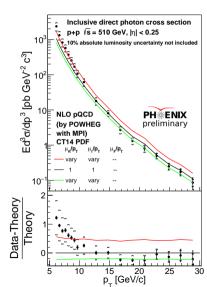
- 510 GeV data probe low x range.
- Not enough statistics to decide π^{\pm} order.

Summary

- Gluon spin is important for proton spin decomposition and the proton spin puzzle.
- Direct photon production have little fragmentation contributions.
- \blacksquare Jet and π^{\pm} production have larger statistics.
- \blacksquare π^{\pm} measurement can separate u and d quark contributions.
- \blacksquare Contribute to future global analysis together with forward cluster and forward/central η A_{LL} .

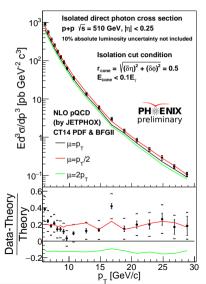
Backup

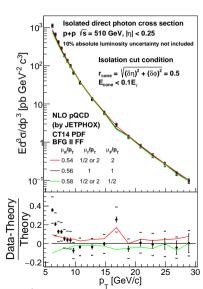

Processes



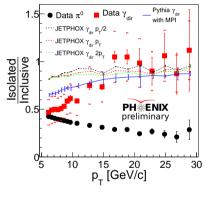
Reaction	Dom. partonic process	probes	LO Feynman diagram
$\vec{p}\vec{p} \to \pi + X$	$ec{g}ec{g} ightarrow gg$	Δg	gooog
	$ec{q}ec{g} ightarrow qg$		3
$\vec{p}\vec{p} \to \text{jet(s)} + X$	$ec{g}ec{g} o gg \ ec{q}ec{g} o qg$	Δg	(as above)
$\vec{p}\vec{p} \to \gamma + X$ $\vec{p}\vec{p} \to \gamma + \text{jet} + X$	$\begin{array}{c} \vec{q}\vec{g} \to \gamma q \\ \vec{q}\vec{g} \to \gamma q \end{array}$	$\Delta g \ \Delta g$	م
$\vec{p}\vec{p} \to \gamma\gamma + X$	$ec{q} ec{q} o \gamma \gamma$	$\Delta q, \Delta \bar{q}$	\rightarrow
$\vec{p}\vec{p} \to DX, BX$	$ec{g}ec{g} ightarrow car{c}, bar{b}$	Δg	3000<

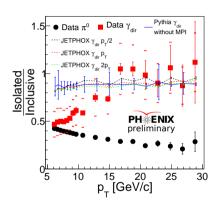
Inclusive direct photon cross section





Isolated direct photon cross section





Isolated/Inclusive direct photon ratio

With MPI Without MPI