Physics motivation and detector upgrades for the new era of the ATLAS experiment

Jason Nielsen

Santa Cruz Institute for Particle Physics
University of California, Santa Cruz
On behalf of the ATLAS Collaboration

XXVIII International Workshop on Deep-Inelastic Scattering and Related Subjects April 15, 2021

Luminosity and Energy Increases at LHC

- Long Shutdown 2 (Phase-1 upgrade) preparing for Run 3
 - Luminosity leveling at 2 x 10^{34} /cm²/s, possible increase to \sqrt{s} =13.5 or 14 TeV
 - Expecting accumulation of 300 fb⁻¹ during Run 3 pp campaign
- Long Shutdown 3 (Phase-2 upgrade) to prepare for HL-LHC
 - The HL-LHC era with lumi of 7.5 x 10^{34} /cm²/s at \sqrt{s} =14 TeV
 - Large data samples and major experimental challenges

ATLAS Run-3 and HL-LHC Physics Program

- Very broad program covering all areas of hadron collider physics
- Many studies performed for TDRs and European Strategy input
 - Measurement of Higgs boson properties: couplings, mass, width
 - Precision electroweak measurements: vector boson scattering, W mass, weak mixing angle, triboson couplings, rare processes
 - Searches for Beyond Standard Model physics: SUSY, dark matter
 - QCD measurements: precision PDF sets, especially in forward regions
 - Flavor physics studies: rare b-decays, constraints on CKM
 - High-density QCD measurements with heavy-ion and pp collisions
 - Forward physics with tagging of exclusive production processes
- Studies in ATLAS benefit from full HL-LHC simulation
 - Updated detector performance and systematic uncertainties

Focus on an interesting subset of the ATLAS results in my limited time

Muon Detector Upgrades

- Limited p_T resolution and high hit occupancy in current detector dictate higher L1 trigger thresholds for single muons
 - Impact on electroweak physics measurements with leptonic signatures
- Precision angle measurements in the small wheel region can sharpen the L1 trigger turn-on and restore the lower threshold
 - New Small Wheel needed with 1 mrad angular resolution measurement

Muon New Small Wheel

Detector sandwich: TGC-MM-MM-TGC

- Small-strip Thin Gap Chambers provide fast readout for trigger, while MicroMegas detectors give precision tracking resolution
 - MM spatial resolution of 100 μm based on fine strip pitch
 - Redundant system with good offline precision from sTGCs, too
 - Large-scale precision chambers require careful quality control at distributed fabrication sites
- Commissioning is underway at CERN

LAr Calorimeter and L1Calo Trigger

- Increased information in trigger allows for shower shape measurements
 - Improved jet rejection gives a lower trigger rate and allows ATLAS to maintain lower EM trigger thresholds in Run 3

- Improve trigger energy resolution and identification efficiency for e, γ , τ leptons, and jets by increasing readout granularity
- Coarse trigger towers replaced by super cells

Run-3 Higgs Boson Measurements

- Estimates of Run-3 sensitivity are based on late Run-1 results
 - Expect these to be very conservative projections, nearly surpassed already
- Lepton, photon, and missing energy trigger improvements offer improved sensitivity to the most comment event signatures

Run-3 SUSY and Exotic Searches

Monojet signature (WIMP recoil)

Jet + missing energy signature with WIMPs produced through axial-vector mediator

Dark photon decays

Higgs decay to dark photons, with subsequent decays to displaced collimated muon jets

Run-3 Vector Boson Scattering

- Three channels: WW, WZ, ZZ leptonic signatures
 ATL-PHYS-PUB-2018-022
 ATL-PHYS-PUB-2018-052
 - All observable at HL-LHC luminosities, but extracting the longitudinal scattering component to test unitarity is much more challenging
 - New muon performance and jet-finding capabilities are key improvements
- WV and VV scattering accessible with Run 3 dataset
- WW scattering: <10% precision overall, <1σ sensitivity to W_LW_L

Expected σ

HL-LHC Physics Challenges

- HL-LHC is the culmination of the 27-km ring program at CERN
 - Increase of Vs to 14 TeV, integrated luminosity goal of 3-4 ab⁻¹
 - Era of precision Higgs and top physics, small BSM cross sections
 - See Simone Pagan Griso's talk in Friday's plenary session
- Inst. lumi 7.5E34/cm²/s implies pileup up to <μ>=200 per crossing
 - Higher hit occupancy in the detector, leading to higher rate of fake tracks
 - Stochastic accumulation into "pileup jets", especially in forward region
 - Additional energy in calorimeters degrades resolution
 - Increased radiation dose to sensitive detectors and electronics
- Many improvements needed to maintain or improve performance
 - Improved triggering using all detector information and improved resolution
 - Increased detector acceptance in forward regions
 - Better association of particles to primary vertex to reject pileup effects
 - Timing measurements for pileup rejection and particle flow
- Major ATLAS detector upgrades planned for Long Shutdown 2

Overview of HL-LHC Upgrades

All-silicon Inner Tracker replacement

CERN-LHCC-2012-022 ATL-PHYS-PUB-2019-005

- Improved pseudorapidity coverage to $|\eta| < 4$
- New calorimeter front-end electronics to digitize signal at 40 MHz
- Muon electronics upgrade with additional trigger layer
- Trigger upgrade to use full detector information for 1 MHz decision
- Improved triggers are key to physics in many different signatures

ITk Silicon Tracker

- Nearly 13 m² of pixels and 165 m² of strips with improved coverage
 - Innermost layer of "3-d" pixel sensors with 25x100 μm² pixel size
 - Inclined sensors and ring structures ensure normal track incidence at high η
 - New readout electronics radiation hard to 1 GRad in inner pixels, with 5 GHz digital data bandwidth to optical readout transition
- Improves tracking and b-tagging performance compared to Run-2

Electronics, Data Acquisition, and Trigger

- Goal of better e, γ, τ, jet identification and measurement, at hardware and software trigger levels and in offline
 - Full granularity detector data into HW trigger at 1 MHz from calorimeters and muon system
 - Feed into L0 accept with 10 μs latency
 - Event Filter output increases to 10 kHz

High-Granularity Timing Detector

- Vertex association at high η improved with picosecond timing
- Low-Gain Avalanche Detector stations located on cryostat wall
- Timing information enhances the ITk pileup jet rejection

ATLAS Detector Upgrades and Upgrade Physics

Higgs Coupling Measurements

ATL-PHYS-PUB-2018-054

- Cross section measurements improve with high statistics
 - Projections assume systematic and theory uncertainties will be halved
- Measurements re-interpreted in coupling modifier κ framework
 - All of those couplings are constrained at the 2-7% level
 - Even μμ and Zγ couplings can be constrained at HL-LHC

Cross section norm. to SM value

Parameter value

HH Production Measurements

Current Run-2 ATLAS limit: 4 x SM

ATL-PHYS-PUB-2018-053

- Most sensitive channel: bbττ uses fit to BDT score by category
- Second channel: bbγγ analysis w/ parameterized simulation: fit m_{HH}
- Third channel: bbbb result suffers large syst. uncertainties

Events / 2 GeV

• ATLAS/CMS combination in <u>arXiv:1902.00134</u>: ~4σ for SM HH

SUSY Searches

ATL-PHYS-PUB-2018-048

- High-statistics HL-LHC dataset: an opportunity to test the TeV mass scale for electroweak SUSY, even for lowest cross sections
- Projections with full b-tagging simulation & realistic uncertainties

Largest gains in statistics-limited searches with tight selections

Summary and Conclusions

- ATLAS projects a broad and deep Run-3 and Run-4 physics program
 - Precision Higgs, electroweak, and top measurements with large datasets
 - Improved PDF measurements with high lumi at 14 TeV
 - Searches for BSM physics, especially in small cross-section processes
 - High-density QCD studies in heavy-ion and pp collisions
- Detailed studies prepared both with full detector simulation and with extrapolated systematic uncertainties
- Challenging experimental conditions require new detector upgrade designs and improved reconstruction algorithms.
- These studies and improvements depend on continued progress in theoretical calculations and computational tools.

Already looking forward to lots of 14 (or 13.5) TeV data!

ATLAS Upgrade Document Library

 More public ATLAS upgrade physics results available at https://twiki.cern.ch/twiki/bin/view/AtlasPublic/UpgradePhysicsStudies

Collections of HL-LHC studies

- High-Density QCD: <u>arXiv:1812.06772</u>
- Flavor Physics: <u>arXiv:1812.07638</u>
- BSM Physics: <u>arXiv:1812.07831</u>
- Higgs Physics: <u>arXiv:1902.00134</u>
- SM Physics: arXiv:1902.04070

Contributions to HL-LHC workshop

 Joint ATLAS-CMS addendum with collection of notes: <u>arXiv:1902.10229</u> (Vol. 2 of Yellow Report)

ATLAS HL-LHC TDRs

- ITk Silicon Strips: https://cds.cern.ch/record/2257755
- Muon Spectrometer: https://cds.cern.ch/record/2285580
- LAr Calorimeter: https://cds.cern.ch/record/2285582
- Tile Calorimeter: https://cds.cern.ch/record/2285583
- ITk Silicon Pixels: https://cds.cern.ch/record/2285585
- High-Granularity Timing Detector: https://cds.cern.ch/record/2719855