Upgrade of the ALICE experiment for LHC Run 3 and beyond

Markus Fasel For the ALICE Collaboration

Preparing ALICE for Run 3

New opportunities and challenges for ALICE in Run 3

Physics opportunities for ALICE in run3

- Thermalization of (heavy) partons in the QGP
- Charmonia at low- p_T : Probe of deconfinement
- Low-mass dileptons: Chiral symmetry restoration
- Thermal photons: Initial state of the QGP
- Jet substructure, jet-X correlation: partonic energy loss in the medium
- Search for bound states involving strange mesons

Data taking conditions

- Run 2: PbPb @ 1 kHz
- Run 3: PbPb @ 50 kHz

Need for an upgrade of several systems of the ALICE experiment

- Improve readout rate
- Improvement of $p_{\rm T}$ and pointing resolution
- Significant reduction of the data volume
- Preserve particle identification capability

CERN-LHCC-2012-012, CERN-LHCC-I-022, ALICE-UG-001

ALICE in Run 3

New Inner Tracking System (ITS2)

- Radiation lengh: 0.35%X₀ (Inner Barrel)
- Readout rate: 100 kHz PbPb, 400 kHz pp

Improved low- $p_{\rm T}$ tracking efficiency $(> 90\% \text{ for } p_T > 200 \text{ MeV}/c)$

Improved pointing

factor 2

Upgrade of the Time Projection Chamber

5

Frontend Electronics: SAMPA

- 130 nm CMOS
- 32 channels / chip
- 10 bit ADC
- Digitization at 5 MHz
- Allows for continuous readout

Readout: GEM stacks

- 4-GEM stack
- Avalanche creation in GEM hole
- Dominant part of ions absorbed on top side of GEM stack
- Ion backflow: < 1%
- No more need for gating grid
- Similar performance (i.e. dE/dx) as for MWPC

CERN-LHCC-2013-020, ALICE-TDR-016

C+ITS combined track

(GeV/c)

 $\sigma_{1/p_{T}}$

0.014

0.012

0.0

0.008

0.006

0.004

GEM

TPC only tracks

Muon Forward Telescope: Track extrapolation of muon tracks to the collision vertex

- -3.6 < η < -2.45
- 5 Layers
- 2 disks / layer
- ALPIDE chips (same as ITS2)
- 920 chips
- Propagation of muons to primary vertex
- Selection of muons from secondary vertices

Performance (muon tracks, $p_T > 2 \text{ GeV}$)

- 90% matching efficiency to tracks from Muon Spectrometer
- ~30 µm pointing resolution

The Fast Interaction Trigger

- Fast min. bias collision trigger with latency < 425 ns
- Collision time for TOF with ~ 20 ps time resolution
- Luminosity monitor
- Centrality measurement
- Event plane determination

CERN-LHCC-2013-019. ALICE-TDR-015

Detector design similar to Run 2 detectors

- FIT-V0 (FV0): Scintillator
- FIT-T0 (FT0): Cerenkov

FV0

• FIT-Diffractive Detector (FDD): Scintillator

Online data processing with O²

CERN-LHCC-2015-006, ALICE-TDR-019

New challenges for data processing in Run 3

- Continuous readout \rightarrow multiple collisions overlapping in the TPC drift time
- 50 kHz PbPb \rightarrow Storing all raw data not feasible \rightarrow significant compression needed

Installation and commissioning

Feb. 2020 Aug-Oct. Nov 2020 Dec 2020 Mar.- Apr Summer 2021 Feb 2020 2021 2022

O² and computing: Will be tested with simulation and analysis challenges starting from Q3 2021

Installation and commissioning

TPC installation (Aug-Oct 2020)

Commissinoning

ITS outer barrel installation March 2021

Miniframe installation (Nov. 2020)

MFT and FIT-C installation (Dec. 2020)

410'

Physics performace with ALICE at Run 3

Physics with ALICE Run 3 in pp collisions at $\sqrt{s}=14$ TeV

Dedicated physics program in pp collisions at $\sqrt{s} = 14$ TeV in 2022-2024

- ∫Ldt = 200 pb⁻¹
- Interaction rate: 500 kHz
- Selection of interesting events during reconstruction on the EPN

12

ALICE-PUBLIC-2020-005

New ITS in Run 4 (ITS3)

p_ (GeV/c)

Up to factor 4 increase of the significance of Λ_c in PbPb collisions

Constraining nuclear PDFs: The FoCal

Substantial uncertainty on the gluon nuclear PDFs at small-x and low Q²

EPJC 77, 163

$$R_i^{Pb}(x,Q^2) = \frac{f_i^{Pb}(x,Q^2)}{f_i^p(x,Q^2)}$$

Main observables sensitive to the gluon PDF:

- Direct photons (quark-gluon compton scattering)
- Heavy flavour (gluon fusion)

Isolation cut enhancing quark-gluon compton scattering

Design of the ALICE FoCal

CERN-LHCC-2020-009, LHCC-I-036

• 3.2 < **η** < 5.8

FoCal-H FoCal-E

Hadronic and electromagnetic calorimeter

- FoCal-E: Si+W sampling calorimeter
- FoCal-H: conventional sampling hadronic calorimeter

Electromagnetic calorimeter:

- Low Granularity: Si-pad (16 layers)
- High Granularity: MAPS, based on ALPIDE (2 layers)
- Shower tracking

EPICAL (ALPIDE) pixel prototype (proton CT project)

Full (pad-layer only) modules for tests at PS/SPS and in 2018 13 TeV LHC beam

Expected performance of the FoCal

CERN-LHCC-2020-009, LHCC-I-036

16

Photon isolation: FoCal-E + FoCal-H

Significant constraints on gluon nuclear pdf expected for direct photon measurements with FoCal

Outlook: New detector beyond Run 4

- Tracking and particle ID down to ~ tens of MeV
- Excited charmonium states in heavy-ion collisions
- Charmed baryons
- Low-mass dielectron continuum (0 GeV/ c^2 < m_{ee} < 6 GeV/ c^2)
- And more ...

Barrel and

endcaps

- Major upgrades for several detectors in Run 3: ITS2, TPC, MTF, FIT
- New data processing for the experiment designed to handle increased readout rate and data volume
- Significant improvement in precision, making new probes accessible in heavy-ion collisions in Run 3
- New detectors for Run 4
 - ITS3: Improved precision, for heavy-flavour and dielectron measurements
 - FoCal: Constrain nuclear PDFs at small-x
- New experiment, designed for multi-charm baryons, di-leptons and very low- $p_{\rm T}$, for Run 5+