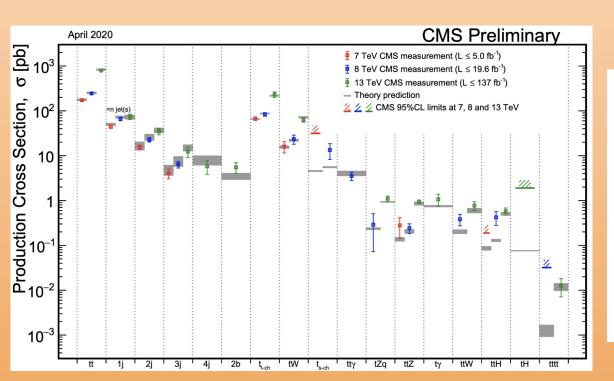
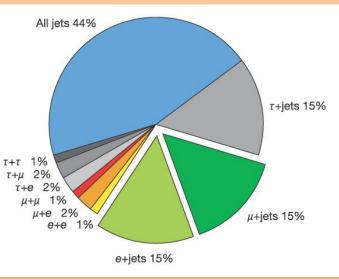


Ravindra K Verma

Florida Institute of Technology

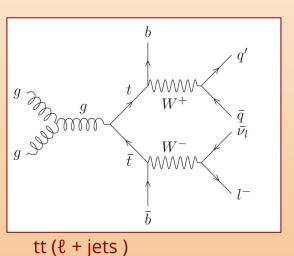

On behalf of the CMS Collaboration

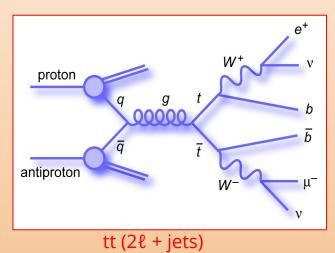
April 15, 2021

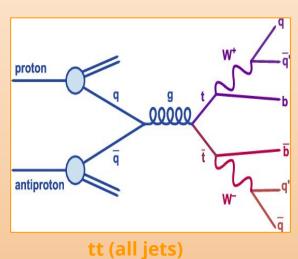

DIS2021: XXVIII International Workshop

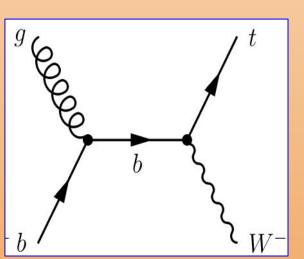
Physics motivation

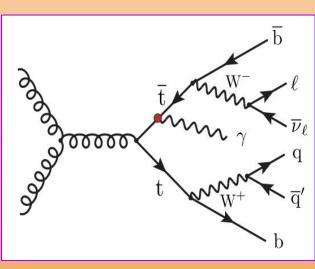
- Precise measurement helps in the improvement of search sensitivity and test of perturbative QCD
- ☐ Differential cross section measurement is used to test fixed-order predictions and extract QCD parameters
- ☐ The tt production cross section is dominant at LHC
- ☐ Serve as backgrounds for many new physics searches

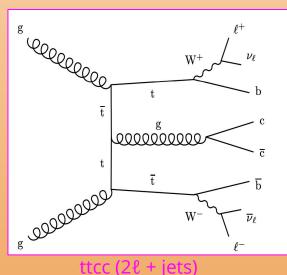

tt branching ratios




Ravindra Kumar Verma Florida Institute of Technology


Production processes


Recent measurements for the following production (final states) processes are covered in this talk



tW (ℓ + jets) tW (2ℓ + jets)

tt**γ** (ℓ + jets)

ttbb (2ℓ + jets)

Inclusive and differential **tt** cross sections in ℓ + jets final states

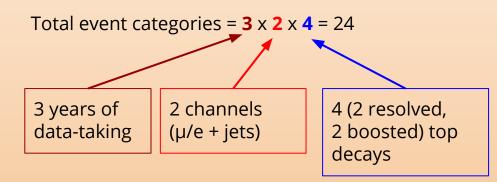
CMS-PAS-TOP-20-001

- A **simultaneous** fit is performed for each distribution combining 24 categories
- → Various distributions such as transverse moment of top quarks, invariant mass of tt is used to measure the cross-section

 Output

 Description:

 Description:


 Output

 Description:

 Description:

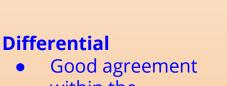
 Output

 Description
- **Differential** and **double** differential measurement is performed at **parton** and **particle** levels
- Neural network is exploited in the reconstruction of boosted tops
- \Box A χ^2 test is performed to compare the measurements with several predictions
- ☐ The dominant source of systematic uncertainty comes from the jet energy correction

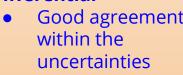
Inclusive cross section

Predicted (NNLO) =
$$832 \pm 46 \text{ pb}$$

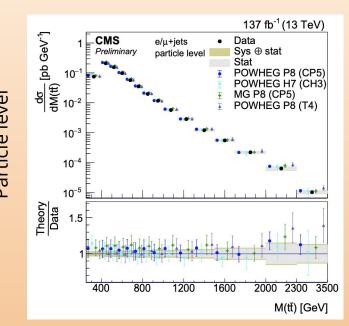
Measured = $791 \pm 25 \text{ pb}$

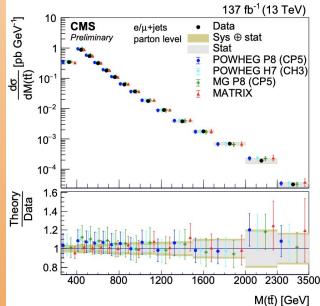

The measured cross section is more precise (3.16% uncertainty) as compared to the predicted value (5.5% uncertainty)

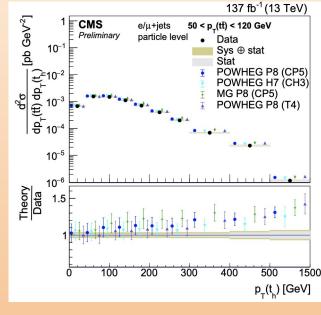
Differential cross sections are shown in the next slide


Differential*

Double differential*


Particle level


Parton level

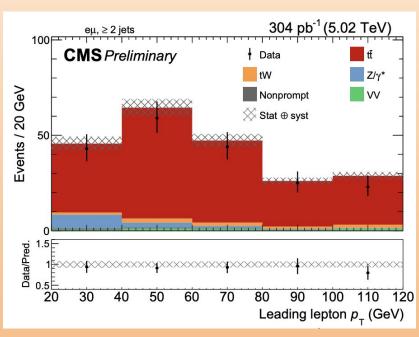


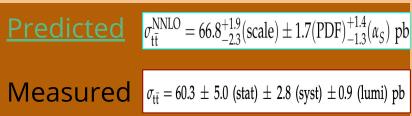

Double differential

- There is a slight discrepancy for higher p_T (t_h) in the 0 < p_T (tt) <120 GeV
- Good agreement in higher ranges of p_T (tt)

*For other variables and bins, refer to CMS-PAS-TOP-20-00

Florida Institute of Technology

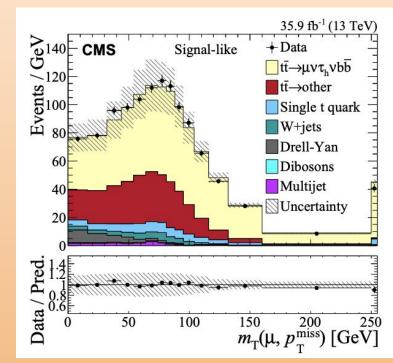

Inclusive **tt** cross section in 2ℓ + jets final states at $\sqrt{s} = 5.02$ TeV


- First tt cross section measurement in the proton-proton collision at $\sqrt{s} = 5.02 \text{ TeV}$
- Provides another check to the SM prediction at lower energy
- The t⁻t production cross section is extracted by the counting experiment

$$\sigma_{
m tar{t}} = rac{N-N_{
m bkg}}{arepsilon \mathcal{A}\mathcal{B}\mathcal{R}\mathcal{L}}$$

- N is the number of observed events
- ☐ In the denominator, we have
 - ☐ Efficiency of event selection
 - Acceptance
 - Branching Ratio of W decaying to lepton and neutrino
 - Luminosity
- ☐ The dominant source of systematic uncertainty comes from the jet energy correction

CMS-PAS-TOP-20-004



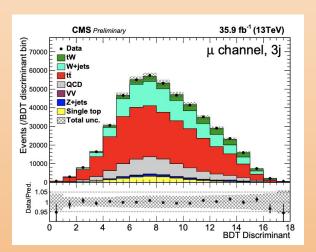
Predicted and measured cross sections are in agreement with in the uncertainties

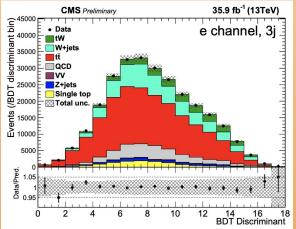
- First measurement involving au lepton
- Checks of lepton flavour universality violation
- With third generation of lepton and quarks, it is sensitive to beyond SM contributions such as production of charged Higgs boson

- ☐ The differential cross section is measured using the the transverse mass of the lepton and MET
- QCD multijet background is estimated from data
- ☐ The profile likelihood ratio method is used to extract the cross section for both channels
- The main sources of systematic uncertainty is from τ_h identification and misidentification

$$\begin{split} &\sigma_{t\bar{t}}(e\tau_h) = 789 \pm 11\,(\text{stat}) \pm 71\,(\text{syst}) \pm 20\,(\text{lumi})\,\text{pb,}\\ &\sigma_{t\bar{t}}(\mu\tau_h) = 770 \pm 8\,(\text{stat}) \pm 63\,(\text{syst}) \pm 20\,(\text{lumi})\,\text{pb,}\\ &\sigma_{t\bar{t}}(\ell\tau_h) = 781 \pm 7\,(\text{stat}) \pm 62\,(\text{syst}) \pm 20\,(\text{lumi})\,\text{pb.} \end{split}$$

$$R_{\ell\tau_{\rm h}/\ell\ell} = 0.973 \pm 0.009 \, ({\rm stat}) \pm 0.066 \, ({\rm syst}),$$

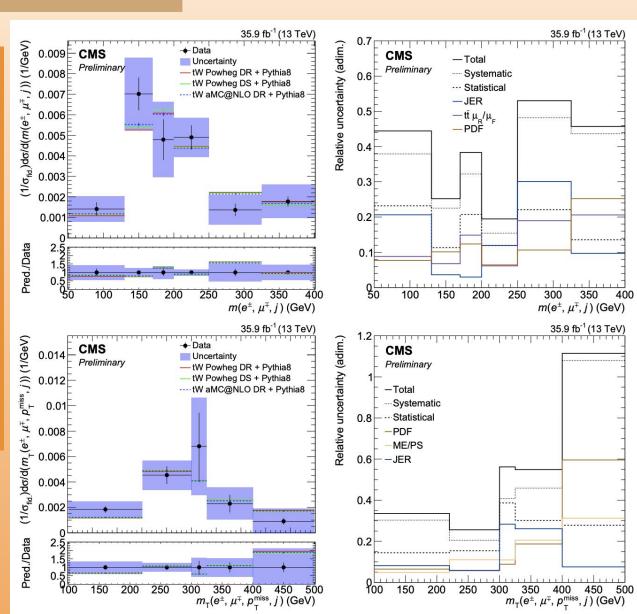

Lepton flavour universality is not observed


Inclusive **tW** cross sections in the ℓ + jets final states

- Single top production is sensitive to the relevant CKM matrix element
- Any deviation from the predicted value may be indicative of physics beyond the SM
- An event-level discriminant based on BDT is used to measure the cross section
- The events are divided in three regions
 - 3 jets, 1 b-tagged (signal region)
 - 2 jets, 1 b-tagged (control region)
 - 4 jets, 1 b-tagged (control region)
- A **simultaneous** fit is performed for the distribution combining 3 categories and 2 channels
- ☐ The dominant source of systematic uncertainty comes from the jet energy correction

Predicted: σ_{SM} : 71.7 ± 1.8 (scale) ± 3.4 (PDF) pb $\sigma = 89 \pm 4$ (stat.) ± 12 (syst.) pb

Predicted and measured cross sections agree with in uncertainties


Differential **tW** cross sections in 2ℓ + jets final states

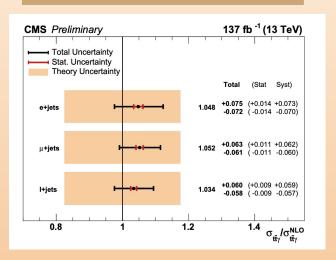
CMS-PAS-TOP-19-003

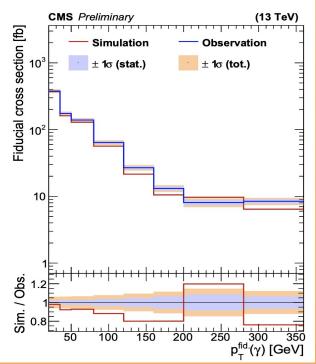
- ☐ Signal extraction is performed by subtracting background, estimated through simulations
- The jet energy correction uncertainties are the dominant ones
- The differential cross section is measured as a function of six variables

(two are shown in this slide, for others refer to CMS-PAS-TOP-19-003)

Predicted and measured cross sections are in agreement within the uncertainties across all bins

Inclusive and differential **tty** cross section in ℓ + jets final states


The tty measurement allows to constrain the ty electroweak coupling


- Photon is classified based on matched generator particle
 - Genuine photon
 - Hadronic photon
 - Misidentified photon
- Different phase space based on object selections and kinematic cuts is exploited to improve the precision
- QCD multijet and electroweak backgrounds are measured from data
- A simultaneous fit over all event categories is performed to extract the cross section
- The dominant uncertainties in the cross section come from Wy normalization and misidentified y estimation

Agreement between the cross sections

- Inclusive -> good
- Differential -> slight mismatch in high pT bins
 Ravindra Kumar Verma

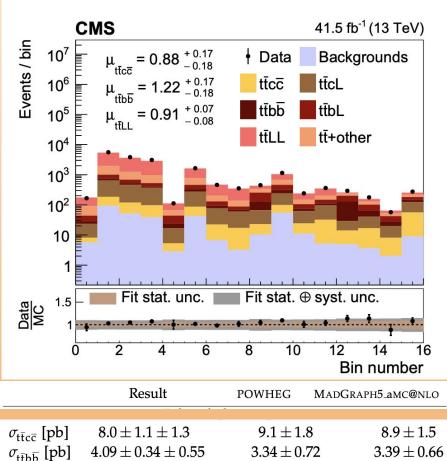
CMS-PAS-TOP-18-010

Inclusive **ttcc** cross section in 2\empty + jets final states

- First measurement of ttcc cross section
- Provide a useful test of NLO QCD calculations
- Event level neural network predicts output probabilities for five output classes

 $P(t\bar{t}c\bar{c})$, $P(t\bar{t}cL)$, $P(t\bar{t}bb)$, $P(t\bar{t}bL)$, and $P(t\bar{t}LL)$

Two variables are derived based on these:

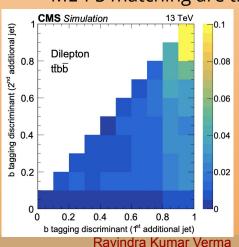

$$\begin{split} & \Delta_b^c = \frac{\textit{P}(t\bar{t}c\bar{c})}{\textit{P}(t\bar{t}c\bar{c}) + \textit{P}(t\bar{t}b\bar{b})}, \\ & \Delta_L^c = \frac{\textit{P}(t\bar{t}c\bar{c})}{\textit{P}(t\bar{t}c\bar{c}) + \textit{P}(t\bar{t}LL)}. \end{split}$$

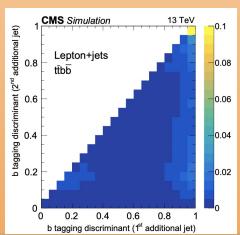
A 1-d histogram is constructed from the 16 bins of the 2-d plane of these two variables

 $\Delta^c_L \otimes \Delta^c_b : [0, 0.45, 0.6, 0.9, 1.0] \otimes [0, 0.3, 0.45, 0.5, 1.0].$

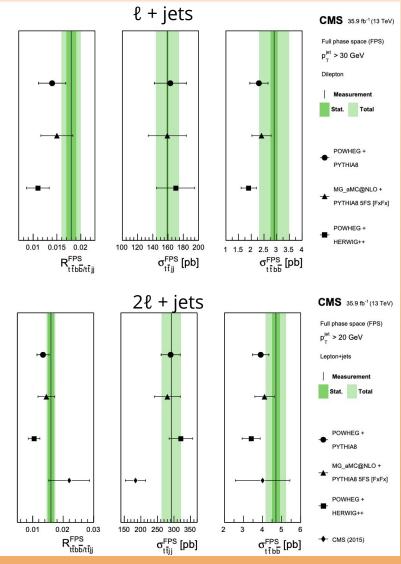
The dominant source of systematic uncertainty comes from the jet energy correction and c-tagging calibration

CMS-PAS-TOP-20-003



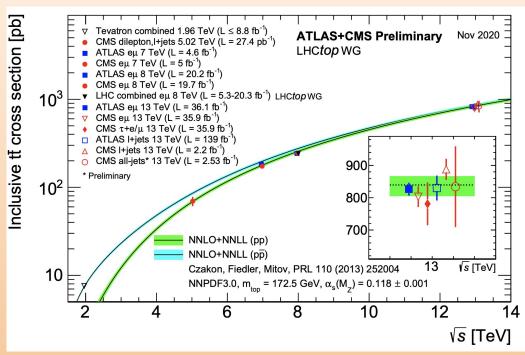

 $231 \pm 5 \pm 21$ $\sigma_{\mathrm{t\bar{t}LL}}$ [pb] 255 ± 43 261 ± 37

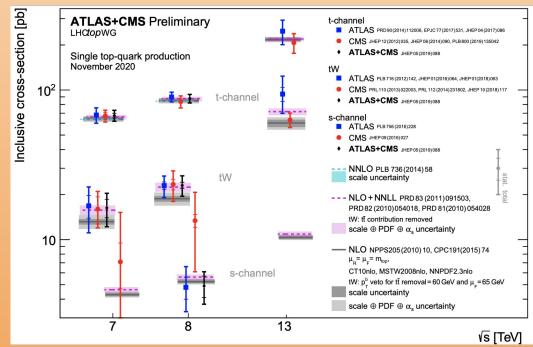
Predicted and measured cross sections are in agreement with in the uncertainties


Inclusive **ttbb** cross sections in ℓ + jets and 2ℓ + jets final states

- ☐ The measurement from single and di-lepton channels have been performed separately
- The cross section for ttbarbar, ttjj final states and the their ratio is obtained in the visible and full phase space (FPS)
- ☐ The fit is performed on the b-tagger discriminant value of the two jets
- A 1-d histogram is constructed from the 10×10 (20×20) bins of the 2-d plane of these two variables for semilepton (dilepton) channel
- ☐ Theoretical uncertainties from the FSR and ME-PS matching are the dominant

CMS-<u>TOP</u>-18-002 J. High Energ. Phys. 2020, 125 (2020)




Good agreement with most of the generators

Florida Institute of Technology

Summary

- Precise measurement of top quark production cross sections help in testing the SM, searching for new physics beyond it, etc
- Latest cross section measurements from CMS is presented from tt, tW, ttγ, ttcc, and ttbb production process
- Inclusive and differential measurements are performed
- The measured cross sections are in agreement with the prediction within the systematic and statistical uncertainties
- The outcome of new measurements are made public
- The ATLAS collaboration has also performed similar measurements

