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Why Heavy-Flavor Jets?

Generally, heavy-flavor jets are an important class of observables in itself

Measuring jet substructure of low-p; heavy-flavor jets is an exciting measurement in physics, since
it can answer

* Change in radiation patterns of heavy-quarks (so-called dead-cone effect)
* Mass dependence of QCD splitting functions

* Mass dependence of jet energy loss in nuclear medium
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Rethinking Heavy-Flavor Jet Tagging
What is a jet?

* Event — a set of particle state vectors
E={rli€f{l,...n}r;= (P, v, vy, Vs, ...)}
Jet — a subset of event identified by the jet clustering algorithm

Without assuming jet substructure, jet is a set of tracks

And we wish to take a set of tracks as an input to the tagging algorithm

In Computer Vision there is an approach that might help us — NetVLAD
* For each set it generates a fixed-size vector that characterizes it

NetVLAD: CNN architecture for weakly supervised place recognition
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Place Localization

Place of interest
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Rethinking Jet Tagging Paradigm
Why is NetVLAD good solution?

* It operates on so-called descriptors (high-level feature vectors coming from the last layer of CNN)

* |t is resistant to noise (due to variable number of objects in place localization)

Thus we introduce particle descriptors

* In jet physics all measured variables are high level and we do not need feature extractor (i.e. CNN)

* Hence, we can assume that our state vectors are descriptors



Dataset Generation

Pythia8.235 was used to generate data

* 2 datasets are generated:
* Weighted - that respects realistic jet flavor ratio
* Balanced — 50% udsg-jet, 25% c-jet and 25% b-jet

* We separate datasets into two classes — udsg vs HF jets — which is better suited for RHIC physics

* The fast-sim approach is used to simulate finite resolutions:
* Gaussian smearing of pr is used in order to account for finite TPC resolution
* Resolution of the STAR HFT is used to smear vertex information



Input Features

Type Inputs Definition
Tracking PT Transverse momentum in the x — y plane
n pseudorapidity
1) azimuthal angle
track
Fragmentation Z momentum fraction £Z =
Pr
AR distance between track and jet axis \/ A@? + An?
ZAR? higher level feature
Secondary Vertex | DCAy, Distance of closest approach in x — y/
DCA, | Distance between primary and secondary vertex in the z axis




Input Feature Distributions for 20-25 GeV/c Jets
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Model Architecture

Symbolically the whole model can be described as
JetVLAD = NetVLAD(N,:) — DXx|[ResidualBlock] — SoftMax

* Whole network has only two free hyperparameters — number of NetVLAD clusters N, and depth D
* We use fully-connected ResNet-style blocks, since they lead to faster optimization
* 50% drop-out is also applied to increase model generalization

We optimize model by SGD with cosine-annealed learning rate



Performance Metrics

Physics Machine Learning Definition
Tagging Efficiency True Positive Rate (TPR)/Recall TPR = %P
Misidentification Prob. False Positive Rate (FPR) FPR = ’;V—P
. . _ l
Background Rejection = W’IRP
Signal Purity Precision PREC =
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Finding Optimal Input Variables

The following tagger versions are constructed:
* Vertexing - (DCAZ, DCAXy)

* Tracking - (p7, 7, @)

* Tracking + Fragmentation - (p7,1, @, z, AR, z(AR)?)

* Tracking + Vertexing - (pT, n, o, DCA,, DCAX_V) - the optimal choice
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Finding Optimal Hyperparameters

The optimal hyperparameters were found by running random grid search on depth D and number
of clusters N. and we obtain N, =33 and D = 4

* It is important then to estimate sensitivity of hyperparameters with respect to model performance

* We do so by running hyperparameter sensitivity scan — fixing one and varying another
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Jet p+ Dependent Rejection and Purity Graphs
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How is Pileup Influencing the Model?
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Signal (Heavy-Flavor Jets) Purity

How is Tracking Efficiency Influencing the Model?
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How is Thermal Backgrdoun Influencing the Model?
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Conclusions

* We propose a novel set-based tagging method based on the NetVLAD layer

* The model allows to identify heavy-flavor jets down to the low-p; at RHIC energies
* Purity of ~80%, Efficiency of ~80% and rejection factor of ~200 is achievable for low-p jet
* This enables searches for signatures of heavy-flavor jet radiation patterns

* The NetVLAD layer is a general aggregation layer with many possible applications such as:
* Jet similarity search
« v/ discrimination

* We are investigating self-supervised and unsupervised learning applications of JetVLAD
* Consistency cycles

* Contrastive learning
* Goal — to build multimodal jet-event feature space for fast similarity search of events/jets



https://github.com/ponimatkin/NetVLAD-tagger-pytorch

Thank you for your attention!



Backup: Performance of Classical Methods

b-jet purity
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Backup: NetVLAD Principle
NetVLAD: Trainable pooling layer

Decouple assignment (w, b,) from anchor point ¢,
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