Measurement of Transverse Single Spin Asymmetry at Forward Rapidity by the STAR Experiment in p+p Collisions at \sqrt{s} = 200 and 500 GeV

Zhanwen Zhu, for the STAR Collaboration
Shandong University/Brookhaven National Laboratory/
University of Chinese Academy of Sciences

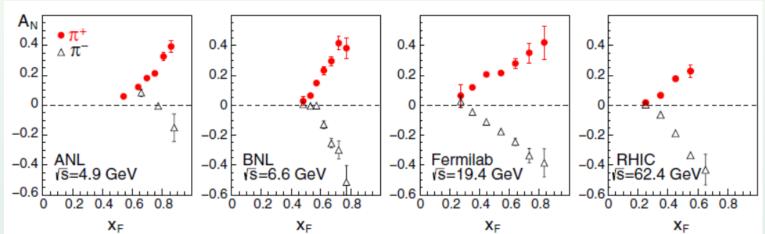
XXVIII International Workshop on Deep-Inelastic Scattering

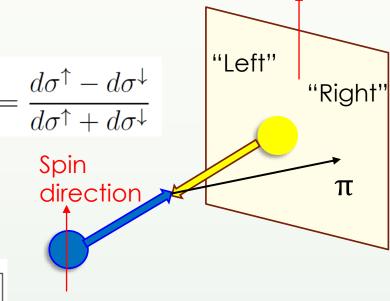
Outline

- Motivation
- ☐ Experiment setup
- ☐ Analysis:

Dataset

Asymmetry calculation


Systematic uncertainty


- ☐ Result and discussion
- ☐ Summary

Preprint available in arXiv:2012.11428
Accepted for publication in PRD

Motivation

- lacktriangle Transverse single spin asymmetry(TSSA/ A_N)
- The large forward TSSA was first found in 1970s and can not be explained by LO QCD calculation

Aidala et al. Rev. Mod. Phys., 85,655(2013)

► A lot of work was done to explore the underlying mechanisms in the past few decades

Motivation

- ➤ Transverse momentum dependent PDF(TMD)
- Collinear twist-3 factorization

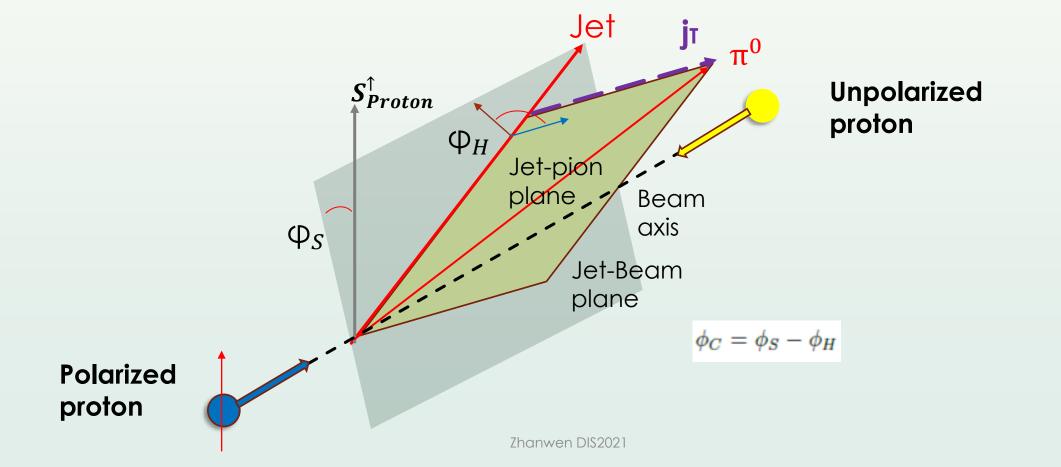
These two models have different energy scale requirements, but they share some similarities

- A decomposition of the contributions to TMD
 - Initial state effect: asymmetry originates from PDF

$$\hat{f}_{q/p^{\dagger}}\left(x,\boldsymbol{k}_{\perp}\right)=f_{q/p}\left(x,k_{\perp}\right)+\frac{1}{2}\Delta^{N}f_{q/p^{\dagger}}\left(x,k_{\perp}\right)\boldsymbol{S}\cdot\left(\hat{\boldsymbol{P}}\times\hat{\boldsymbol{k}}_{\perp}\right)$$
 Sivers function

► Final state effect: asymmetry originates from fragmentation

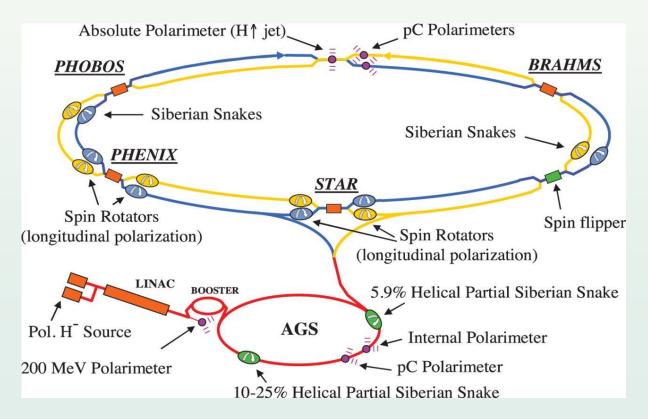
Transversity \otimes Collins function

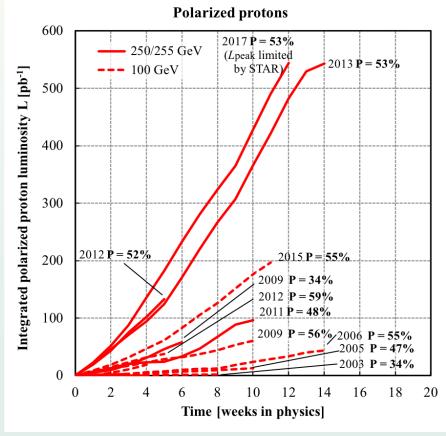

Both effects can contribute to the TSSA.

• Experimental data are very important in validating the factorization and constraining the PDFs

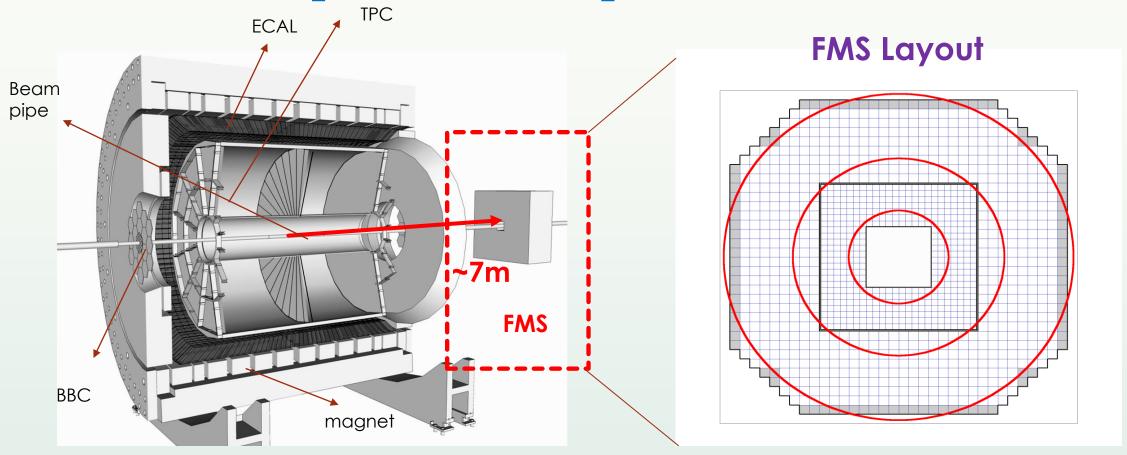
Motivation

Jet TSSA – sensitive to the initial state effect.


Collins asymmetry – sensitive to the final state effect.



Experiment Setup- RHIC & STAR


■ The Relativistic Heavy Ion Collider at BNL provides unique opportunity to study spin physics because it is the world's

only polarized proton-proton collider.

Experiment Setup- STAR & FMS

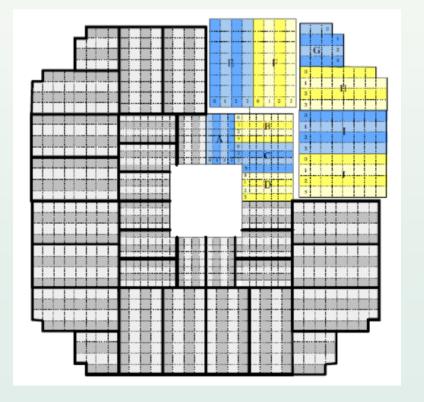
- EM-Calorimeter made of 1000+ lead glass cells
- ☐ Large pseudo-rapidity range in the forward direction 2.6-4.1
- ☐ Two cell types

Analysis- Dataset

Dataset:

Transversely polarized proton-proton collisions

Year	Energy	Events
2011	500 GeV	165M
2015	200 GeV	569M

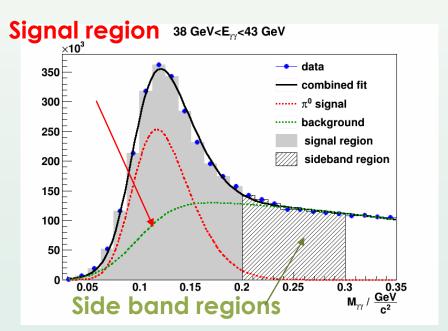

■ Beam polarization:

52 / 57% (500 / 200 GeV)

■ Trigger:

FMS-Board-sum and FMS-Jet-patch, both based on energy deposition in a defined region of the FMS

Trigger logic



Analysis- Asymmetry calculation

The **luminosity** and **detector efficiency** can be difficult to determine.

$$N^{\uparrow}(\phi) = \epsilon \mathcal{L}^{\uparrow} \sigma^{\uparrow}$$
$$= \epsilon \mathcal{L}^{\uparrow} (1 + pol * A_N \cos \phi) \ \sigma$$

"Cross-ratio" method help eliminate those factors

STAR, arXiv:2012.11428

$$pol \cdot A_N^{\, \mathrm{raw}} \; \cos \phi = \frac{\sqrt{N^{\uparrow}(\phi) N^{\downarrow}(\phi + \pi)} - \sqrt{N^{\downarrow}(\phi) N^{\uparrow}(\phi + \pi)}}{\sqrt{N^{\uparrow}(\phi) N^{\downarrow}(\phi + \pi)} + \sqrt{N^{\downarrow}(\phi) N^{\uparrow}(\phi + \pi)}}$$

Background subtraction

The fraction comes from the fitting of the mass spectrum Signal/background shapes are from simulation

$$A_N^{\text{raw}_{sig}} = f_{\text{sig}_{sig}} * A_N^{\pi^0} + (1 - f_{\text{sig}_{sig}}) * A_N^{bkg}$$

$$A_N^{\text{raw}_{sb}} = f_{\text{sig}_{sb}} * A_N^{\pi^0} + (1 - f_{sig_{sb}}) * A_N^{bkg}$$

Analysis- Collins Asymmetry

$$\pi^0$$
 /EM-jet TSSA

$$N^{\uparrow}(\phi) = \epsilon \mathcal{L}^{\uparrow} \sigma^{\uparrow}$$
$$= \epsilon \mathcal{L}^{\uparrow} (1 + pol * A_N \cos \phi) \ \sigma$$

- > Azimuthal angle
- \triangleright All π^0 candidates
- \triangleright Background subtraction for π^0

VS.

Collins asymmetry

$$N^{\uparrow}(\phi_c) = \epsilon \mathcal{L}^{\uparrow} \sigma^{\uparrow}$$
$$= \epsilon \mathcal{L}^{\uparrow} (1 + pol * A_{UT} \sin \phi_c) \ \sigma$$

- Collins angle
- \triangleright Only π^0 within a jet
- ➤ No background subtraction

For jet reconstruction: For π^0 in a jet :

- Anti-kT R=0.7
- $p_T > 2 \text{ GeV}$

•
$$\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$$

> 0.04

The jet is only "electromagnetic jet"

Analysis- Systematic uncertainty

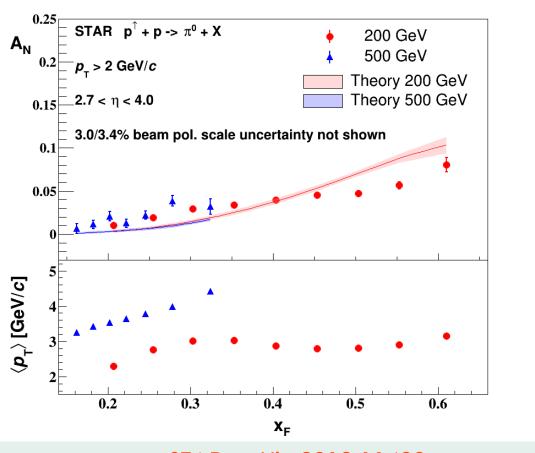
Uncertainties:

- \blacksquare π^0 /jet energy scale uncertainty (x_F and z_{em}): calibration, non-linear response, radiation damage
- \blacksquare π^0 TSSA: background subtraction
- Beam polarization

Analysis	Uncertainties types (Run-11/Run15)		
π^0 TSSA	x_F	Asymmetry	Beam polarization
	4.4%/3.0%	5.8%	3.4%/3.0%
Jet TSSA	x_F	Asymmetry	Beam polarization
	7.8%/8.5%	_	3.4%/3.0%
Collins Asymmetry	z_{em}	Asymmetry	Beam polarization
	8.9%/9.0%	_	3.4%/3.0%

Corrections:

- Jet TSSA: background correction, underlying event correction, correction to particle level
- Collins asymmetry: Collins angle resolution correction

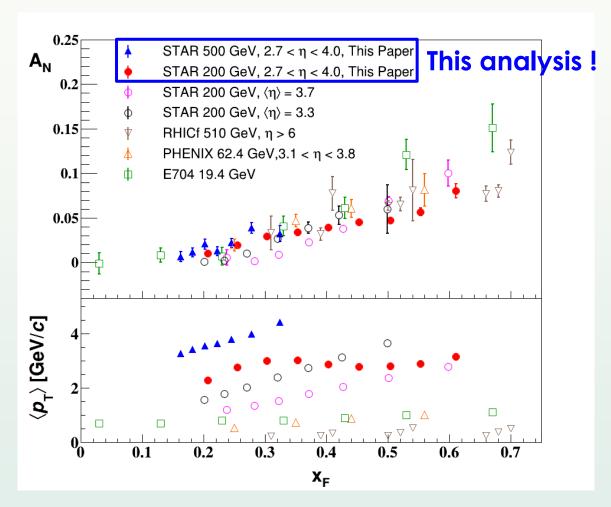

Analysis- Observables

All measurements are done in 200 GeV (2015) and 500 GeV (2011) p+p collision

- 1) π^0 TSSA: **initial+final** state effect TSSA as a function of Feynman-x (x_F) ; $x_F = \frac{E_L^{\pi^0}}{E_{beam}}$ TSSA as a function of p_T ; Isolated/non-isolated π^0 A_N as a function of Feynman-x
- 2) Jet TSSA: initial state effect
- 3) Collins Asymmetry : **final** state effect

The jets used in 2) 3) are electromagnetic jet (EM-jet)

Result- π^0 TSSA vs. x_F


Theory curves: J. Cammarota, et al. Phys.Rev.D.102.054002

$$x_F = \frac{E_L^{\pi^0}}{E_{beam}}$$

STAR, arXiv:2012.11428

- \square The π^0 TSSA increases with x_F .
- ☐ Consistent between 200 GeV and 500 GeV. Energy dependence is weak. 13

Comparison to previous measurements

- Weak collision energy dependence of the π^0 TSSA from 19.4 to 500 GeV
- \square Comparison to the previous Forward Pion Detector results at STAR shows larger TSSA in current measurement, which can be explained by the higher average p_T

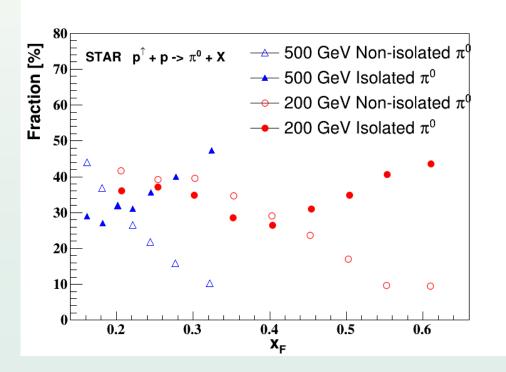
STAR, arXiv:2012.11428

Result- π^0 TSSA vs. p_T

Theory curves:

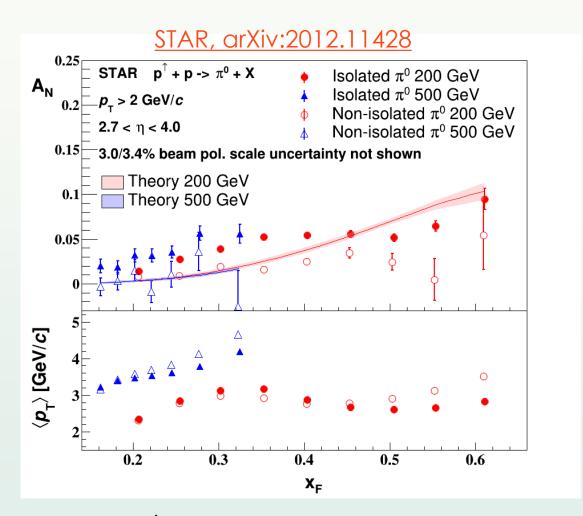
J. Cammarota, et al.

Phys.Rev.D.102.054002


STAR, arXiv:2012.11428

- \square Overlapping x_F region between 200 GeV and 500 GeV results.
- ☐ The 200 GeV data shows significant increase of TSSA below 3 GeV.
- \square The 500 GeV data flattens over the p_T range.

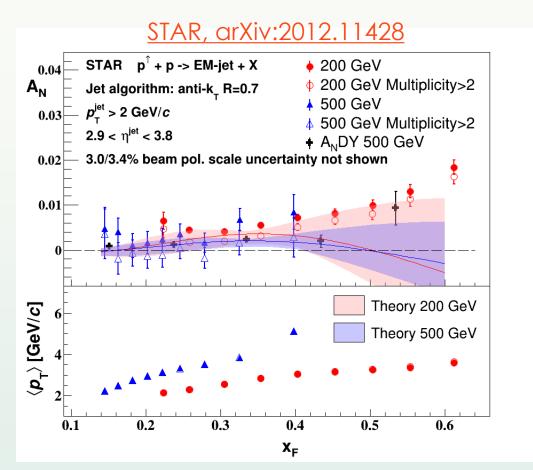
Result- isolated π^0 TSSA


- \square Motivation: investigate the π^0 event topology (π^0 with no other particle around)
- \Box Method: in a surrounding area (in η-φ space, R=0.7), if the π^0 takes most of the total energy, it is defined as isolated. The cut is placed at an energy fraction z=0.9 and 0.98

Fractions of different types of π^0 event in the overall sample

STAR, arXiv:2012.11428

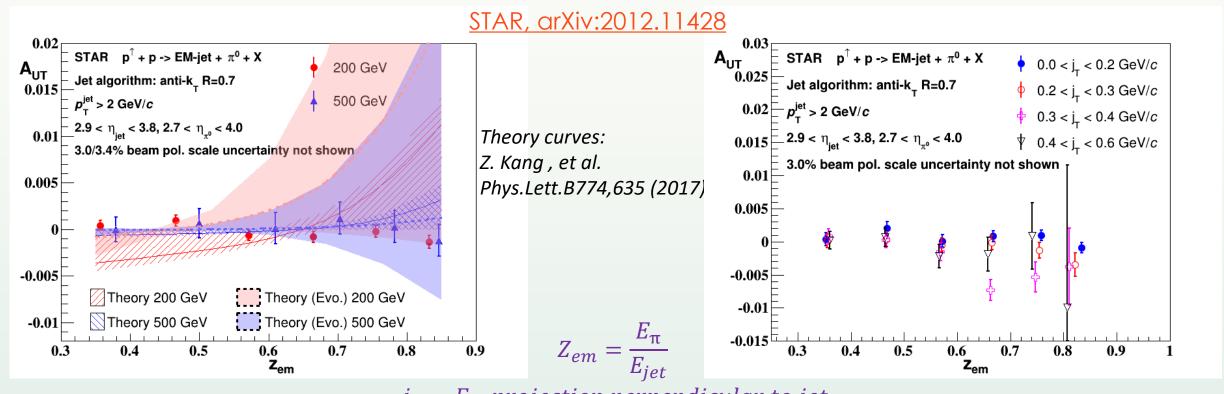
Result- isolated π^0 TSSA


- ☐ The TSSAs of the two types of π^0 are significantly different. Isolated π^0 TSSA dominates.
- \Box The physical origin and mechanism accounting for higher TSSA of isolated π^0 is not known yet implication of a third origin?

Theory curves:

J. Cammarota, et al.

Phys.Rev.D.102.054002


Result- jet TSSA

- The jet TSSA is a few times smaller than the π^0 TSSA in the same x_F bin.
- ☐ Jets with minimum photon multiplicity requirement have significantly smaller TSSA.
- ☐ The A_NDY result shows the TSSA of full jets, and is consistent with the result of the EM-jet having at least 3 photons.

Theory curves: L. Gamberg, Z. Kang, A. Prokudin, Phys.Rev.Lett.110,232301

Result- Collins Asymmetry for π^0 in a jet

 $j_T = E_{\pi}$ projection perpendicular to jet

- ☐ The Collins asymmetries are very small at both energies
- ☐ This reflects the cancellation of the Collins effect of the u/d quark
- ☐ Weak jt dependence is observed

Summary

- □ We measured the π^0 /jet TSSA and Collins asymmetry using the FMS in STAR 200 and 500 GeV p-p data
- \square The π^0 TSSA results show weak energy dependence through 20 to 500 GeV
- We investigated the π^0 event topology. The isolated π^0 TSSAs are significantly larger than the non-isolated π^0 , the mechanism of which remains unclear. It offers new perspectives to the origin of TSSA
- ☐ We measured the jet TSSAs and Collins asymmetry to separate contributions from initial and final state effects, both of which are small
- ☐ These measurements provide important inputs for further investigation for TSSA