Recent observation and measurements of vector-boson fusion and scattering with ATLAS

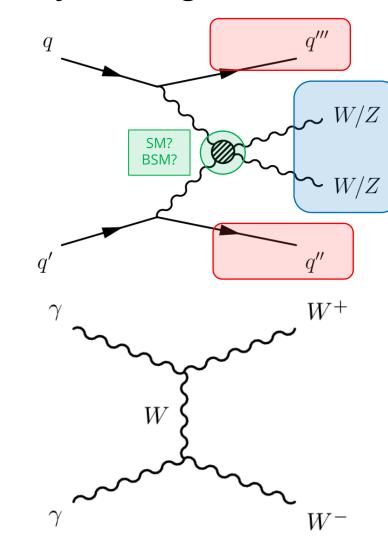
Max Goblirsch-Kolb (Brandeis), on behalf of the ATLAS Collaboration

XXVIII International Workshop on Deep-Inelastic Scattering and Related Subjects
Stony Brook University / The Virtual World
April 15, 2021

VBF and VBS at the LHC

One of the main physics goals of the LHC: Study nature of EW symmetry breaking

- One avenue: Direct interaction of gauge fields with the Higgs field
- In addition: Self-interaction of gauge bosons at high energy scales
 - > **VBF** and **VBS** processes


At the LHC:

"Classical" search topology involves vector bosons radiated off **initial state partons**

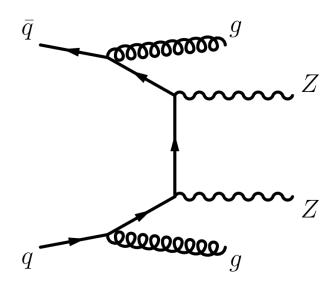
Signature: Two high-energy (forward) jets and product of gauge boson self interaction

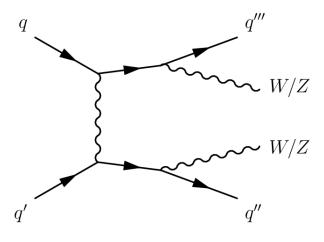
Interesting special case:

Photon-Photon scattering – can leave initial state protons (or ions) **intact**

Experimental challenges

Even at LHC luminosities, VBF/VBS is a rare process


• Typically, $O(\alpha_{EW}^{3-4})$ x decay BR


Measurement requires enrichment against other **SM processes** (backgrounds)

- Vast multijet background: Prefer leptonic or semileptonic final states
- Competition with strong (di)boson production associated with jets
 - > Jets either from higher-order QCD in hard scatter, or from **pileup** activity
- For dedicated VBS/VBF measurements: Embedded with **other EW production modes**
- Typically constrain backgrounds using collision data to reduce modelling uncertainties

Both low rates and enrichment against background require large dataset

Major progress with full run-2 dataset

This talk: Walk through select recent highlights in ATLAS VBF/VBS results + glimpse at **photon-scattering.**

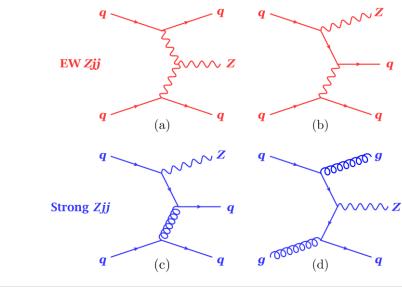
Electroweak Z+jj production in ATLAS

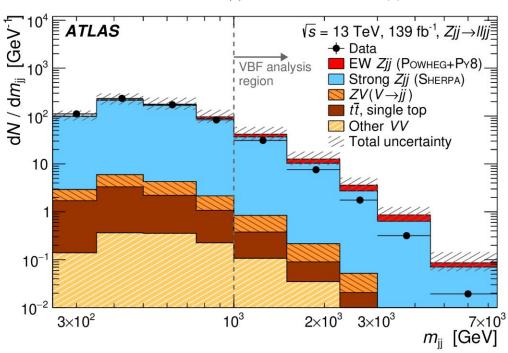
Differential measurement of Z+jj production with Z->ee/μμ

- Sensitive to vector boson fusion in VV->Z
- Measure both inclusive and electroweak cross-sections.

Both strong and electroweak components **challenging** to model in simulation

• Differential measurements can act as guideline for future improvements


Measurement performed in **EW-enriched phase-space**


- Presence of **Z->II** signature very effective background suppression
- Requirement of two high-Et jets with large rapidity gap and high dijet mass
- Z system required to be **central** relative to dijets
- Rejection of pileup activity by requiring transverse momentum balance between dijet and Z systems

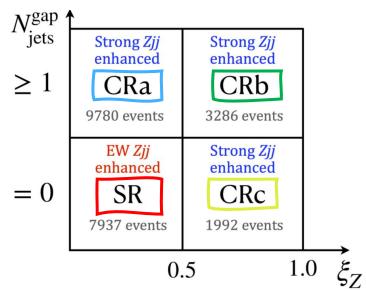
Resulting data sample:

Highly **pure** in signal, dominant residual background from **diboson** processes with V->jj and **top pair** production

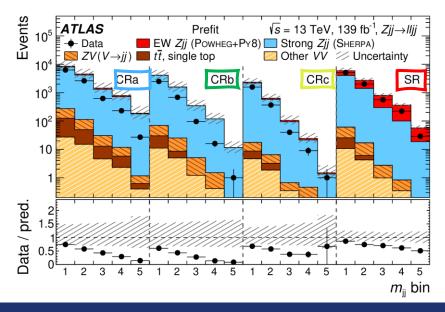
Eur. Phys. J. C 81 (2021) 163

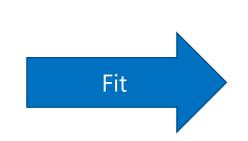
Electroweak Z+jj production in ATLAS

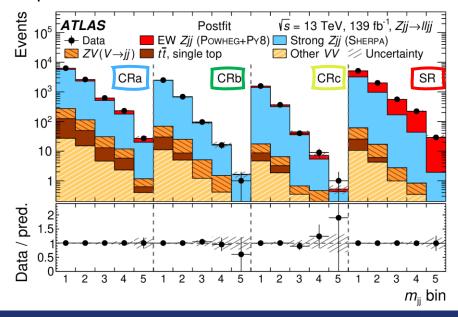
Eur. Phys. J. C 81 (2021) 163


Measure **four observables** differentially:

- Dijet mass m_{jj}
- Dijet rapidity gap |Δy_{ii}|


- Z system p_T p_{T,II}
- Signed dijet azimuthal angle Δφ_{ii}

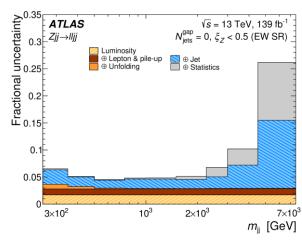

Extraction of **inclusive** signal yield by (MC) by **subtraction** of remaining backgrounds

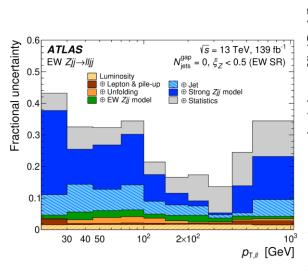

Extraction of **electroweak** signal yield: **Data-driven** subtraction of strong component using **simultaneous fit** across SR and four control regions

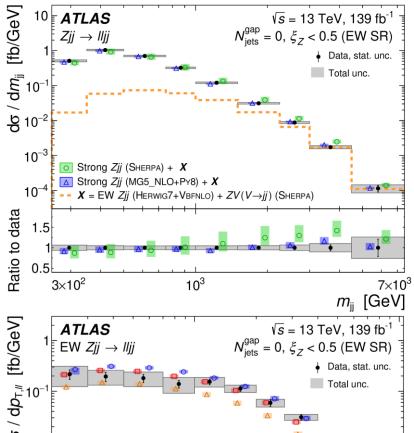
In both cases: Cross-section measurement by unfolding measured yield to particle level

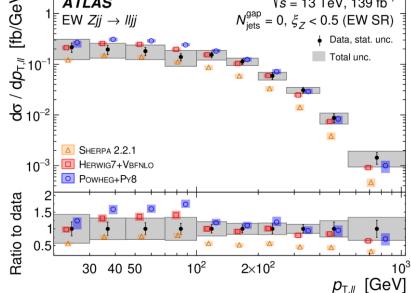
Electroweak Z+jj production in ATLAS

Eur. Phys. J. C 81 (2021) 163


Uncertainties in cross-section driven by


- data statistics
- Strong ZZjj signal modelling (even with data-driven subtraction)
- Experimental jet uncertainties


Resulting cross-sections challenge theory precision


- Can be linked to choices in generator settings used for predictions
- > Allow refinement of future predictions

Results allow to set limits on **BSM** contributions in the framework of **Effective field theory** (EFT)

Observation of electroweak ZZ+jj

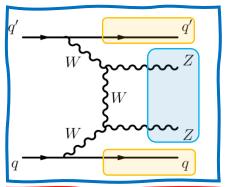
One of the **rarest** channels to observe vector boson **scattering**:

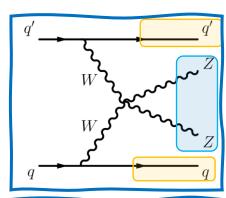
Electroweak ZZ production

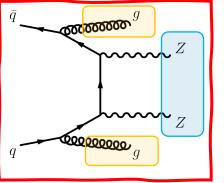
- Unique sensitivity to anomalous quartic 4-Z coupling
- Challenging: Separation from strong production mode

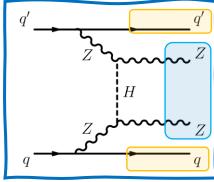
Combine 4l and 2l2v decay channels to establish initial observation

Measurement phase-space designed to maximize sensitivity while maintaining acceptable yield


- 4l or 2l+MET system consistent with ZZ topology
- Dijet system to select EW topology opposite rapidity and high dijet mass


Resulting region **highly pure** in ZZjj for 4l


> Remaining task: Enrichment of EW component against strong


For Ilvv, two main non-ZZjj background sources:

- **WZ+jj**, with one lepton outside detector acceptance
- **top pair** production and **WWjj** non-resonant pairs entering Z window in selection
- both **normalized to data** in dedicated **control regions** (DF pairs and 3l)

Process	$\ell\ell\ell\ell jj$	$\ell\ell u u jj$
EW ZZjj	20.6 ± 2.5	12.3 ± 0.7
QCD ZZjj	77 ± 25	17.2 ± 3.5
QCD ggZZjj	13.1 ± 4.4	3.5 ± 1.1
Non-resonant- $\ell\ell$	_	21.4 ± 4.8
WZ	_	22.8 ± 1.1
Others	3.2 ± 2.1	1.2 ± 0.9
Total	114 ± 26	78.4 ± 6.2
Data	127	82

Observation of electroweak ZZ+jj

Final enrichment of signal against backgrounds: **multivariate discriminants (MD)**

Exploit lepton and jet kinematics

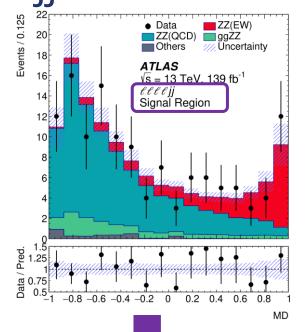
Uncertainties driven by

- Statistics dominant
- · Lepton efficiencies, signal and background modelling

Final signal yield extracted using combined fit

- 4l SR, 4l QCD CR and 2l2v SR using the MD as observable
 - ➤ Result in a total signal strength **compatible** with the **SM prediction**

 \triangleright Rejection of the no-EW hypothesis at 5.5 σ – first **observation** of this process

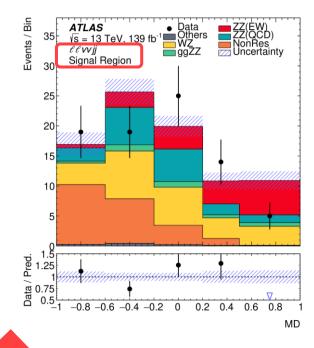

Combined

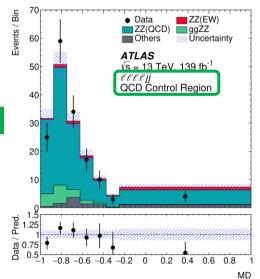
or this process $\frac{\mu_{\rm EW}}{\mu_{\rm EW}} \frac{\mu_{\rm CD}^{\ell\ell\ell\ell jj}}{\mu_{\rm QCD}}$ act **fiducial cross-sections** $\frac{\ell\ell\ell\ell jj}{\ell\ell\ell jj} \frac{1.5 \pm 0.4}{0.7 \pm 0.7} \frac{0.95 \pm 0.22}{0.7 \pm 0.7}$

Extract **fiducial cross-sections** by correcting for detector effects

	Measured fiducial σ [fb]	Predicted fiducial σ [fb]
$\ell\ell\ell\ell jj$	$1.27 \pm 0.12 (\mathrm{stat}) \pm 0.02 (\mathrm{theo}) \pm 0.07 (\mathrm{exp}) \pm 0.01 (\mathrm{bkg}) \pm 0.03 (\mathrm{lumi})$	$1.14 \pm 0.04 (\mathrm{stat}) \pm 0.20 (\mathrm{theo})$
$\ell\ell u u jj$	$1.22 \pm 0.30 \text{(stat)} \pm 0.04 \text{(theo)} \pm 0.06 \text{(exp)} \pm 0.16 \text{(bkg)} \pm 0.03 \text{(lumi)}$	$1.07 \pm 0.01(\text{stat}) \pm 0.12(\text{theo})$

 1.35 ± 0.34




Significance Obs. (Exp.)

 $5.5 (3.9) \sigma$

 $1.2 (1.8) \sigma$

 $5.5 (4.3) \sigma$

 0.96 ± 0.22

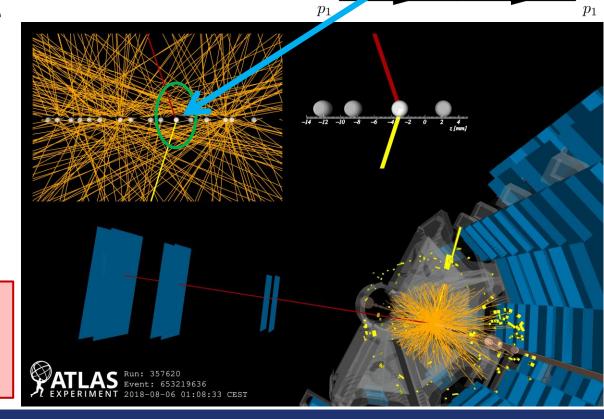
Observation of photon-induced W pair production

Photon-Photon scattering: Can leave initial protons intact

Unique topology: Initial protons either escape intact or fragment outside tracking detector acceptance

> Signature of W decay products in **isolation of other charged-particle activity**

Measurement exploits **leptonic WW** topology – two opposite-charge leptons


Strategy based on **track counting**:

Count **additional charged tracks n**_{trk} within **1mm** of the lepton pair vertex

 \triangleright Select **signal** by **vetoing** additional tracks ($n_{trk} = 0$)

Not used here, but interesting: *Proton-tagging* in ATLAS See Talk by <u>Jesse Liu</u> yesterday *Small-x*, *Diffraction and Vector Mesons track* Also: Talk by <u>Maciej Trzebinski</u> later today

And of course: Discussion in previous talk by Christophe Royon!

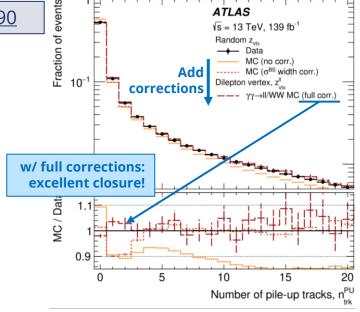
Phys. Lett. B 816 (2021) 136190

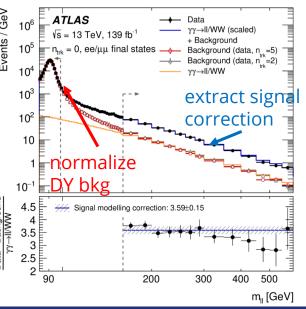
Observation of photon-induced W pair production

Phys. Lett. B 816 (2021) 136190

Analysis relies on accurate modelling of track density around dilepton vertex

- → Requires **careful calibration** of predicted track multiplicity
 - In **pileup** interactions affects **signal** efficiency
 - In the **underlying event** affects **background** prediction


Correct MC using collision data


Additional data-driven correction to **signal prediction**: Account for **rescattering** and **single/double diffractive** events (simulate only fully elastic)

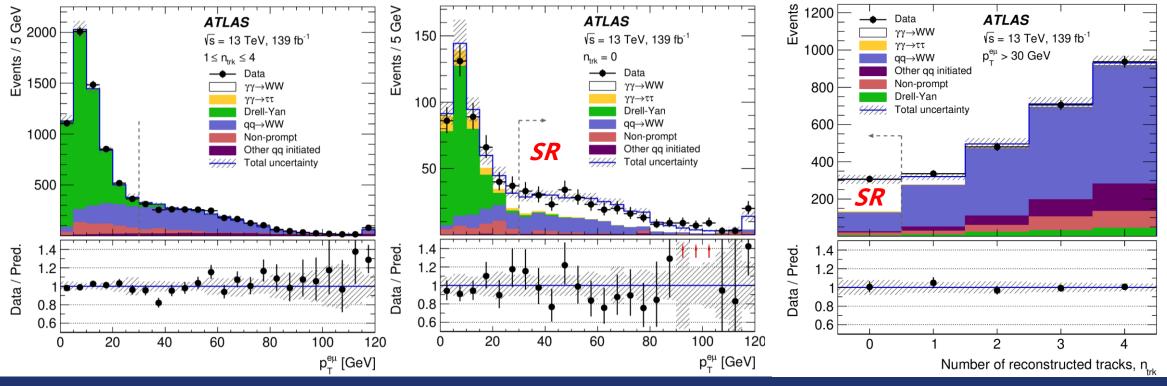
- Exploit **exclusive yy→II** events to extract correction factor
- Additional, data-driven estimate of W+jets events with non-prompt leptons (background)

Main uncertainties:

- Track reconstruction efficiency: Negligible for signal, 5-6% for background
- Non-prompt leptons: Driven by statistics in control region → dominant source
- Signal and background (in particular WW) modelling

Observation of photon-induced W pair production

• Final **signal extraction** using different-flavour **e** μ events: **Simultaneous fit**


Phys. Lett. B 816 (2021) 136190

- **Signal Region:** ntrk =0, $p_{T,e\mu} > 30 \text{ GeV}$
- **Sidebands** in ntrk and $p_{T,eu}$: Constrain background

Result:

Reject background-only hypothesis at 8.4σ , signal strength (1.33) compatible with SM prediction

Resulting **fiducial cross-section** of 3.13 ± 0.31 (stat.) ± 0.28 (syst.) fb agrees with predictions after accounting for dissociative contributions and survival factor

Measurement of light-by-light scattering in Pb+Pb collisions

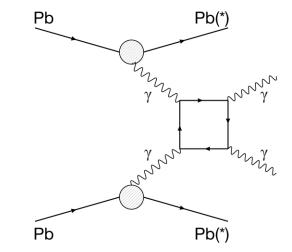
Strong electromagnetic fields in heavy ion collisions allow to probe light-by-light scattering

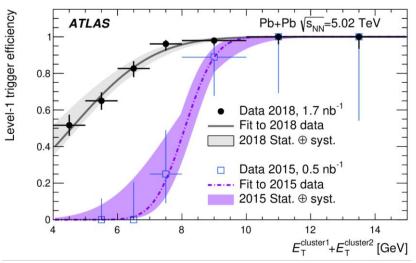
JHEP 03 (2021) 243

Striking signature: Two soft photons, no other activity

• In particular, no charged tracks!

Challenging to **trigger** – dedicated trigger chain requiring low calorimetric deposits while vetoing activity in remaining detector


Phase-space defined on top of dedicated trigger:


Look for **two soft photons** (system close to rest), **no charged tracks**

Main **backgrounds**:

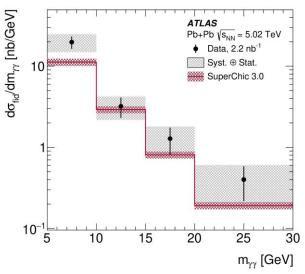
- exclusive ee production, with e misidentified as photons (missed tracks)
 - estimated using data, extrapolated from control region with 1 or 2 pixel tracklets
- central exclusive production (CEP) gg→γγ
 - estimated using **MC simulation**, normalized using **data** in a high-acoplanarity sideband

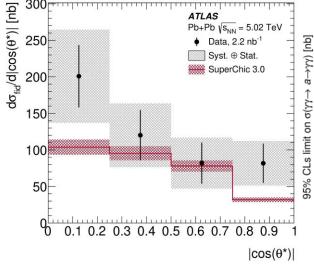
Both trigger and soft photon reconstruction require careful calibration

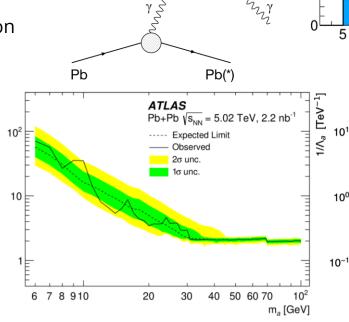
Measurement of light-by-light scattering in Pb+Pb collisions

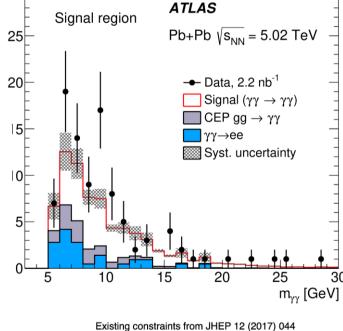
Uncertainties dominated by **statistics**, also **background** and **trigger/photon calibration**

Extract **fiducial cross-section** as 120 ±17(stat.) ±13(syst.) ±4 (lumi) nb

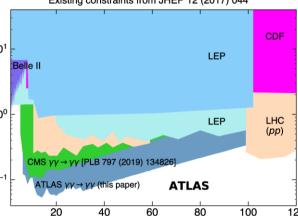

• factor 1.5 ±0.3 above current predictions


Also measure differential cross-sections


- via Bayesian iterative unfolding with one iteration
- All measurements still statistically limited


Use results to place limit on **axion-like particle** production

Competitive with strongest-existing bounds in 6-100 GeV region



IHEP 03 (2021) 243

Events / GeV

Pb(*)

m_a [GeV]

Summary

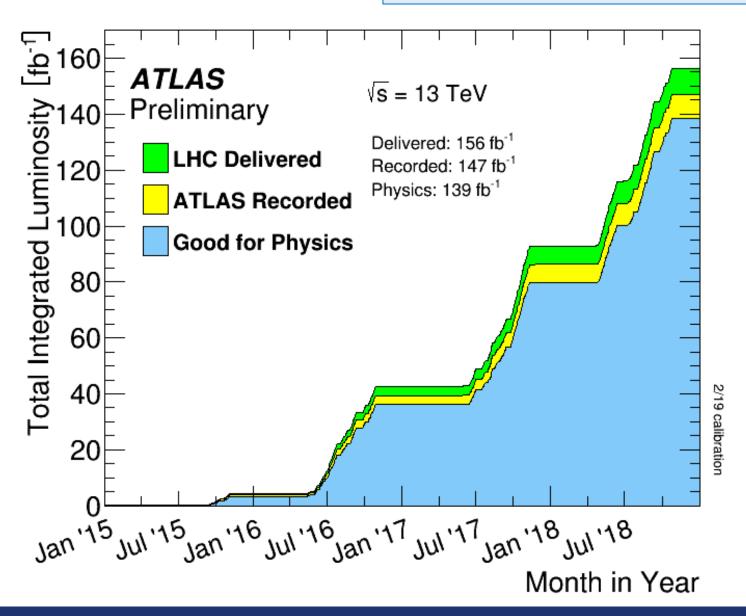
The full LHC Run-2 dataset has unlocked **unprecedented potential** for precise probes of vector boson self-interaction

- Precision tests of the electroweak symmetry breaking mechanism
- Sensitivity to signs of BSM physics
- Typically rare processes, profit from enormous dataset available

Wide set of **measurements** in ATLAS, stretching across pp and HI programs

- "Classical" measurements exploiting the VBF/VBS dijet signature, but also...
- ... creative ideas making the most of the detector!
 - Track vetoes, forward proton tagging, dedicated trigger chains, soft object reconstruction, ...
- Experimentally challenging, but invaluable results

Most measurements still statistically limited


- > Potential for further improvement during Runs 3, 4 and beyond
- > High-precision VBF/VBS measurements are one of the main targets of the HL-LHC programme!

Thank you for your attention!

Backup

Run-2 ATLAS dataset

ATLAS Public Luminosity results

EW Z+jj measurement – phase-space and event selection

Dressed muons	$p_{\rm T} > 25$ GeV and $ \eta < 2.4$	
Dressed electrons	electrons $p_T > 25$ GeV and $ \eta < 2.37$ (excluding $1.37 < \eta < 1.52$)	
Jets	Jets $p_T > 25$ GeV and $ y < 4.4$	
VBF topology	$N_{\ell} = 2$ (same flavour, opposite charge), $m_{\ell\ell} \in (81, 101)$ GeV	
	$\Delta R_{\min}(\ell_1, j) > 0.4, \ \Delta R_{\min}(\ell_2, j) > 0.4$	
	$N_{\text{jets}} \ge 2, \ p_{\text{T}}^{j1} > 85 \text{ GeV}, \ p_{\text{T}}^{j2} > 80 \text{ GeV}$	
	$p_{T,\ell\ell} > 20 \text{ GeV}, \ p_T^{\text{bal}} < 0.15$	
	$ m_{jj} > 1000 \text{ GeV}, \Delta y_{jj} > 2, \xi_Z < 1$	
CRa	VBF topology $\oplus N_{\text{jets}}^{\text{gap}} \ge 1$ and $\xi_Z < 0.5$	
CRb	VBF topology $\oplus N_{\text{jets}}^{\text{gap}} \ge 1$ and $\xi_Z > 0.5$	
CRc	VBF topology $\oplus N_{\text{jets}}^{\text{gap}} = 0$ and $\xi_Z > 0.5$	
SR	VBF topology $\oplus N_{\text{jets}}^{\text{gap}} = 0$ and $\xi_Z < 0.5$	

EW Z+jj measurement – signal modelling

Two main samples for QCD Z+jj:

- Sherpa 2.2.1, NLO (0-2 partons) / LO (3,4 partons), normalized to NNLO Z XS
- MG5_aMC@NLO NLO (0-2p), FxFx merging, normalized to (same) NNLO Z XS

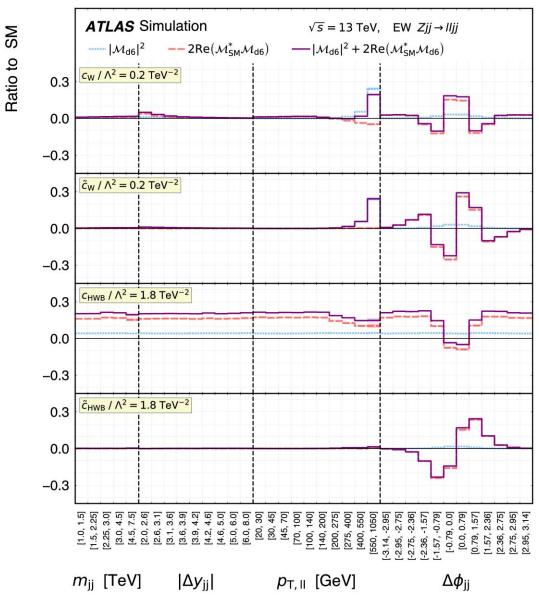
Three main samples for EW Z+jj:

- POWHEG-BOX v1 + Pythia8, NLO QCD
- HERWIG 7.1.5 + VBFNLO, NLO QCD
- Sherpa 2.2.1 LO QCD for 0-2 add. partons

VBF approximation – enforce t-chan color singlet exchange

Process	Generator	ME accuracy	PDF	Shower and hadronisation	Parameter set
EW Zjj	Powheg-Box v1	NLO	CT10nlo	Pythia8 + EvtGen	AZNLO
	Herwig7 + Vbfnlo	NLO	MMHT2014lo	Herwig7 + EvtGen	default
	Sherpa 2.2.1	LO (2-4j)	NNPDF3.0nnlo	Sherpa	default
Strong Zjj	Sherpa 2.2.1	NLO (0-2j), LO (3-4j)	NNPDF3.0nnlo	Sherpa	default
	MadGraph5_aMC@NLO	NLO (0-2j), LO (3-4j)	NNPDF2.3nlo	Pythia8 + EvtGen	A14
	MadGraph5	LO (0-4j)	NNPDF3.0lo	Pythia8 + EvtGen	A14
VV	Sherpa	NLO (0-1j), LO (2-3j)	NNPDF3.0nnlo	Sherpa	default
$tar{t}$	Powheg-Box v2 hvq	NLO	NNPDF3.0nnlo	Pythia8 + EvtGen	A14
VVV	Sherpa	LO (0-1j)	NNPDF3.0nnlo	Sherpa	default
W+jets	Sherpa	NLO (0-2j), LO (3-4j)	NNPDF3.0nnlo	Sherpa	default

Electroweak Z+jj – EFT interpretation


Beyond SM cross-section measurement:

Results allow to constrain **BSM physics**

Interpret in the formalism of **effective field theory** – dimension 6 operators known to affect the WWZ coupling

- Parity-odd $\Delta\phi_{jj}$ observable provides strong sensitivity to $CP\text{-}violating}$ couplings
- Dominated by **interference** between dimension-6 and SM hint of low dependence on (potentially ignored) dimension-8 contributions
- Resulting bounds on Wilson coefficients: Competitive with existing bounds from WW at ATLAS or WZ/EW Zjj at CMS

Wilson	Includes	95% confidence	e interval [TeV^{-2}]	<i>p</i> -value (SM)
coefficient	$ \mathcal{M}_{\mathrm{d6}} ^2$	Expected	Observed	
c_W/Λ^2	no	[-0.30, 0.30]	[-0.19, 0.41]	45.9%
	yes	[-0.31, 0.29]	[-0.19, 0.41]	43.2%
\tilde{c}_W/Λ^2	no	[-0.12, 0.12]	[-0.11, 0.14]	82.0%
	yes	[-0.12, 0.12]	[-0.11, 0.14]	81.8%
c_{HWB}/Λ^2	no	[-2.45, 2.45]	[-3.78, 1.13]	29.0%
	yes	[-3.11, 2.10]	[-6.31, 1.01]	25.0%
$\tilde{c}_{HWB}/\Lambda^2$	no	[-1.06, 1.06]	[0.23, 2.34]	1.7%
	yes	[-1.06, 1.06]	[0.23, 2.35]	1.6%

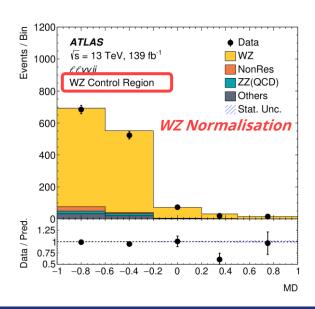
EW ZZ+jj measurement – detailed selection

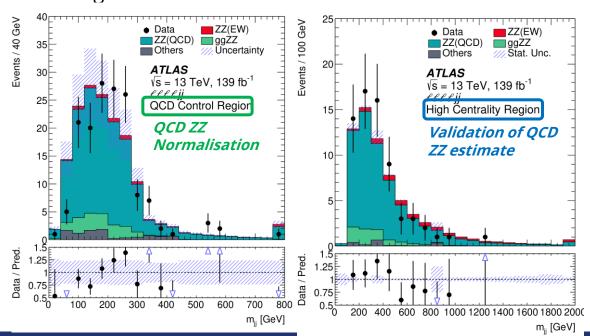
	$\ell\ell\ell\ell jj$	$\ell\ell u jj$	
Electrons	$p_{\rm T} > 7~{\rm GeV}, \eta < 2.47$ $ d_0/\sigma_{d_0} < 5~{\rm and}~ z_0 \times \sin\theta < 0.5~{\rm mm}$		
Muons	$p_{\rm T}>7$ GeV, $ \eta <2.7$ $ d_0/\sigma_{d_0} <3 \text{ and } z_0\times\sin\theta <0.5 \text{ mm}$ $p_{\rm T}>7$ GeV, $ \eta <2.5$		
Jets	$p_{\rm T} > 30~(40)~{\rm GeV~for}~ \eta < 2.4~(2.4 < \eta < 4.5)$	$p_{\rm T} > 60~(40)~{\rm GeV}$ for the leading (sub-leading) jet	
ZZ selection	$p_{\rm T}>20,20,10$ GeV for the leading, sub-leading and third leptons Two OSSF lepton pairs with smallest $ m_{\ell^+\ell^-}-m_Z + m_{\ell^+\ell^-}-m_Z $	$p_{\rm T} > 30~(20)~{ m GeV}$ for the leading (sub-leading) lepton One OSSF lepton pair and no third leptons	
	$m_{\ell^+\ell^-} > 10 \text{ GeV for lepton pairs} $ $\Delta R(\ell, \ell') > 0.2$	$80 < m_{\ell^+\ell^-} < 100 \; { m GeV}$ No b-tagged jets	
	$66 < m_{\ell^+\ell^-} < 116 \text{ GeV}$	$E_{ m T}^{ m miss}$ -significance > 12	
Dijet selection	Two most energetic jets with $y_{j_1} \times y_{j_2} < 0$		
	$m_{jj} > 300 \text{ GeV}$ and $\Delta y(jj) > 2$	$m_{jj} > 400 \text{ GeV} \text{ and } \Delta y(jj) > 2$	

Observation of electroweak ZZ+jj - backgrounds

Backgrounds constrained using **collision data**:

arXiv:2004.10612, submitted to Nature Physics


4I:


Normalise **strong** ZZjj in dedicated **QCD control region**

- invert requirement on **dijet mass** or **rapidity gap** between jets
- Validate in region with large Z boson centrality value
- Minor background from non-prompt lepton estimated using data-driven 'fake factor' method

2|2v:

- WZjj normalized using 3-lepton control region
- non-resonant contribution (WW, tt) estimated in **different-flavour** control region

EW ZZ+jj measurement – inputs to MD discriminant

Gradient Boosted Decision Trees trained using TMVA Framework

4ljj: **12 variables** – m_{jj} , Δy_{jj} , p_T of two leading jets, $y_{j1} \times y_{j2}$, $p_{T,Z1}$, y_{Z1} , y_{Z2} , $p_{T,4l}$, m_{4l} , $p_{T,I3}$, S_T Jet variables drive sensitivity

2l2vjj: **13 variables -** m_{jj} , Δy_{jj} , $y_{j1} \times y_{j2}$, $p_{T,j2}$, $E_{T,Miss}$, $E_{T,Miss}$ significance, S_T , $\Delta \eta_{II}$, $\Delta \phi_{II}$, ΔRII , m_{II} , p_T of two leading jets

Both dilepton system and jets drive sensitivity

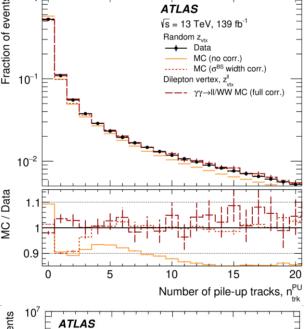
Photon-induced W pair production – nTrack calibration

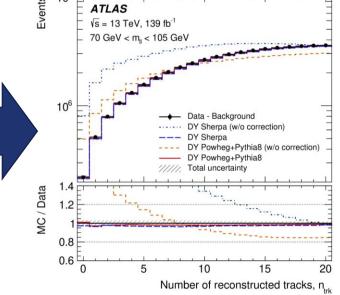
Phys. Lett. B 816 (2021) 136190

Analysis relies on accurate modelling of track density around dilepton vertex

Two main sources of tracks to account for:

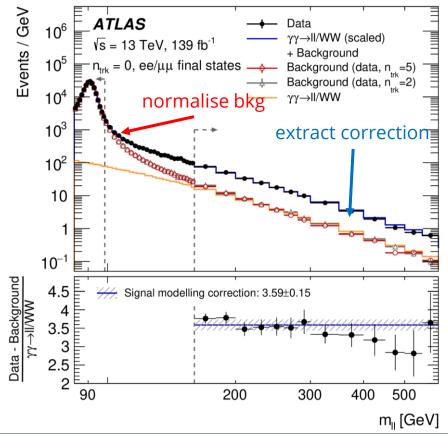

<u>Pileup track contribution</u>: Affects **signal** selection efficiency


- Reweight MC to match average number of pp collisions per bunch in data
- Effective correction to emulate varying beam-spot width in data
- Additional correction based on track density around random z location in Z→II events in data/MC


<u>Underlying event track contribution</u>: Affects rate of accepted **background** events

- Correct to data using particle level n_{ch} distribution measured in Z→II in slices of p_{T,II}
- Obtained using iterative Bayesian unfolding with 4 iterations, after subtracting γγ→II events and pile-up tracks
- Reweight simulation using the measured data/MC ratio of particle-level n_{ch} as function of $p_{T,final\,state}$

After correction, charged particle production rates in simulation match data – both for pileup and UE tracks



Photon-induced W pair production – signal calibration

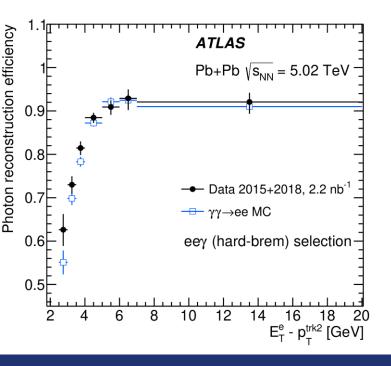
Phys. Lett. B 816 (2021) 136190

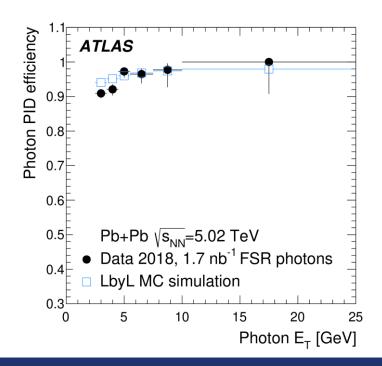
Signal simulation only includes elastic modes and does **not** account for rescattering of escaping protons

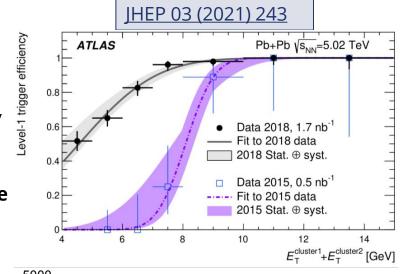
- ➤ correct using data in yy→II events
 - Use $n_{trk}=0$, $m_{II} > 160$ GeV to extract rate, compare to elastic-only simulation
 - Subtract background (mainly DY) using n_{trk}=5 data, normalized in region around m_Z
- Significant correction factor 3.59±0.15 compatible with expectation of 3.55 from simulation

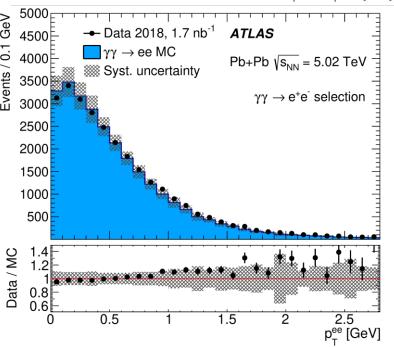
Light-by-light scattering in Pb+Pb collisions - trigger

JHEP 03 (2021) 243


- 2015:
 - L1: ET after noise suppression: 5 200 GeV
 - HLT: Reject if >1 hits in the inner MBTS ring. Less than 10 Pixel hits in the event
- 2018:
 - L1:
 - at least one EM cluster with $E_T > 1$ GeV and total E_T in calorimeter 4 200 GeV
 - OR at least two EM clusters with $E_T > 1$ GeV and total E_T in calorimeter < 50 GeV
 - HLT: Require total E_T on each side of FCAL < 3 GeV. Less than 15 Pixel hits in the event


2018 trigger improves low photon-E_T sensitivity


Light-by-light scattering in Pb+Pb collisions – object calibration


Careful **detector calibration** required for custom trigger and low- E_T object reconstruction

- **Trigger** efficiencies measured using yy→ee selected using supporting triggers
- Photon reconstruction efficiencies using γγ→eeγ, with hard bremsstrahlung emitted by electron
- Photon identification efficiencies using FSR in high-E_T γγ→ee
- Photon **energy scale and resolution** validated in yy→ee based on **momentum balance**

