

W[†]W[†] boson pair production at 13 TeV using CMS data

DIS2021: XXVIII International Workshop on Deep-Inelastic Scattering and Related Subjects

Pedro J. Fernández Manteca

IFCA (University of Cantabria, CSIC) 12-16 of April, 2021

Introduction

- WW cross section measurements at 13 TeV using the CMS full 2016 dataset
- Two different approaches:
 - Sequential analysis: SEQ
 - Random Forest analysis (multivariate technique): RF
- · Goals:
 - Measure the total WW cross section in the dileptonic channel (SEQ & RF)
 - Measure fiducial & differential cross sections in $m_{\ell\ell}$, $p_{T\ell 1}$, $p_{T\ell 2}$, $\Delta \varphi_{\ell\ell}$ (SEQ) + njets (RF)
 - Set limits on Wilson coefficients (SEQ)

Phys. Rev. D 102, 092001 (2020)

High Energy Physics - Experiment

[Submitted on 31 Aug 2020]

W⁺W⁻ boson pair production in proton-proton collisions at $\sqrt{s} = 13$ TeV

CMS Collaboration

A measurement of the W⁺ W⁻ boson pair production cross section in proton-proton collisions at $\sqrt{s}=13$ TeV is presented. The data used in this study are collected with the CMS detector at the CERN LHC and correspond to an integrated luminosity of 35.9 fb⁻¹. The W⁺ W⁻ candidate events are selected by requiring two oppositely charged leptons (electrons or muons). Two methods for reducing background contributions are employed. In the first one, a sequence of requirements on kinematic quantities is applied allowing a measurement of the total production cross section: 117.6 \pm 6.8 pb, which agrees well with the theoretical prediction. Fiducial cross sections are also reported for events with zero or one jet, and the change in the zero-jet fiducial cross section with the jet transverse momentum threshold is measured. Normalized differential cross sections are reported within the fiducial region. A second method for suppressing background contributions employs two random forest classifiers. The analysis based on this method includes a measurement of the total production cross section and also a measurement of the normalized jet multiplicity distribution in W⁺ W⁻ events. Finally, a dilepton invariant mass distribution is used to probe for physics beyond the standard model in the context of an effective field theory, and constraints on the presence of dimension-6 operators are derived.

Comments:

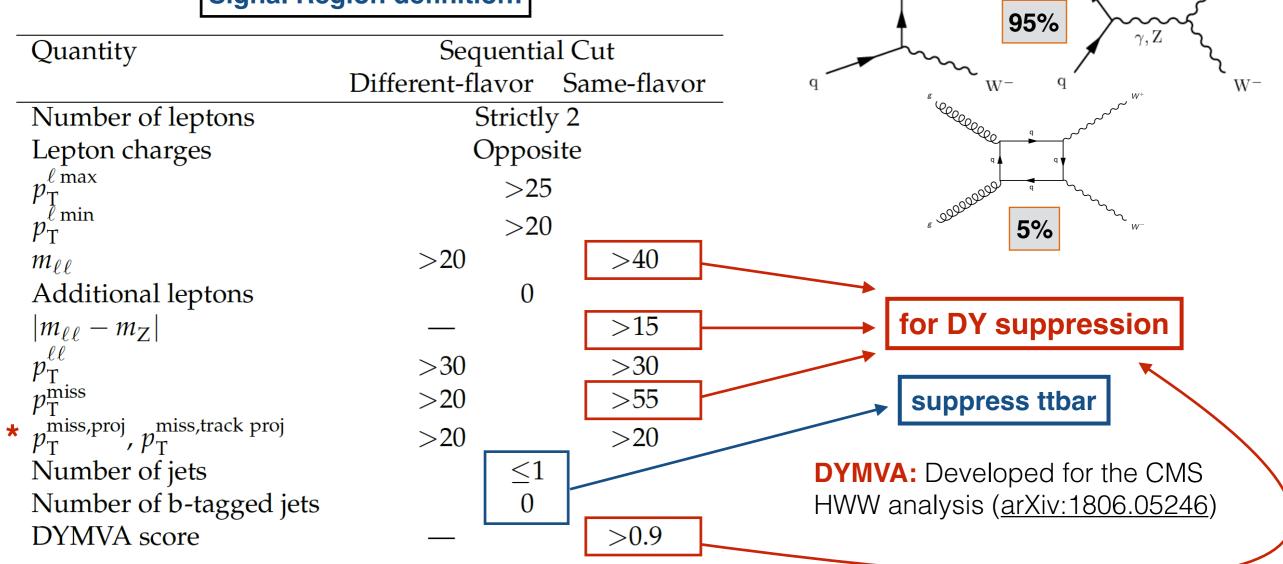
Submitted to Phys. Rev. D. All figures and tables can be found at this http URL (CMS Public Pages)

Subjects:

High Energy Physics - Experiment (hep-ex)

Last public result: CMS-PAS-SMP-16-006 (2.3 fb⁻¹) WW total Xsec = 115.3 ± 11.0 pb

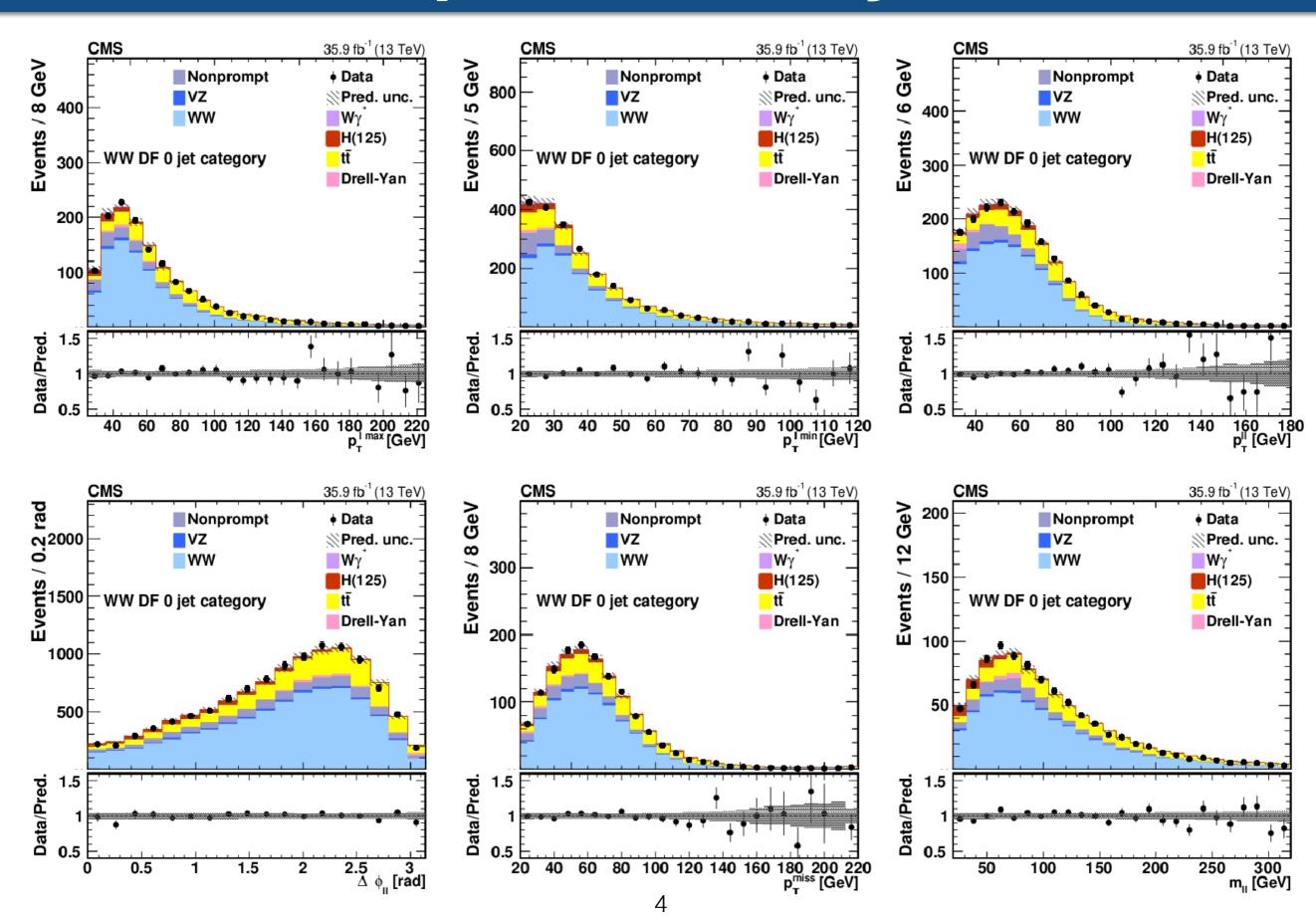
This result: (35.9 fb⁻¹)

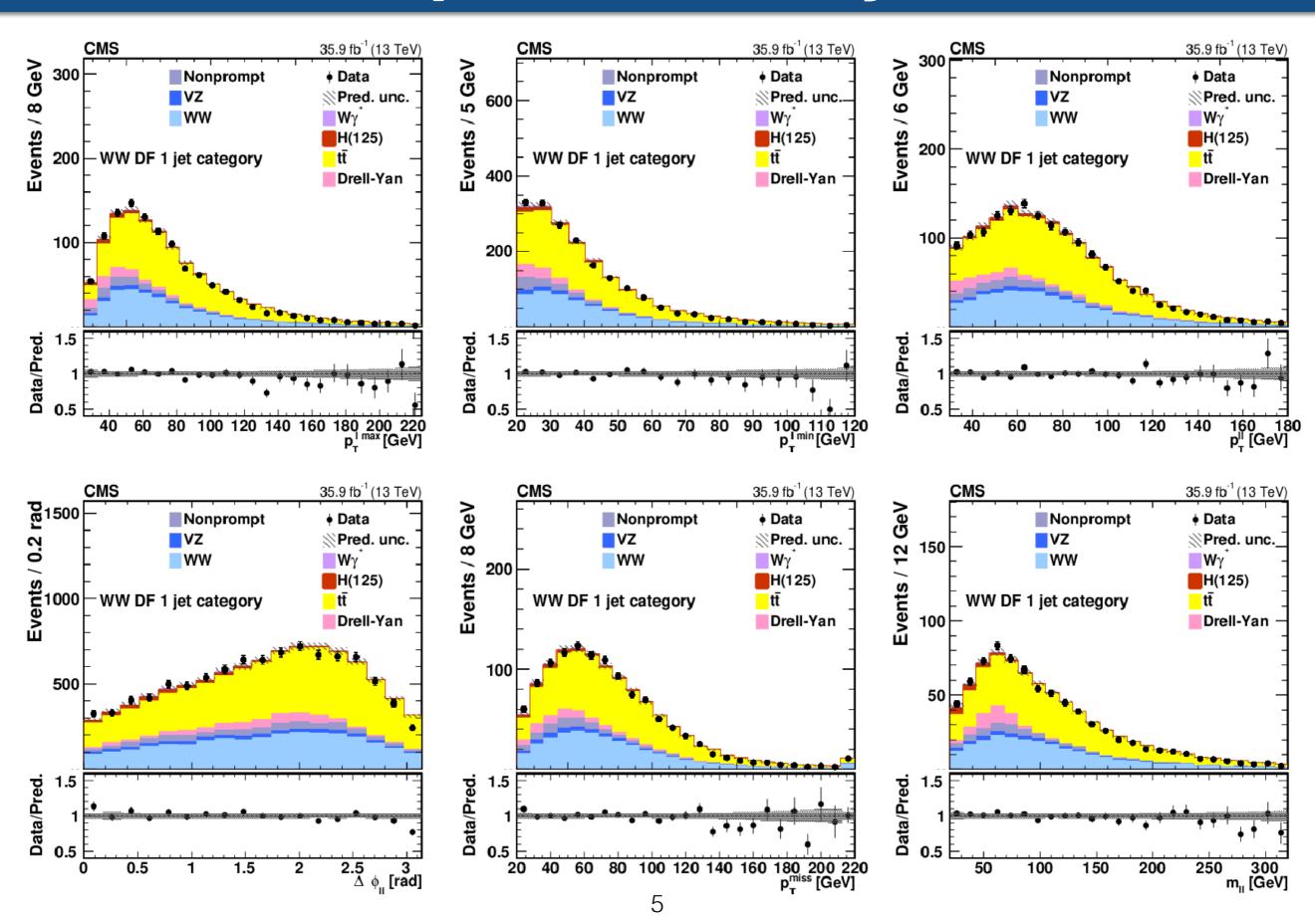

WW total Xsec = 117.6 ± 6.8 pb

Sequential analysis

 The sequential selection relies mainly on a set of discrete requirements on kinematic variables and on a multivariate analysis tool to suppress Drell-Yan background in sameflavour channel **Target signature:** two opposite charged isolated leptons, and large transverse missing energy from the neutrinos

 W^+


Signal Region definition:


$$projected \ TrkE_{T}^{miss} = \begin{cases} TrkE_{T}^{miss} & \Delta\phi_{\min}(leptons, TrkE_{T}^{miss}) \geq \pi/2 \\ TrkE_{T}^{miss} \sin \Delta\phi_{\min} & \Delta\phi_{\min}(leptons, TrkE_{T}^{miss}) \leq \pi/2 \end{cases}$$

$$projected \ E_{T}^{miss} = \begin{cases} E_{T}^{miss} & \Delta\phi_{\min}(leptons, E_{T}^{miss}) \geq \pi/2 \\ E_{T}^{miss} \sin \Delta\phi_{\min} & \Delta\phi_{\min}(leptons, E_{T}^{miss}) \leq \pi/2 \end{cases}$$

Sequential analysis

Sequential analysis

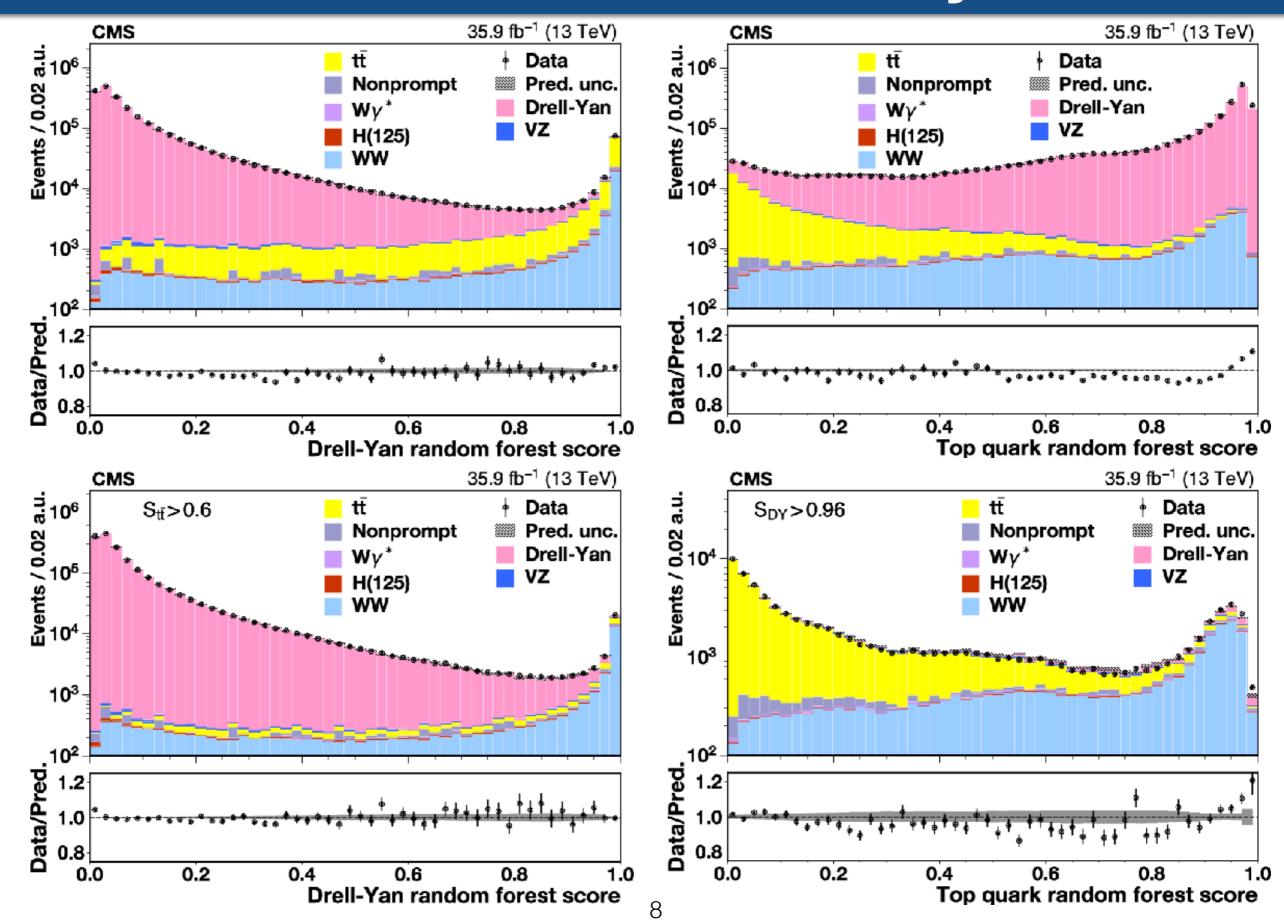
Random Forest analysis

- Alternative approach: Random Forest (RF) multivariate analysis
 - Each individual tree is allowed to use only a random subset of variables. This approach mitigates overfitting
- **Pre-selection:** $m_{\ell\ell} > 30$ GeV, third loose lepton veto ($p_T > 10$ GeV), bVeto ($p_{Tj} > 20$ GeV), $|m_{\ell\ell} m_Z| > 15$ GeV for same-flavour leptons
- After the preselection, the largest contamination comes from Drell-Yan and ttbar.
 Two independent RF have been trained
 - anti-Drell-Yan: WW vs DY
 - anti-top: WW vs ttbar
- Hyperparameters of the RFs are optimized by evaluating the RF performance in a multidimensional grid, taking into account all possible combinations between several choices for parameter values

Feature	Classifier		
	Drell–Yan	Top quark	
Lepton flavor	√		
Number of jets		\checkmark	
$p_{ m T}^{\ell{ m min}}$	\checkmark		
$v_{f T}^{ m miss}$	\checkmark	\checkmark	
$p_{ extstyle T_{ extstyle a}}^{ extstyle T_{ extstyle a}}$	\checkmark		
$p_{ m T}^{\ell\ell}$	\checkmark	\checkmark	
$m_{\ell\ell}$	\checkmark		
$m_{\ell\ell p_{ m T}^{ m miss}}$	\checkmark		
$\Delta\phi_{\ell\ell p_{ ext{ iny T}}^{ ext{miss}}}$	\checkmark	\checkmark	
$\Delta\phi_{\ell m J}$		\checkmark	
$\Delta\phi_{p_{ m T}^{ m miss} m J}$		\checkmark	
$\Delta\phi_{\ell\ell}$	\checkmark		
$H_{ m T}$		\checkmark	
Recoil	\checkmark	\checkmark	

RF optimized architecture:

ntrees= 50, max_depth = 20
min_events_per_split = 50
min_events_in_leaf = 1
max_features_per_tree = sqrt(total_variables)

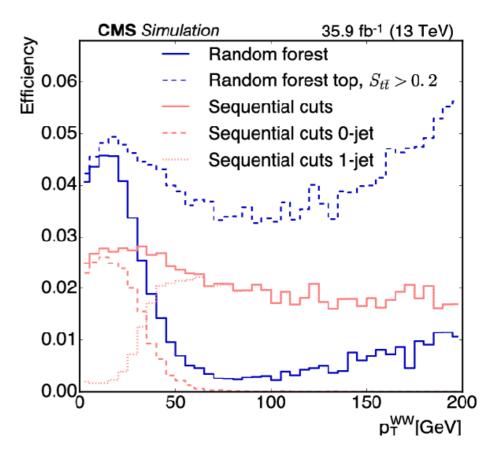

Random Forest analysis

Signal Region definition:

Quantity	Random Forest DF SF
Number of leptons Lepton charges	Strictly 2 Opposite
$p_{ ext{T}}^{\ell \max}$	>25
p_{T} $m_{\ell\ell}$	>20 >30 >30
Additional leptons $ m_{\ell\ell} - m_Z $	— >15
Number of b-tagged jets	0
Drell–Yan RF score S_{DY}	>0.96
$t\bar{t}$ RF score $S_{t\bar{t}}$	>0.6

 Selections on RF scores have been optimized by simultaneously minimizing the uncertainty in the cross section and maximizing the signal purity

Random Forest analysis


Total Xsec measurements

- In both approaches the signal strength is extracted by fitting the predicted yields to the observed events (1-bin distribution). Information from the control regions is included in the fit
 - SEQ fit: 4 Signal Regions, 4 Top Control Regions (2 flavour categories x 2 njets categories)
 - RF fit: 1 SR, 1 TopCR, 1 DYCR, 1 Same-SignedCR

<u>Theoretical prediction</u>: $\sigma_{tot}^{NNLO} = 118.8 \pm 3.6 \text{ pb}$

Sequential analysis result:

Category		Signal strength	Cross section [pb]
0-jet	DF	1.054 ± 0.083	125.2 ± 9.9
0-jet	SF	1.01 ± 0.16	120 ± 19
1-jet	DF	0.93 ± 0.12	110 ± 15
1-jet	SF	0.76 ± 0.20	89 ± 24
0-jet & 1-jet	DF	1.027 ± 0.071	122.0 ± 8.4
0-jet & 1-jet	SF	0.89 ± 0.16	106 ± 19
0-jet & 1-jet	DF & SF	0.990 ± 0.057	117.6 ± 6.8

$$\sigma_{tot}^{SEQ} = 117.6 \pm 1.4 \text{ (stat)} \pm 5.5 \text{ (syst)} \pm 1.9 \text{ (theo)} \pm 3.2 \text{ (lumi)} \text{ pb} = 117.6 \pm 6.8 \text{ pb}$$

Random Forest analysis result:

$$\sigma_{tot}^{RF} = 131.4 \pm 1.3 \text{ (stat)} \pm 6.0 \text{ (syst)} \pm 5.1 \text{ (theo)} \pm 3.5 \text{ (lumi)} \text{ pb} = 131.4 \pm 8.7 \text{ pb}$$

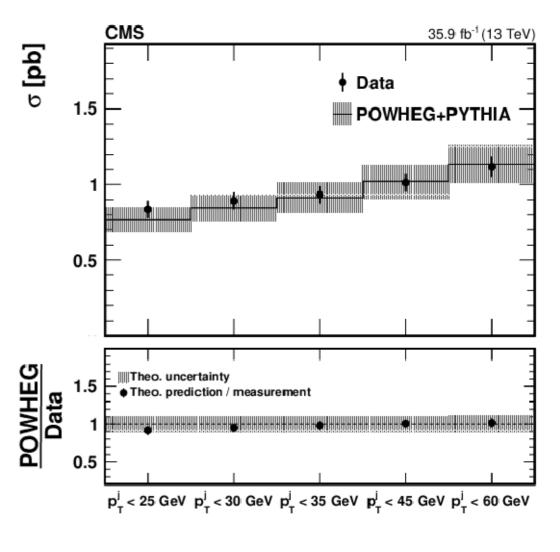
Random forest gets a purer signal region. However, its sensitivity is concentrated at low pTWW
due to jet-multiplicity related variables used in the training → more sensitive to theoretical
uncertainties of pTWW spectrum corrections than the sequential analysis

Fiducial Xsec measurement

- Fiducial region definition at gen level: two dressed electrons or muons in the event with $p_T > 20$ GeV and $|\eta| < 2.5$, $m_{\ell\ell} > 20$ GeV, $p_{T\ell\ell} > 30$ GeV and $E_T^{Miss} > 20$ GeV
- Results: (Different-Flavour + Same-Flavour combination)

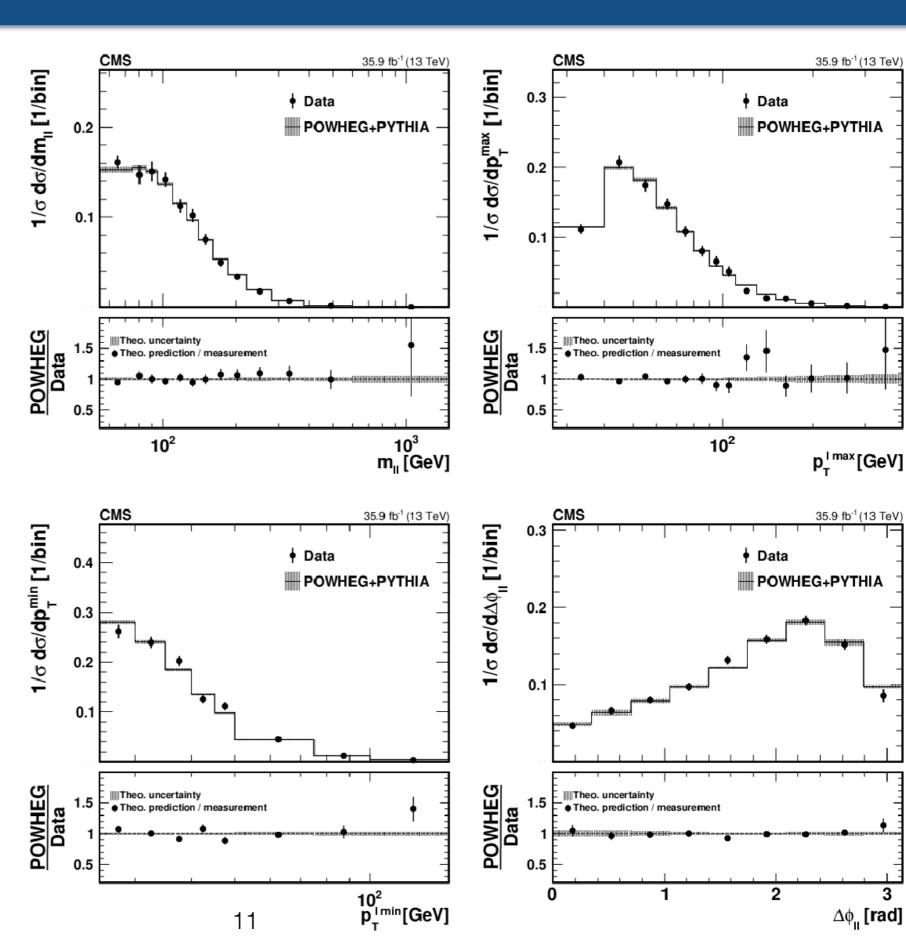
Theoretical prediction: $\sigma_{fid}^{NNLO} = 1.531 \pm 0.043 \text{ pb}$

 σ_{fid}^{tot} = 1.529 ± 0.0020 (stat) ± 0.069 (syst) ± 0.028 (theo) ± 0.041 (lumi) pb = **1.529 ± 0.087 pb**

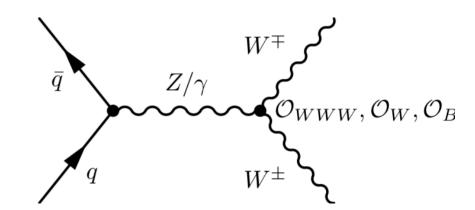

 σ_{fid}^{tot} (based on 0 reco jets subset only) = 1.61 ± 0.10 pb

 σ_{fid}^{tot} (based on 1 reco jets subset only) = 1.35 ± 0.11 pb

Fiducial WW+0 AK4 gen jets, pT thres. varied

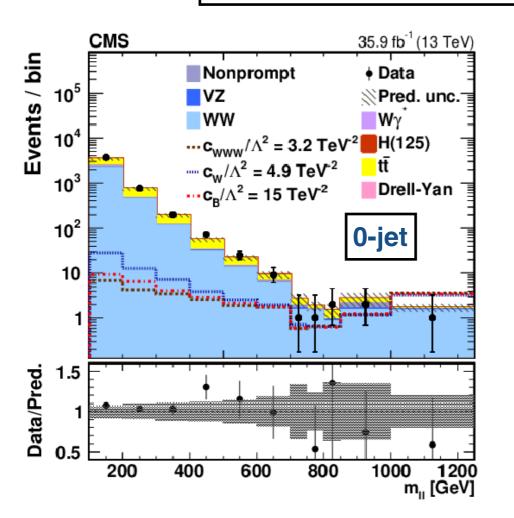

$p_{\rm T}$ threshold (GeV)	Signal strength	Cross section (pb)
25	1.091 ± 0.073	0.836 ± 0.056
30	1.054 ± 0.065	0.892 ± 0.055
35	1.020 ± 0.060	0.932 ± 0.055
45	0.993 ± 0.057	1.011 ± 0.058
60	0.985 ± 0.059	1.118 ± 0.067

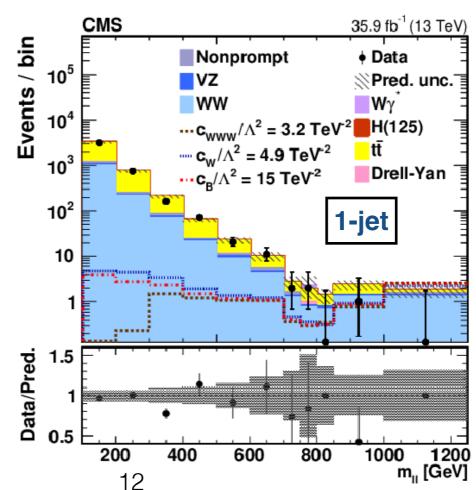
Fid WW+0 AK4 gen jets jet pT thres. varied

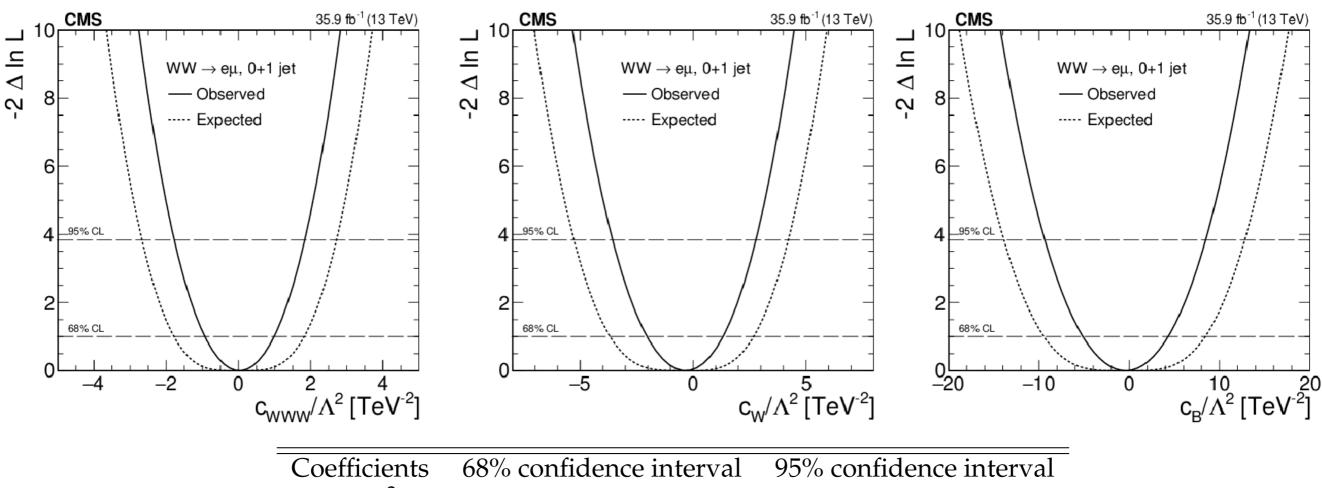


Normalized differential Xsecs

- Differential cross section measurement in $m_{\ell\ell}$, $p_{T\ell 1}$, $p_{T\ell 2}$, $\Delta \varphi_{\ell\ell}$ bins
- Using the same fiducial definition
- Approach: several signal strengths (bins categorized at GEN level) are fitted in RECO bins
 - The simultaneous fit to all bins in a given histogram takes all the correlations into account

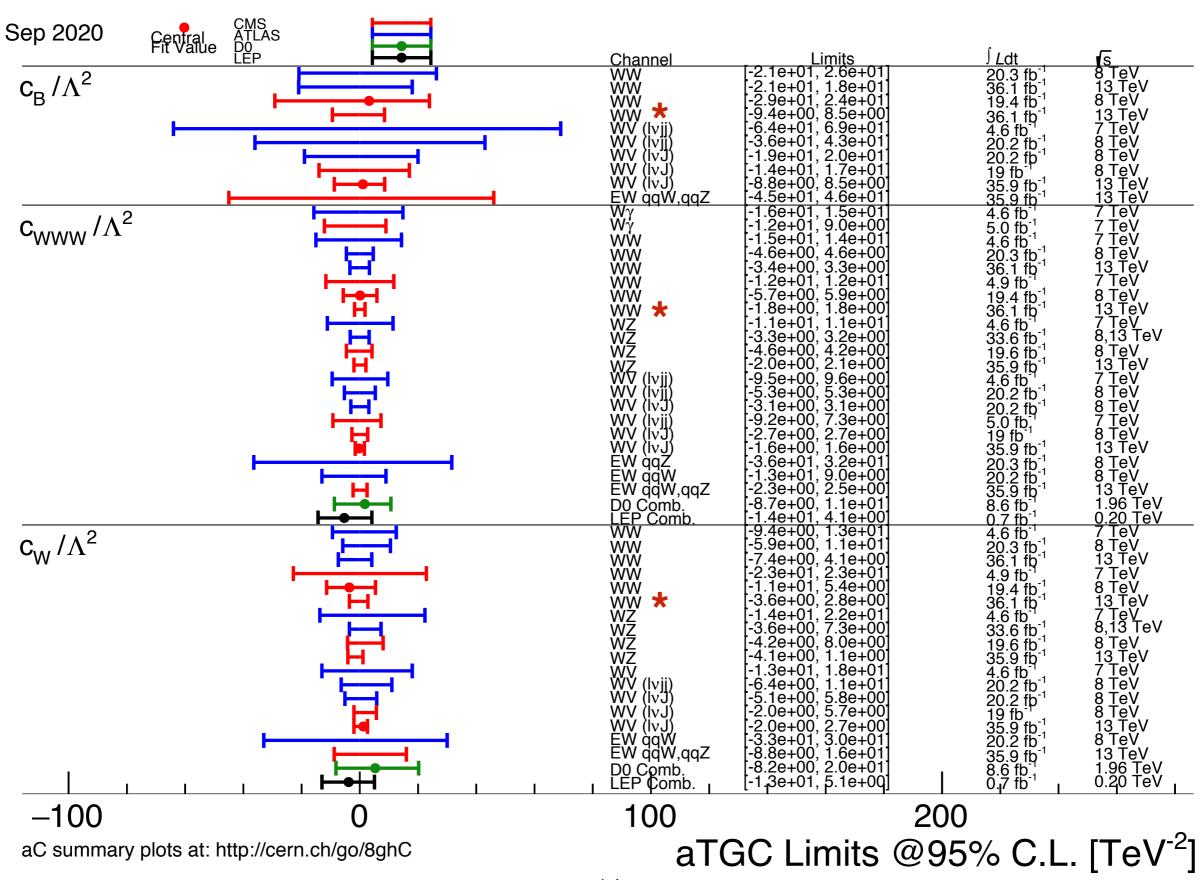



- In the electroweak sector of the SM, the first higherdimensional operators containing only massive boson fields are dimension-6
 - Set limits on the 3 corresponding coefficients affecting WW production: **EFT effects simulated** with Madgraph5 aMC@NLO



$$egin{aligned} \mathcal{O}_{WWW} &= rac{c_{WWW}}{\Lambda^2} W_{\mu
u} W^{
u
ho} W_{
ho}^{\;\cdot\; \mu}, \ \mathcal{O}_{W} &= rac{c_{W}}{\Lambda^2} (D^{\mu} \Phi)^{\dagger} W_{\mu
u} (D^{
u} \Phi), \ \mathcal{O}_{B} &= rac{c_{B}}{\Lambda^2} (D^{\mu} \Phi)^{\dagger} B_{\mu
u} (D^{
u} \Phi), \end{aligned}$$

Used eµ final state from the sequential analysis



Coefficients	68% confidence interval		95% confide	ence interval
(TeV^{-2})	expected	observed	expected	observed
$c_{\rm WWW}/\Lambda^2$	[-1.8, 1.8]	[-0.93, 0.99]	[-2.7, 2.7]	[-1.8, 1.8]
$c_{\rm W}/\Lambda^2$	[-3.7, 2.7]	[-2.0, 1.3]	[-5.3, 4.2]	[-3.6, 2.8]
c_B/Λ^2	[-9.4, 8.4]	[-5.1, 4.3]	[-14, 13]	[-9.4, 8.5]

W.r.t. Run-I (Observed): arXiv:1507.03268

Coupling constant	This result	Its 95% CL interval
	(TeV^{-2})	(TeV^{-2})
$c_{\rm WWW}/\Lambda^2$	$0.1^{+3.2}_{-3.2}$	[-5.7, 5.9]
$c_{\rm W}/\Lambda^2$	$-3.6_{-4.5}^{+5.0}$	[-11.4, 5.4]
$c_{\rm B}/\Lambda^2$	$-3.2^{+15.0}_{-14.5}$	[-29.2, 23.9]

Summary & plans

- The WW production at 13 TeV results using the CMS full 2016 dataset experiment have been shown, including:
 - Total WW cross-section measurement
 - Fiducial & differential cross-section measurements
 - Limits on Wilson coefficients

- Future plans of the analysis:
 - Differential + aTGCs analysis using the full Run2 dataset (2016+2017+2018 CMS data)

Backup

Postfit yields

Process	Sequential Cut			Random	Forest	
	Dl	F	SI	3	DF	SF
	0-jet	1-jet	0-jet	1-jet	all jet mul	tiplicities
Top quark	2110 ± 110	5000 ± 120	1202 ± 66	2211 ± 69	3450 ± 340	830 ± 82
Drell–Yan	129 ± 10	498 ± 38	1230 ± 260	285 ± 86	1360 ± 130	692 ± 72
VZ	227 ± 13	270 ± 12	192 ± 12	110 ± 7	279 ± 29	139 ± 10
VVV	11 ± 1	29 ± 2	4 ± 1	6 ± 1	13 ± 4	3 ± 2
${ m H} ightarrow { m W}^+ { m W}^-$	269 ± 41	150 ± 25	50 ± 2	27 ± 1	241 ± 26	90 ± 10
$\mathrm{W}\gamma^{(*)}$	147 ± 17	136 ± 13	123 ± 5	58 ± 6	305 ± 88	20 ± 6
Nonprompt leptons	980 ± 230	550 ± 120	153 ± 39	127 ± 32	940 ± 300	183 ± 59
Total background	3870 ± 260	6640 ± 180	2950 ± 270	2820 ± 120		
	10510	± 310	5780	± 300	6600 ± 480	1960 ± 120
$q\overline{q} ightarrow W^+W^-$	6430 ± 250	2530 ± 140	2500 ± 180	1018 ± 71	12070 ± 770	2820 ± 180
$gg o W^+W^-$	521 ± 66	291 ± 38	228 ± 32	117 ± 15	693 ± 44	276 ± 17
Total W ⁺ W [−]	6950 ± 260	2820 ± 150	2730 ± 190	1136 ± 72		
	9780	±300	3860	±200	12770 ± 820	3100 ± 200
Total yield	10820 ± 360	9460 ± 240	5680 ± 330	3960 ± 360		
•	20 280	±430	9640	± 490	19360 ± 950	5060 ± 240
Purity	0.64	0.30	0.48	0.29		
-	0.4	.8	0.4	40	0.66	0.61
Observed	10866	9404	5690	3914	19 418	5210

Rel. syst. uncertainties in total Xsec

SEQ analysis: combined SRs + TopCRs

Uncertainty source	(%)
Statistical	1.2
t t normalization	2.0
Drell-Yan normalization	1.4
$W\gamma^*$ normalization	0.4
Nonprompt leptons normalization	1.9
Lepton efficiencies	2.1
b tagging (b/c)	0.4
Mistag rate (q/g)	1.0
Jet energy scale and resolution	2.3
Pileup	0.4
Simulation and data control regions sample size	1.0
Total experimental systematic	4.6
QCD factorization and renormalization scales	0.4
Higher-order QCD corrections and $p_{\mathrm{T}}^{\mathrm{WW}}$ distribution	1.4
PDF and α_S	0.4
Underlying event modeling	0.5
Total theoretical systematic	1.6
Integrated luminosity	2.7
Total	5.7

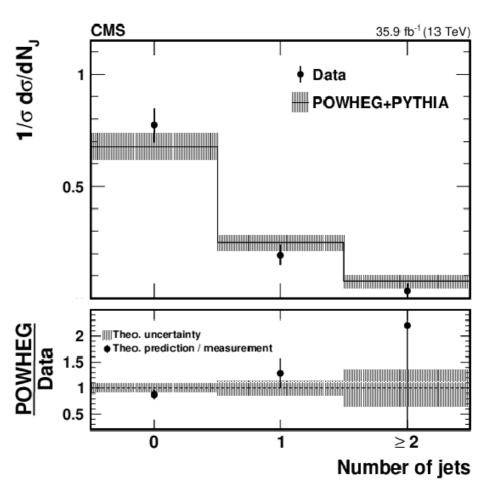
Jet multiplicity measurement

Relaxed cut on Stt (Stt > 0.2) to increase the efficiency for WW events with jets

Efficiency for RF selection w.r.t. preselection

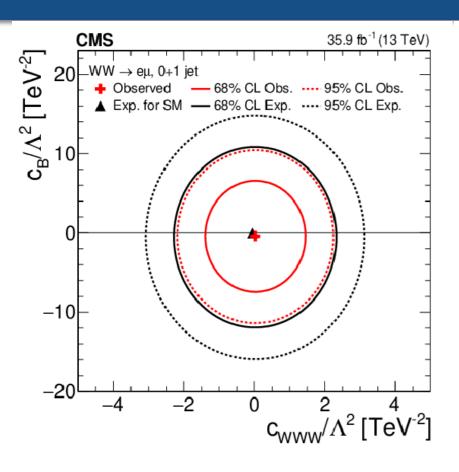
Number of jets	0	1	<u>≥ 2</u>
Efficiency	0.555 ± 0.003	0.448 ± 0.004	0.290 ± 0.004

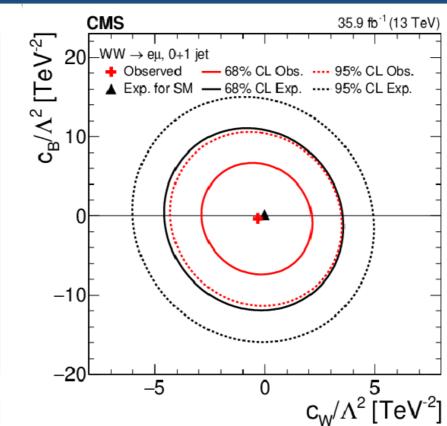
 $\vec{v} = R_{PU}R_{DET}\vec{t}$ $\vec{u} = R_{PU}^{-1}R_{DET}^{-1}\vec{v}$ $\vec{\omega} = \vec{u} / |\vec{u}|$

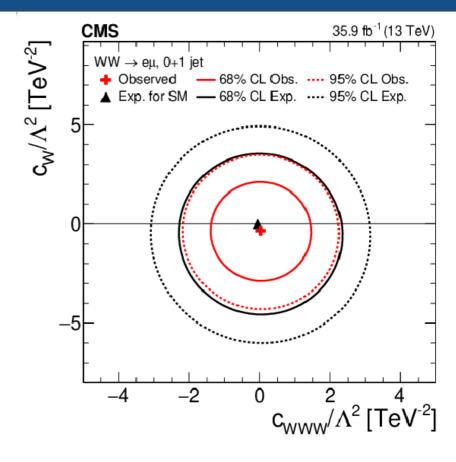

- **Unfolding:** Gen jets reconstructed from stable gen particles excluding neutrinos with $p_T j > 30$ GeV and $|\eta| < 2.4$, separated from leptons by $\Delta R > 0.4$
 - Reconstructed and generated jets are said to match if $\Delta R_{\text{gen,reco}} < 0.4$

$$\mathbf{R}_{\text{PU}} = \begin{pmatrix} 0.986 & 0 & 0 \\ 0.013 & 0.985 & 0 \\ 0.001 & 0.015 & 1 \end{pmatrix}$$

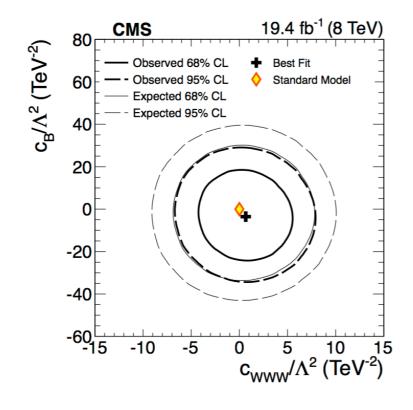
$$\mathbf{R}_{\text{DET}} = \begin{pmatrix} 0.963 & 0.060 & 0.003 \\ 0.036 & 0.891 & 0.090 \\ 0.001 & 0.049 & 0.906 \end{pmatrix}$$

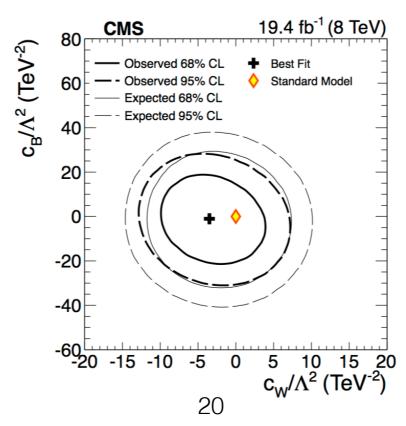

Total relative uncert.

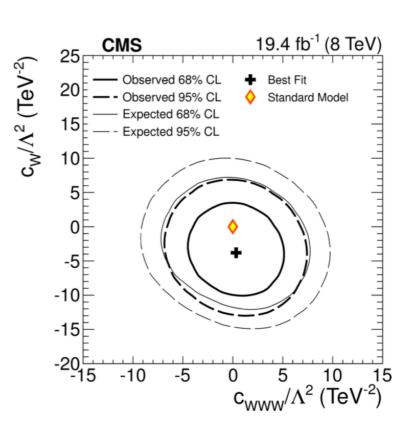

$$\left(\begin{array}{cccc}
0.011 & 0.193 & 0.374 \\
0.210 & 0.007 & 0.140 \\
0.305 & 0.181 & 0.015
\end{array}\right)$$



Fraction of events


Number of jets	0	1	≥ 2
Before unfolding	$0.795 \pm 0.007 \pm 0.053$	$0.180 \pm 0.006 \pm 0.039$	$0.025 \pm 0.005 \pm 0.018$
After unfolding	$0.773 \pm 0.008 \pm 0.075$	$0.193 \pm 0.007 \pm 0.043$	$0.034 \pm 0.006 \pm 0.033$
Predicted	$0.677 \pm 0.007 \pm 0.058$	$0.248 \pm 0.007 \pm 0.033$	$0.075 \pm 0.006 \pm 0.026$





W.r.t. Run-l results: arXiv:1507.03268

