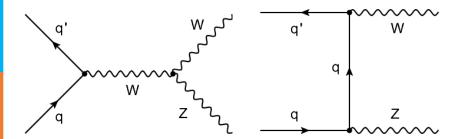
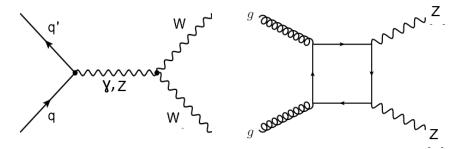


DIBOSON CROSS SECTION MEASUREMENTS AT 5 TeV IN CMS


Andrea Trapote Fernández
(On behalf of the CMS Collaboration)

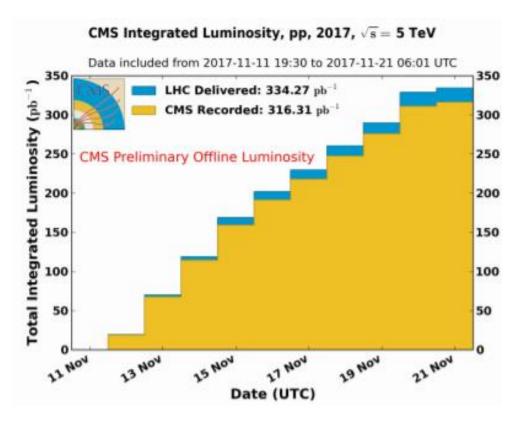


12-16 April 2021

CMS-PAS-SMP-20-012

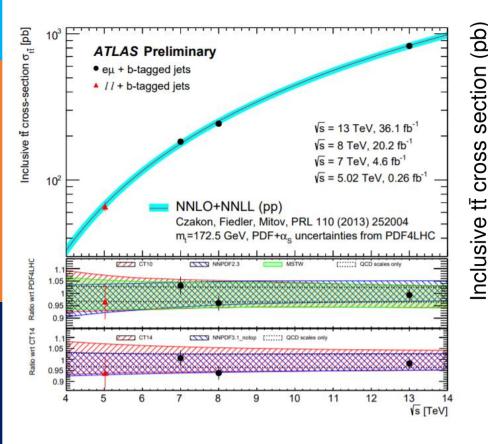
Measurements of the diboson, W⁺W⁻, W[±]Z and ZZ, production cross sections at the 5 TeV energy regime using 304 pb⁻¹ recorded in 2017.

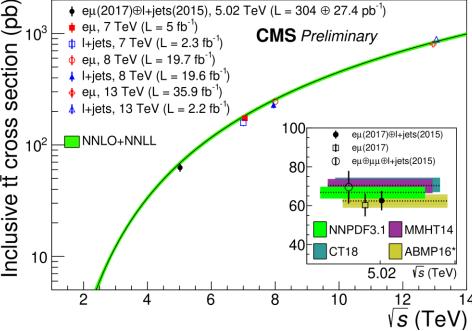



Diboson production is important for several reasons:

- It is a test of the Standard Model (SM) of particle physics.
- It is an irreducible background in other SM measurements and BSM searches.

First results at 5 TeV!


Measurements of the diboson, W⁺W⁻, W[±]Z and ZZ, production cross sections at the 5 TeV energy regime using 304 pb⁻¹ recorded in 2017.

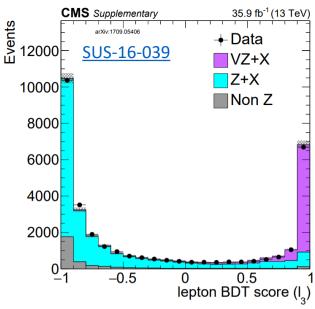


- The mean number of pp interactions per bunch crossing was around 2.
- Maximum inst. luminosity: $\mathcal{L}_{inst} = 1.38 \times 10^{33} \text{cm}^{-2} \text{ s}^{-1}$.
- Dataset is characterized by a relatively **low pile-up contribution** as compared to the measurements of weak-boson production performed at higher center-of-mass energies.

RELATED ANALYSES

This dataset has been used by ATLAS and CMS to measure the $t\bar{t}$ cross section.

The new result is combined with the one of JHEP 03 (2018) 115 which used 27.4 pb⁻¹ recorded in 2015.


ATLAS-CONF-2021-003

CMS-PAS-TOP-20-004

OBJECT RECONSTRUCTION

The key objects in this analysis are the leptons: electrons and muons.

- ➤ A set of identification criteria is specifically designed to separate the leptons produced in W and Z decays from those that arise from nonprompt leptons.
- ➤ The ID developed here is based in an existing one at 13 TeV that has been widely used already by CMS: lepton MVA. In particular, it was used in a recent measurement of the Higgs boson production rate in association with top quarks. [arXiv:2011.03652]

- Two leptons categories are defined, loose and tight leptons:
 - The loose identification criteria are used to preselect all leptons in the events. $p_T > 8 \text{ GeV}$, $|\eta| < 2.4$, dxy < 0.05 cm, dz < 0.1 cm, isolation < 0.4
 - The tight selection used the lepton MVA method to reduce the nonprompt contribution.

loose leptons + lepton MVA, tighter isolation cut, cut on the b-tagging DEEPJET discriminator

EVENT SELECTION: SIGNAL REGIONS

WW

- Exactly 2 tight opposite charge different flavour leptons
- $p_T(\ell_1) > 20 \text{ GeV}$
- $p_T(\ell_2) > 10 \text{ GeV}$
- $p_T(\ell\ell') > 20 \text{ GeV}$
- $\Delta\Phi(\ell\ell')$ < 2.8 rad
- $\min(m_{\ell\ell'}) > 12 \text{ GeV}$
- Jet veto (p_T > 25 GeV)
- $\min(m_T(e, p_T^{miss}), m_T(\mu, p_T^{miss})) > 20 \text{ GeV}$

EVENT SELECTION: SIGNAL REGIONS

WW

- Exactly 2 tight opposite charge different flavour leptons
- $p_T(\ell_1) > 20 \text{ GeV}$
- $p_T(\ell_2) > 10 \text{ GeV}$
- $p_T(\ell\ell') > 20 \text{ GeV}$
- $\Delta\Phi(\ell\ell')$ < 2.8 rad
- $\min(m_{\ell\ell'}) > 12 \text{ GeV}$
- Jet veto $(p_T > 25 \text{ GeV})$
- $\min(m_T(e, p_T^{miss}), m_T(\mu, p_T^{miss})) > 20 \text{ GeV}$

WZ

- **> 3**ℓ
- Exactly 3 leptons with p_T > 8 GeV and the 2LSS passing a tight ID
- $p_T(\ell_W) > 20 \text{ GeV}$
- $\min(m_{\ell \ell'}) > 12 \text{ GeV}$
- $m_{\ell_{Z1},\ell_{Z2},\ell_W} > 100 \text{ GeV}$
- $|m_Z$ -91.2|<30 GeV

\triangleright 2 μ same-sign

- 2 muons same-sign passing a tight ID and tight charge with p_T >20,10 GeV.
- $\min(m_{\ell \ell'}) > 12 \text{ GeV}$
- Jet veto (p_T > 25 GeV)
- p_T^{miss} > 25 GeV

EVENT SELECTION: SIGNAL REGIONS

WW

- Exactly 2 tight opposite charge different flavour leptons
- $p_T(\ell_1) > 20 \text{ GeV}$
- $p_T(\ell_2) > 10 \text{ GeV}$
- $p_T(\ell\ell') > 20 \text{ GeV}$
- $\Delta\Phi(\ell\ell')$ < 2.8 rad
- $\min(m_{\ell \ell'}) > 12 \text{ GeV}$
- Jet veto $(p_T > 25 \text{ GeV})$
- $\min(m_T(e, p_T^{miss}), m_T(\mu, p_T^{miss})) >$ 20 GeV

WZ

- > 3 {
- Exactly 3 leptons with p_T > 8 GeV and the 2LSS passing a tight ID
- $p_T(\ell_W) > 20 \text{ GeV}$
- $\min(m_{\ell\ell'}) > 12 \text{ GeV}$
- $m_{\ell_{Z1},\ell_{Z2},\ell_W} > 100 \text{ GeV}$
- $|m_Z$ -91.2|<30 GeV

\geq 2 μ same-sign

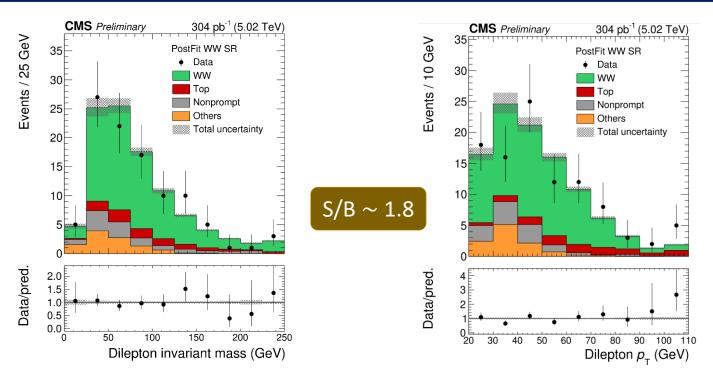
- 2 muons same-sign passing a tight ID and tight charge with p_T >20,10 GeV.
- $\min(m_{\ell,\ell'}) > 12 \text{ GeV}$
- Jet veto $(p_T > 25 \text{ GeV})$
- $p_T^{miss} > 25 \text{ GeV}$

ZZ

- > 4*l*
- Exactly 4 leptons with p_T > 8 GeV
- $\min(m_{\ell\ell'}) > 12 \text{ GeV}$
- $\geq 2\ell 2\nu$
- Exactly 2 tight opposite charge same-flavour leptons with $p_T > 20,10$ GeV
- $\min(m_{\ell \ell'}) > 12 \text{ GeV}$
- $|m_Z$ -91.2|< 10 GeV
- Jet veto $(p_T > 25 \text{ GeV})$
- $|p_T^{miss} p_T^Z|/p_T^Z < 0.3$
- $-p_T^{miss} \times \cos(\Delta\Phi(p_T^{miss}, p_T^Z)) > 50 \text{ GeV}$

BACKGROUND ESTIMATION

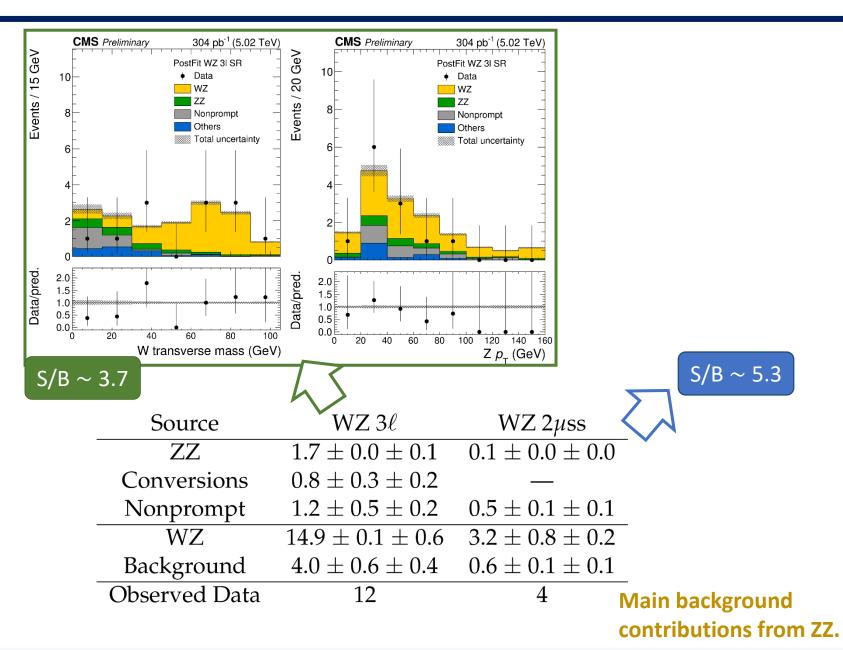
- Signal samples are generated using POWHEG+PYTHIA8.
- ➤ All background contributions are estimated from **MC simulation** except for those involving 2 nonprompt leptons.
- > The **nonprompt SM sources** depend on the decay channel:
 - At least 3 leptons: Z+jets and dileptonic $t\bar{t}$ production. -> estimated from MC.
 - <u>2 leptons</u>: W+jets and semileptonic $t\bar{t}$ production. -> estimated using a leptons misidentification rate method based on the misidentification rate measured in a simulated $t\bar{t}$ sample and applied to control region data.


DY VALIDATION REGION

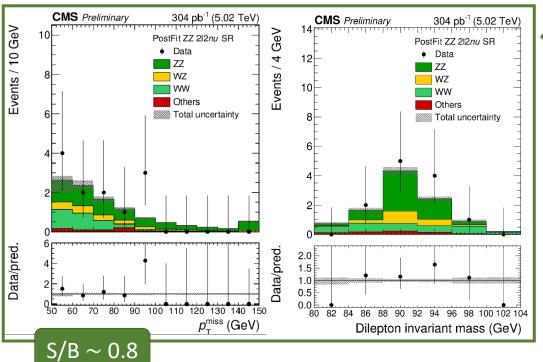
Determined from the WW SR by replacing the two opposite-flavor leptons with two **same-flavor** leptons.

TOP VALIDATION REGION

Defined inverting the **jet-veto** requirement from the WW SR to enhance the top quark processes contribution.


WW SIGNAL REGION

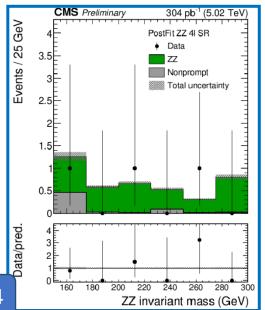
Source	Number of events
Тор	$9.1 \pm 0.1 \pm 1.1$
VV	$5.7 \pm 1.0 \pm 1.1$
DY	$1.8\pm0.5\pm0.2$
Conversions	$2.7\pm0.7\pm0.7$
Nonprompt	$11.1 \pm 1.3 \pm 3.4$
Background	$30.4 \pm 1.9 \pm 3.9$
WW Signal	$55.5 \pm 0.3 \pm 1.7$
Observed data	101


Main background contributions are from nonprompt and top.

WZ SIGNAL REGIONS

DIS2021

ZZ SIGNAL REGIONS



<u></u>	
T	

$2\ell 2\nu$

Source	Number of events	
WZ	$1.7 \pm 0.0 \pm 0.3$	
WW	$2.6\pm0.1\pm0.5$	
Тор	$0.46 \pm 0.03 \pm 0.06$	
Drell–Yan	$0.2\pm0.3\pm0.1$	
ZZ	$4.0 \pm 0.0 \pm 0.2$	
Background	$4.9 \pm 0.3 \pm 0.7$	
Observed Data	12	

SourceNumber of eventsConversions $0.03 \pm 0.01 \pm 0.01$ Nonprompt $0.5 \pm 0.2 \pm 0.1$ ZZ $2.7 \pm 0.0 \pm 0.1$

Background $0.5 \pm 0.2 \pm 0.1$

4ℓ

Observed Data 3

 $S/B \sim 5.4$

UNCERTAINTIES

Categories	Source	WW	WZ	ZZ
	Trigger efficiencies	5% (<i>p</i> _T <15 GeV), 1%	$3\% (2\ell)$, $< 0.5\% (3\ell)$	$1\% (2\ell), <0.5\% (4\ell)$
	Lepton efficiencies	1% (2%) for μ (e)	1-3%	$\sim\!2\%$
	JES	\sim 1-2%	${\sim}1\%$ (only 2 ${\mu}{ m ss}$)	${\sim}1\%$ (only 2ℓ)
Experimental	JER	~1-2%	${\sim}1\%$ (only 2 ${\mu}{ m ss}$)	${\sim}1\%$ (only 2ℓ)
_	L1 Prefiring	< 2%	1-2%	1%
	Nonprompt closure	30% (e), 15% (μ)	30% (e), 15% (μ) only 2μ ss	
	Luminosity	1.5%	1.5%	1.5%
	Nonprompt	_	20% (3ℓ)	20% (4ℓ)
	Flips	<u> </u>	20%	
Background	Conversions	30%	30%	30%
normalization	VV	20%	20%	$20\% (2\ell 2\nu)$
	Тор	10%	_	$10\% (2\ell 2\nu)$
	Drell–Yan	10%	_	$10\% (2\ell 2\nu)$
Theory	$PDF + \alpha_S$	< 1%	< 1%	$\sim 2\%$
Theory	QCD scale	< 3%	< 3%	\sim 3-4%

STRATEGY

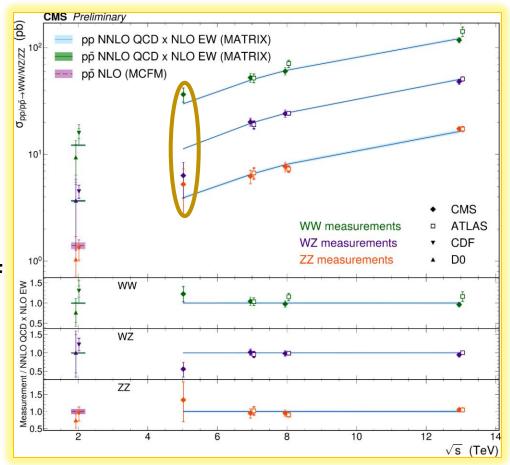
Goal: extraction of total observed cross section.

- The number of events in the signal region is measured in a counting experiment in a region with high signal purity.
- Compare with MATRIX NNLO QCDxNLO EWK predictions.

- and 60 GeV < m_{Z2} < 120 GeV.

$$\sigma = \frac{N_{signal}^{SR}}{BR(V \to XX)BR(V \to XX)\epsilon \mathcal{L}'}$$

TOTAL CROSS SECTIONS


Overall uncertainty dominated by statistical component.

Process	Estimation	Total cross section [pb]
WW	MATRIX	$29.8^{+0.7}_{-0.6}(\mathrm{scale})$
V V V V	Measured	$36.5^{+5.5}_{-5.1}(\text{stat})^{+2.6}_{-2.5}(\text{syst})$
WZ	MATRIX	$11.3^{+0.2}_{-0.2}(\text{scale})$
VVZ.	Measured	$6.4^{+2.4}_{-2.1}(\text{stat})^{+0.5}_{-0.3}(\text{syst})$
77.	MATRIX	$3.9^{+0.1}_{-0.1}(\text{scale})$
	Measured	$5.3^{+2.5}_{-2.0}(\text{stat})^{+0.5}_{-0.4}(\text{syst})$

^{*}Predictions from MATRIX at NNLO QCDxNLO EWK.

SUMMARY

- The measurements of the weak diboson production cross sections at a new energy regime that was never probed before for these processes have been presented.
- ➤ A very complete summary plot including diboson production cross sections from ATLAS, CMS, D0 and CDF in the full energy regime is shown.
- The gap between Tevatron and LHC measurements has been reduced.

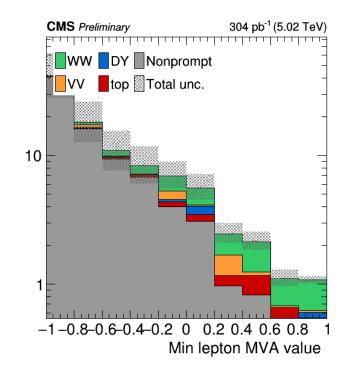
BACK UP

OBJECT RECONSTRUCTION

Loose leptons

Lepton Variables	Electrons	Muons
p_{T}	>8 GeV	> 8 GeV
$ \eta $	< 2.5	< 2.4
dxy	< 0.05 cm	< 0.05 cm
dz	< 0.1 cm	< 0.1 cm
sip3d	< 8	< 8
convVeto	True	_
nlostHits	0	_
Working Point	mvaFall17V2Iso_WPL	mediumPromptId
miniPFRelIso_all	< 0.4	< 0.4

Tight leptons


Lepton Variables	Electrons	Muons
mvaTTH	> 0.125	> 0.55
miniPFRelIso_all	< 0.085	< 0.325
Jet_btagDeepB	< 0.152	< 0.152

Jets

AK4 PFJets (Tight ID) $p_T > 25$ GeV and $|\eta| < 2.4$ $\Delta R(\text{jet, lepton}) > 0.4$

MET

Corrected Type-1

Events

UNCERTAINTIES

Experimental uncertainties

- Lepton efficiencies: varying p_T and η dependent SFs by their uncertainties.
- Trigger efficiencies: is very close to 1 and no correction is applied to the simulation.
 The relative difference between the trigger efficiency and the unity is used as an uncertainty.
- **Jet energy scale (JES):** varying the jet energy corrections by their uncertainties
- **Jet energy resolution (JER):** varying JER SF by uncertainties.
- **L1 prefiring**: varying the dedicated SFs by their uncertainties.
- Nonprompt closure.

Modeling uncertainties

- **PDF** + α_s : reweighing events according to the 30 replica PDF sets + 2 α_s . (PDF4LHC15 nlo nf4 30 pdfas)
- **QCD scale**: varying the default renormalization and factorization scale choices independently by a factor of 2 or 1/2.

Others

- Luminosity.
- Background normalization.
- Data statistics.