Combined Higgs boson measurements at the ATLAS experiment

Bianca Ciungu on behalf of the ATLAS Collaboration

International Workshop on Deep-Inelastic Scattering and Related Subjects — April 12th-16th, 2021

Overview

- ATLAS analyses target different Higgs boson production modes and decay channels
 - Many of measured quantities are independent of the Higgs boson production/decay
- Statistical combination of the most current measurements to get best precision and limits on important parameters in the Standard Model (SM)
 - Updated to full Run 2 dataset for some of the input analysis
 - Previous publication for 2015-2017 dataset <u>arXiv:1909.02845</u>

Focus Today

Couplings - (ATLAS-CONF-2020-027)

- Global signal strength
- Production mode cross sections (XS) and branching ratios (BR)
- Simplified template cross section (STXS) results
- Interpretations
 - k-framework
 - EFT(ATLAS-CONF-2020-053)

Differential - (ATLAS-CONF-2019-032)

• p_{T,H} combination for $H \rightarrow ZZ^* \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$

Input to combined measurements

- So far $H \rightarrow ZZ^* \rightarrow 4\ell$, $H \rightarrow \gamma\gamma$, $VH \rightarrow bb$ analyses used for STXS combination
- H→μμ and H→inv used in a subset of the κ-framework results

Analysis Decay Channel	$\begin{array}{c} {\rm Target\ Prod.} \\ {\rm Modes} \end{array}$	\mathcal{L} [fb ⁻¹]	Link	Signal Strength	Prod. Modes Branching Ratios	STXS	κ -interp	EFT
$H o \gamma \gamma$	ggF,VBF, $WH,ZH,t\bar{t}H,tH$	139	ATLAS-CONF-2020-026	✓	✓	✓	✓	√
H \ 77*	ggF,VBF, $WH,ZH,t\bar{t}H(4\ell)$	139	arXiv:2004.03447	✓	✓	✓	✓	√
$H o ZZ^*$	$t\bar{t}H$ excl. $H \to ZZ^* \to 4\ell$	36.1	arXiv:1712.08891, arXiv:1806.00425	✓	✓		\checkmark	
$H o WW^*$	$_{ m ggF,VBF}$	36.1	arXiv:1808.09054	./				
$II \rightarrow VV VV$	$tar{t}H$	30.1	arXiv:1712.08891, arXiv:1806.00425	v	•		V	
H o au au	$_{ m ggF,VBF}$	36.1	<u>arXiv:1811.08856</u>	./	./		./	
$H \rightarrow TT$	$tar{t}H$	30.1	arXiv:1712.08891, arXiv:1806.00425	'	V		•	
	VBF	24.5 - 30.6	arXiv:1807.08639	✓	✓		✓	
H o bar b	WH,ZH	139	arXiv:2007.02873	✓	\checkmark	\checkmark	\checkmark	✓
	$tar{t}H$	36.1	arXiv:1712.08895, arXiv:1806.00425	✓	\checkmark		\checkmark	
$H o \mu \mu$	ggF,VBF, $VH,t\bar{t}H,tH$	139	<u>arXiv:2007.07830</u>				✓	
$H \rightarrow inv$	VBF	139	ATLAS-CONF-2020-008				✓	

- Results of combination obtained from product of likelihood functions
- Systematics from same sources are correlated

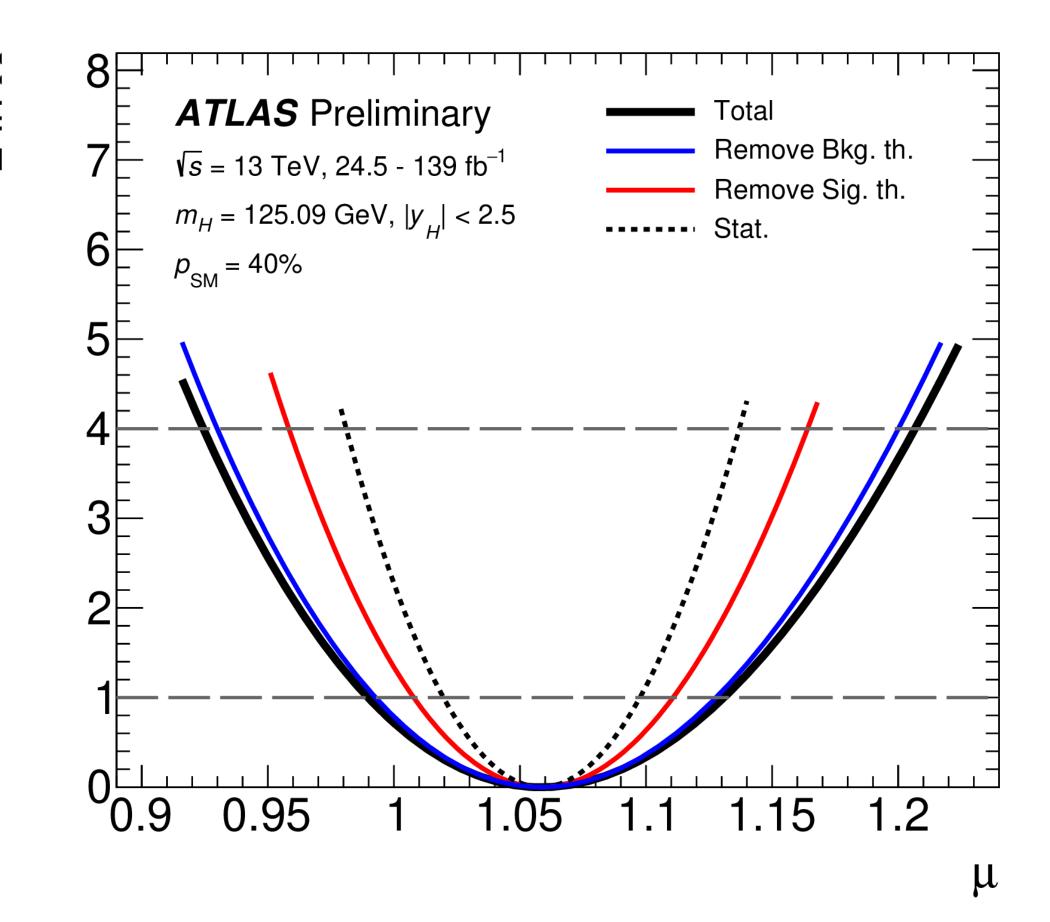
Global Signal Strength

• Simultaneous measurement of parameter μ (where $\mu_{if} = (\sigma_i \times BR_f)/(\sigma_i \times BR_f)_{SM}$)

$$\mu = 1.06 \pm 0.07 = 1.06 \pm 0.04$$
 (stat.) ± 0.03 (exp.) $^{+0.05}_{-0.04}$ (sig. th.) ± 0.02 (bkg. th.)

- · Systematic uncertainties dominate due to smaller statistical uncertainty from full Run-2 dataset
- Largest theory uncertainties are included
 - QCD scale (~4% on ggF)
 - PDF and α_s uncertainty (~3% on ggF)
 - Note that ggF is ~90% of signal and is predicted at N3LO

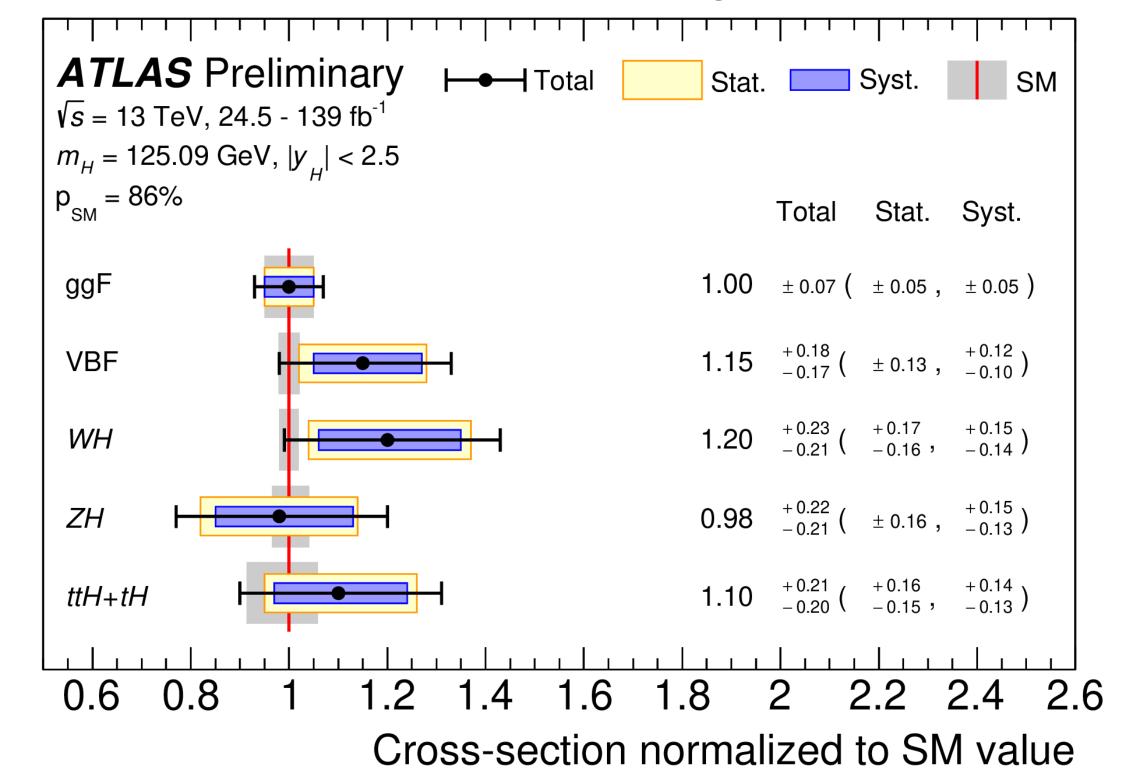
• Consistent with SM ($\mu = 1$) with a p-value of 40%

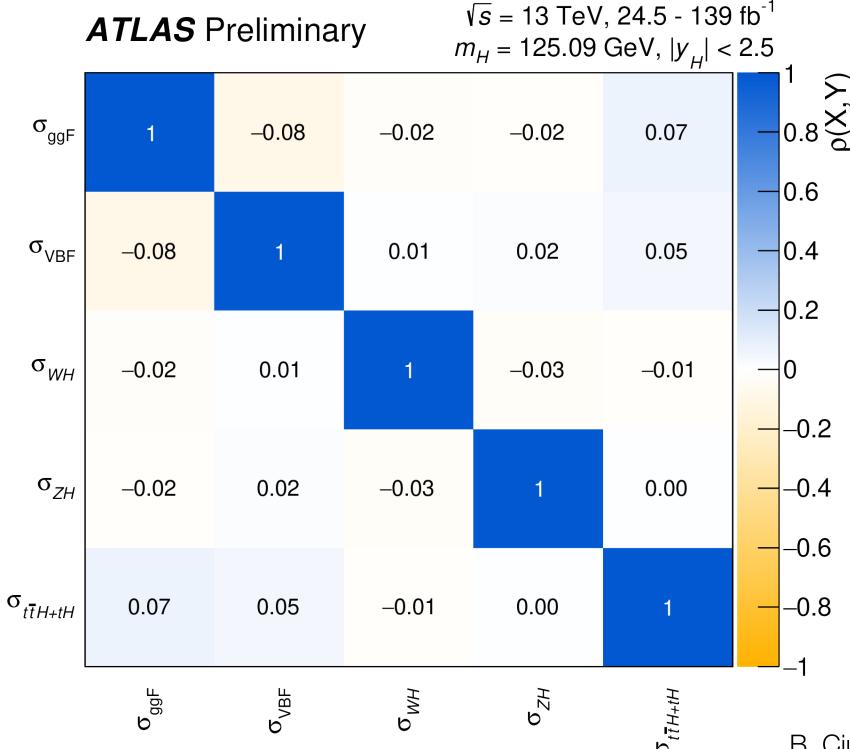


Production Modes

- Branching fractions fixed to SM expectations, cross sections are simultaneously determined in the fit to data
- Decrease in ggF and VBF correlation compared to previous publication (~15% → 8%)
 - Mainly from updated $H \rightarrow ZZ^* \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$ results
- Above 5σ observed for all production modes
 - First observation of WH with observed (expected) significances of 6.3σ (5.2σ)

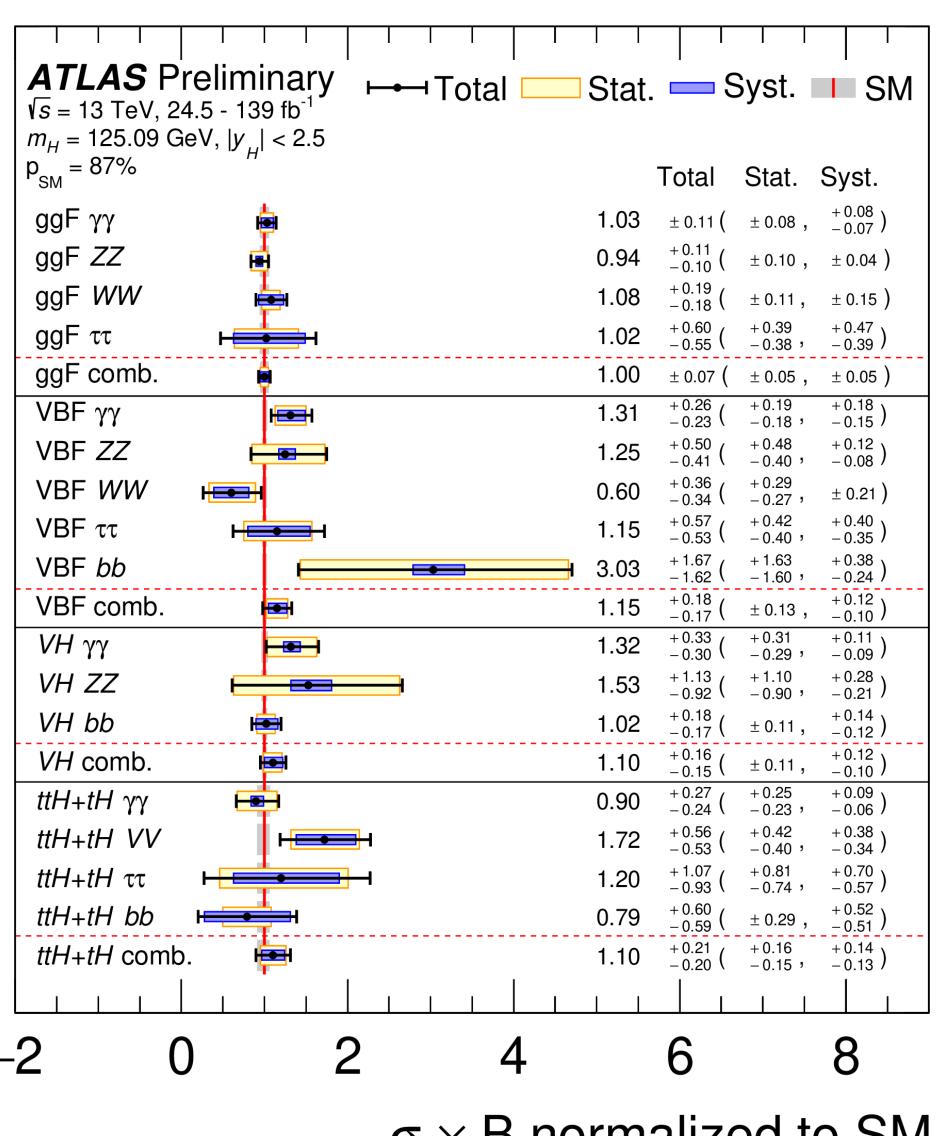
Systematic uncertainty same/approaching statistical uncertainty





Production and Decay

- Can also test the SM by measuring (σ x B)_{if}
 - ggF driven by $H \rightarrow ZZ^* \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$
 - VBF driven by $H \rightarrow WW$, $H \rightarrow \gamma \gamma$, and $H \rightarrow \tau \tau$
 - VH driven by H→bb
- Statistically limited channels are fixed to the SM
 - ggF→H→bb
 - VH, H → WW/ττ
- Relative fraction of ZH and WH fixed to the SM.
- Good agreement with the SM (p-value of 87%)



 $\sigma \times B$ normalized to SM

STXS Scheme

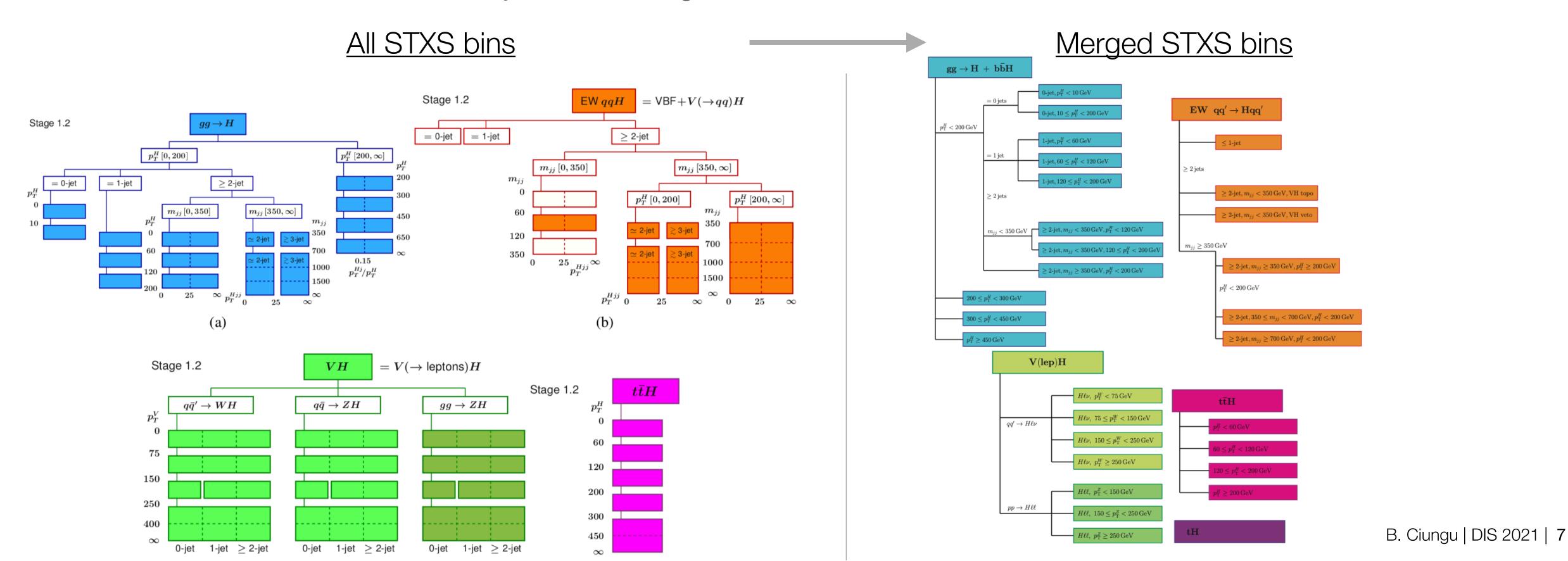
STXS scheme has bins of exclusive phase space

STXS Motivation

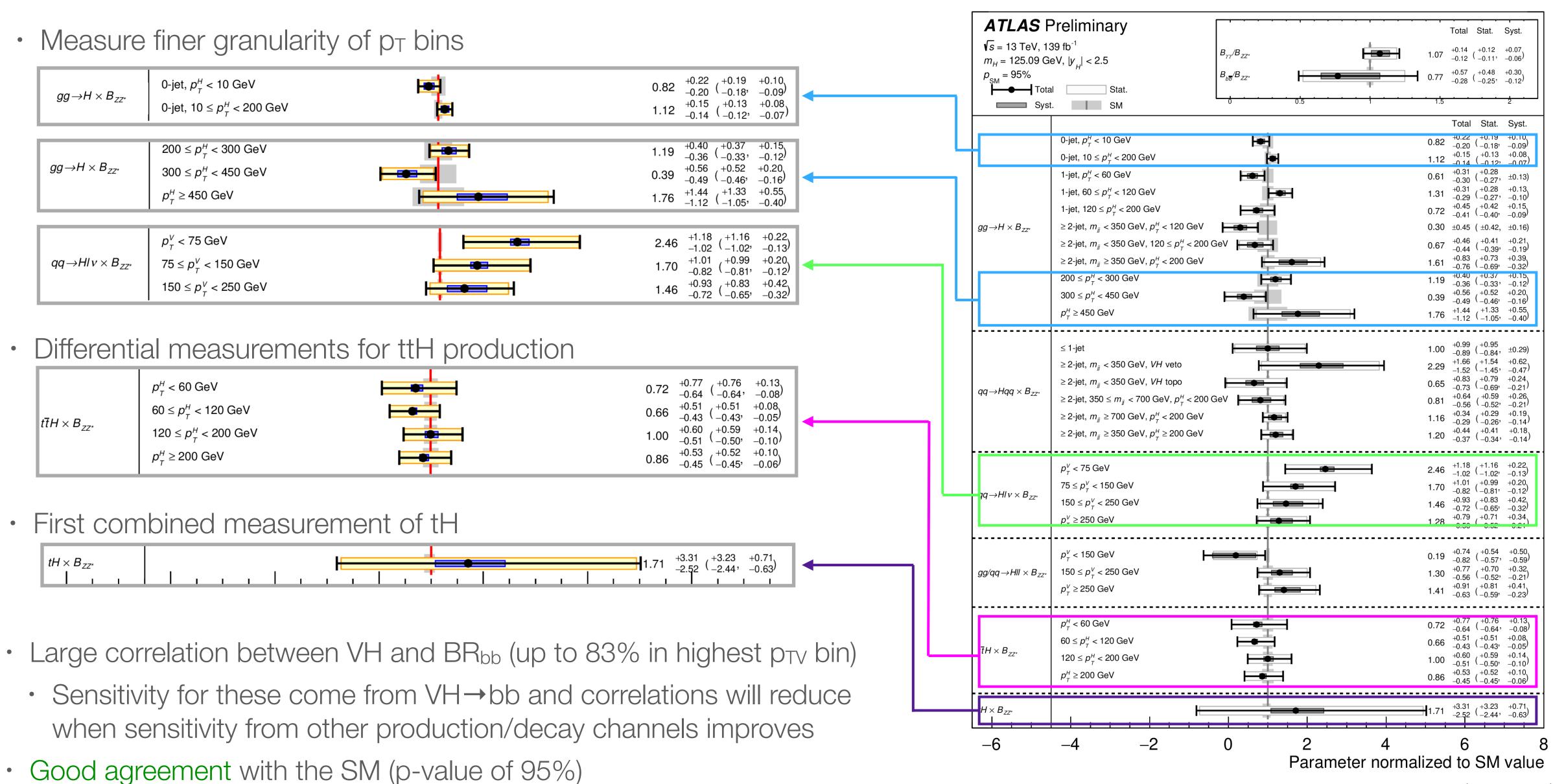
- Reduce large theory uncertainties
- Bins are sensitive to BSM contributions
- Easier combination of different final states
- Full scheme measurement is statistically limited → merge bins

Considerations for bin merging

- Merge highly correlated STXS bins
- Keep uncertainties < 100% with the exception of bins sensitive to BSM physics

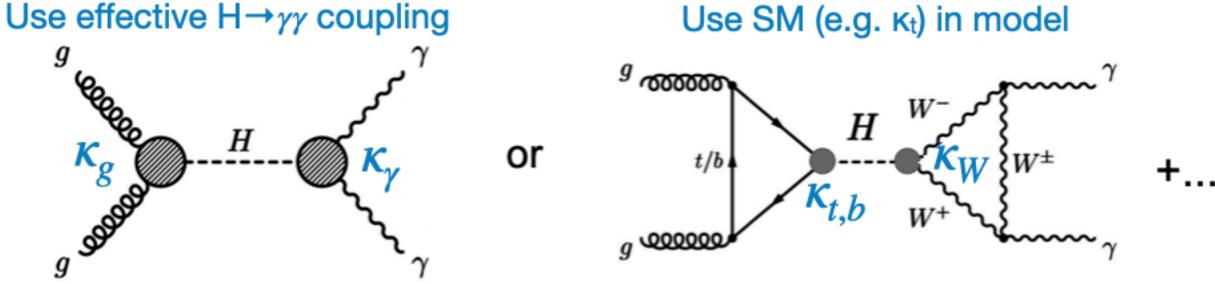


STXS Results



Interpretations: K-Framework

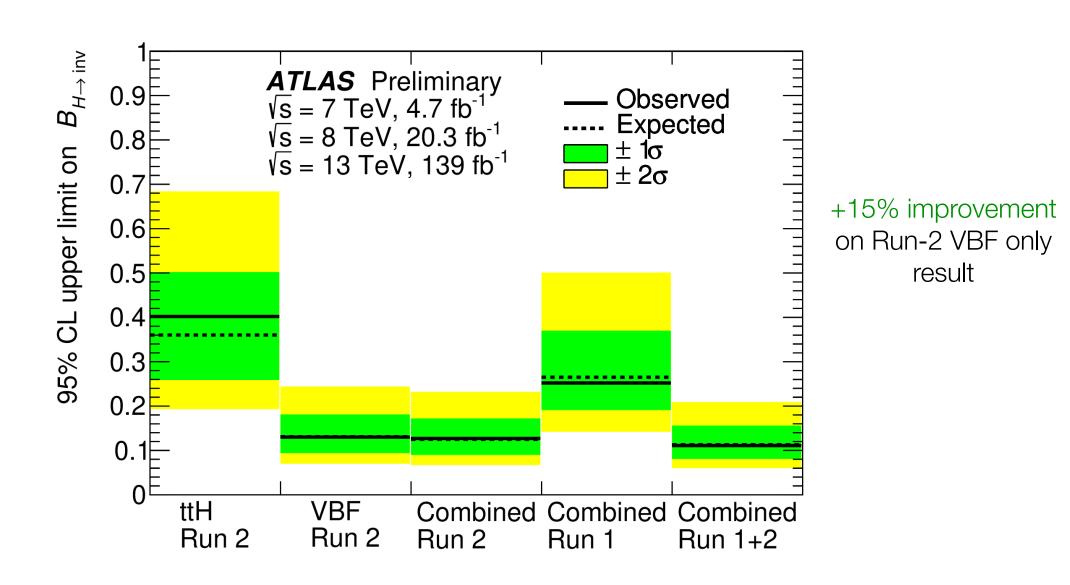
- Multiplicative factors (κ_i) factors applied to the SM XSs and BRs and can be used to constrain the couplings of the Higgs boson to particles
- Two ways to do this, for example in $H \rightarrow \gamma \gamma$:



- Higgs width can also be affected by
 - Invisible decays (Bi.): Identified through E_T^{miss} (SM $H \rightarrow ZZ^* \rightarrow 4 \vee$
 - Undetected decays (B_{u.}): final states that analyses are not sensitive to (such as, light quarks, BSM particles without sizeable E_{T}^{miss})

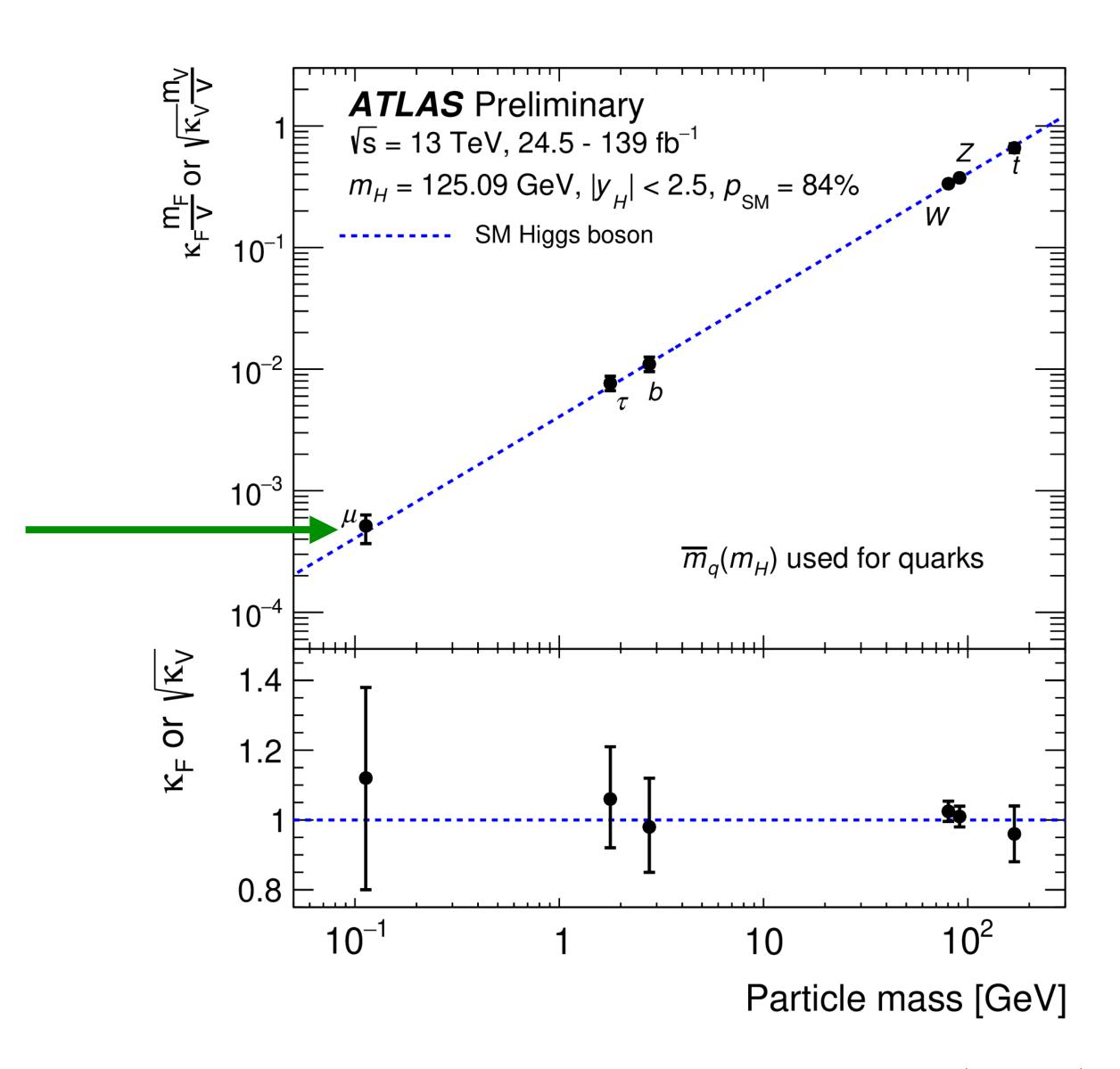
$$\Gamma_{H}(\kappa, B_{i.}, B_{u.}) = \frac{\Sigma_{j} B_{j}^{SM} \kappa_{j}^{2}}{1 - B_{i.} - B_{u.}} \Gamma_{H}^{SM}$$

Not covered here: new results (with interpretations) of H→inv combination available — <u>ATLAS-CONF-2020-052</u>



Measurement of Yukawa couplings

- Assuming no new physics affects loop-induced processes or Higgs boson total width
 - Fit κ for W, Z, t, b, τ and μ
- κμ is no longer a limit but a measurement with full Run-2 dataset using latest H→µµ result
- Good agreement with SM expectation through three orders of magnitude of particle mass

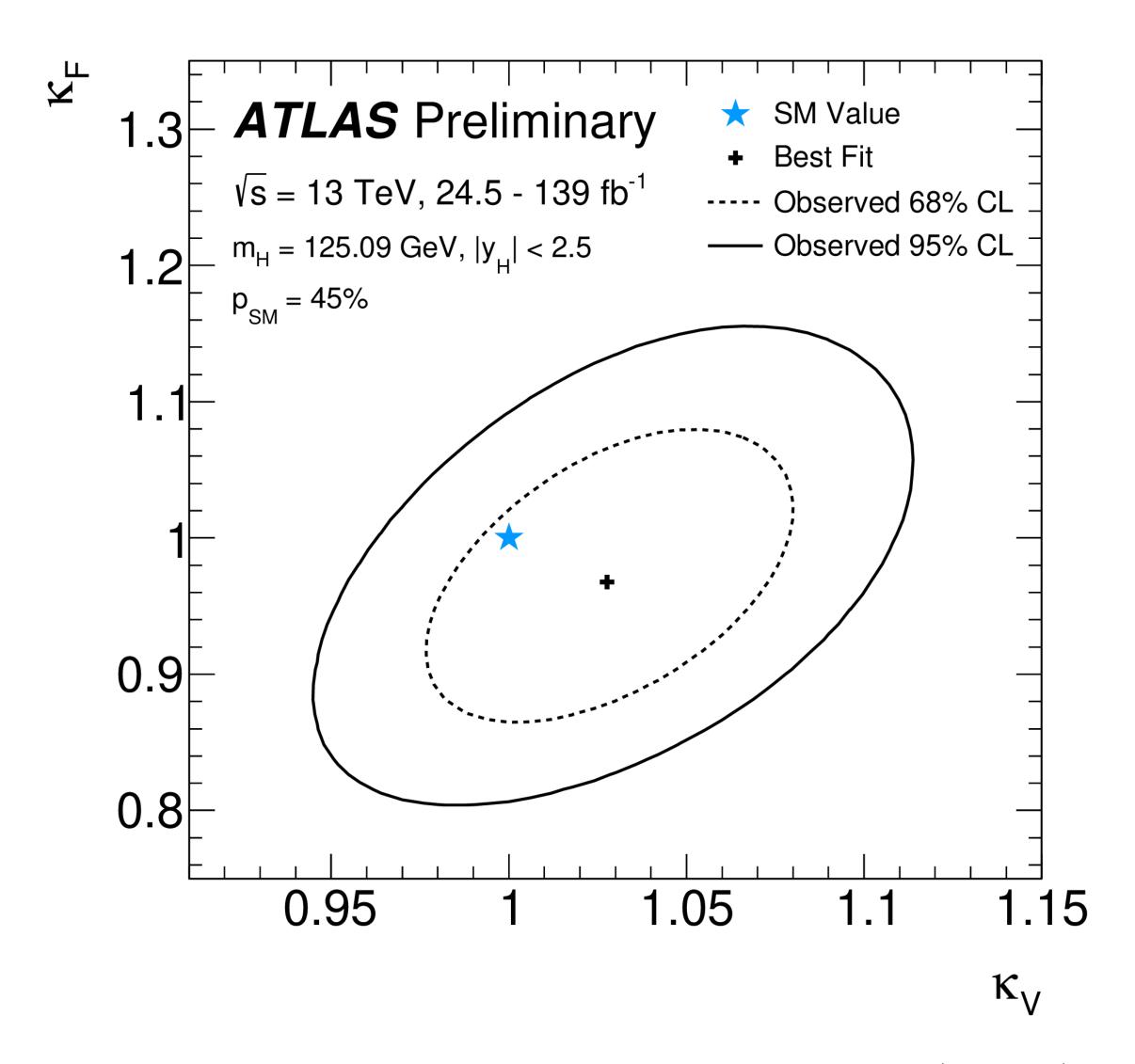


Fermion and gauge boson couplings: ky and k_F

- Study the universal coupling-strength of:
 - Gauge bosons Ky = KW = KZ
 - Fermions $\mathbf{K}_F = K_t = K_b = K_\mu = K_\tau$
- Assume no invisible or undetected decays and that $\kappa_{V, KF} > 0$
- Best-fit values:

$$\kappa_V = 1.03 \pm 0.03$$

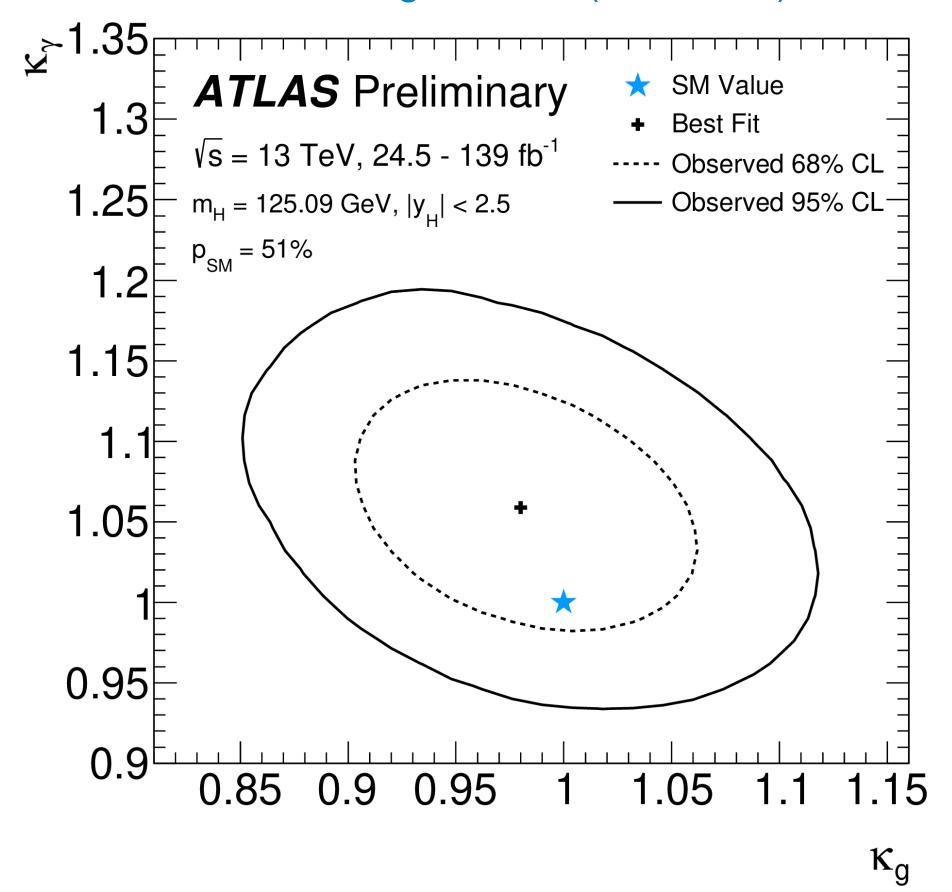
$$\kappa_F = 0.97 \pm 0.07$$



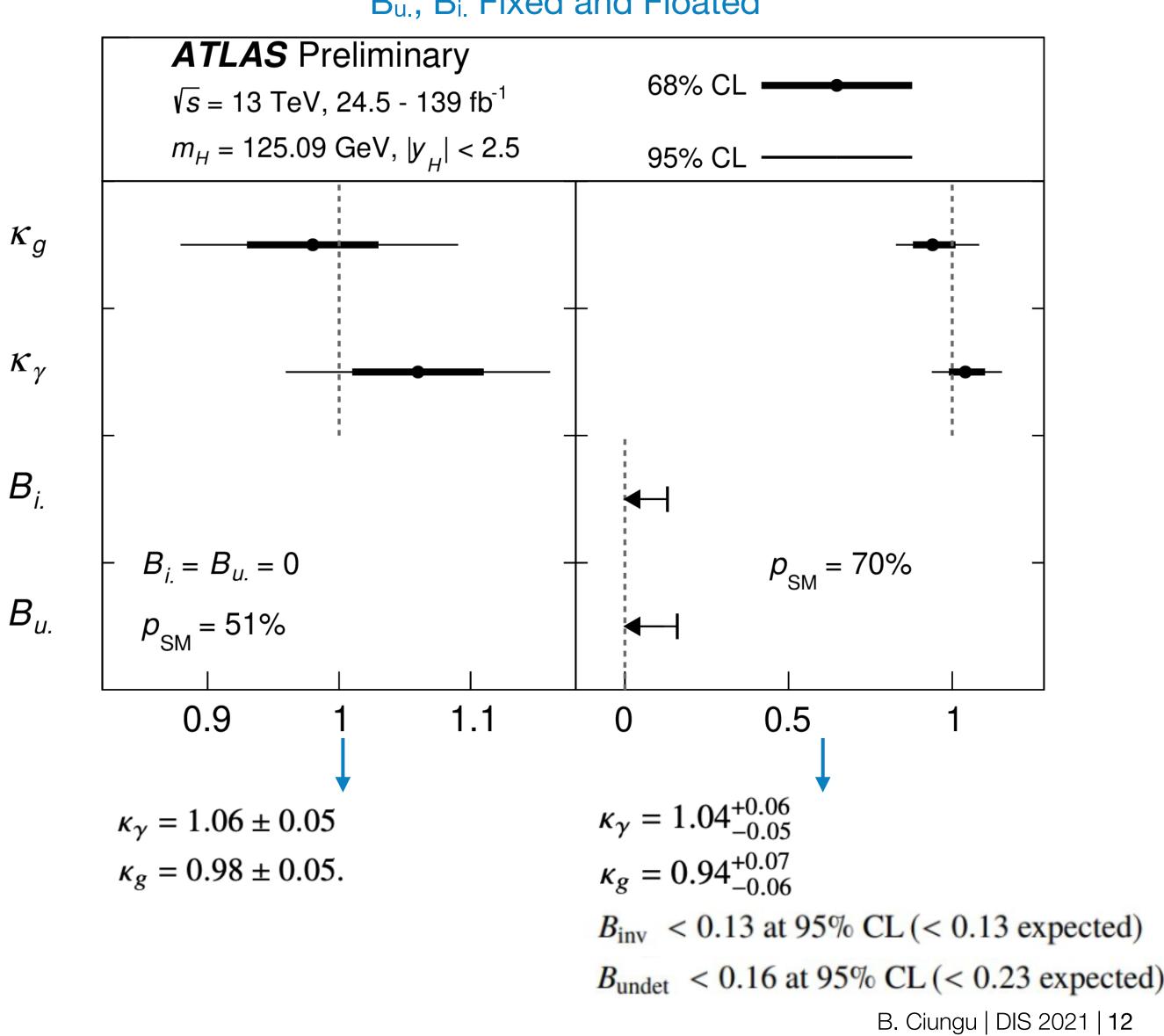
Probe BSM contributions in loops and decays: κ_g and κ_γ

- Effective couplings κ_g and κ_r are sensitive to new physics in loops
- Investigate two assumptions (B_{i.}, B_{u.} are fixed or floated)

Assuming no BSM ($B_{u.}$, $B_{i.} = 0$)

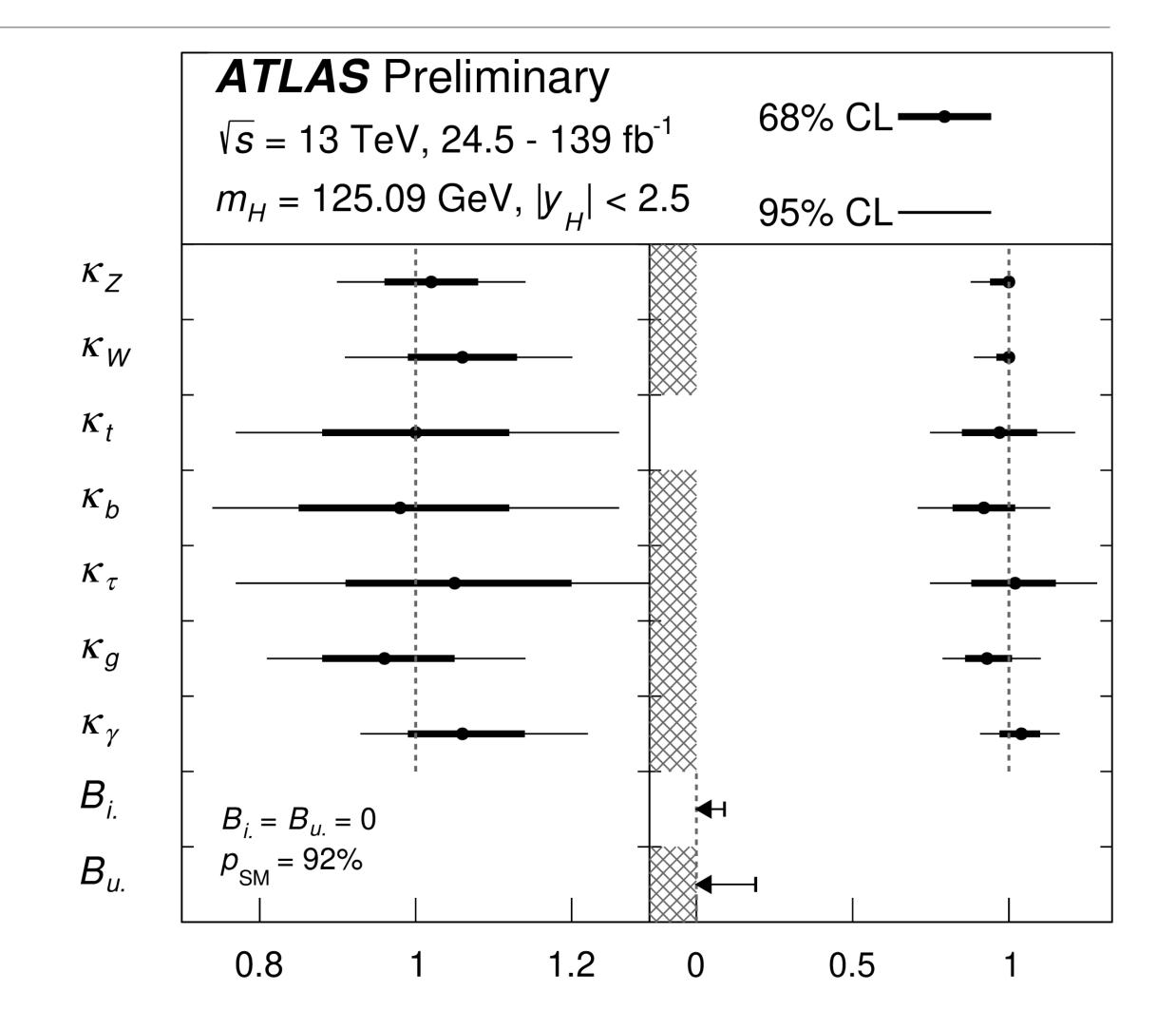


B_{u.}, B_{i.} Fixed and Floated



Generic parametrization

- Effective coupling-strength modifiers, κ_g and κ_{γ} , for loop processes
- Two scenarios considered B_{i.}, B_{u.} fixed and floated
 - Assume $|\kappa_V|$ < 1 to constrain undetected BR
- Negative κ_t excluded at a p-value of 0.0037 (or 2.7σ) assuming no BSM contributions to total width



k-framework Limitations

- Inherently leading order
- Missing sensitivity to differential information

Motivates use of frameworks such as EFT or models such as 2HDM, MSSM (backup slides) among others

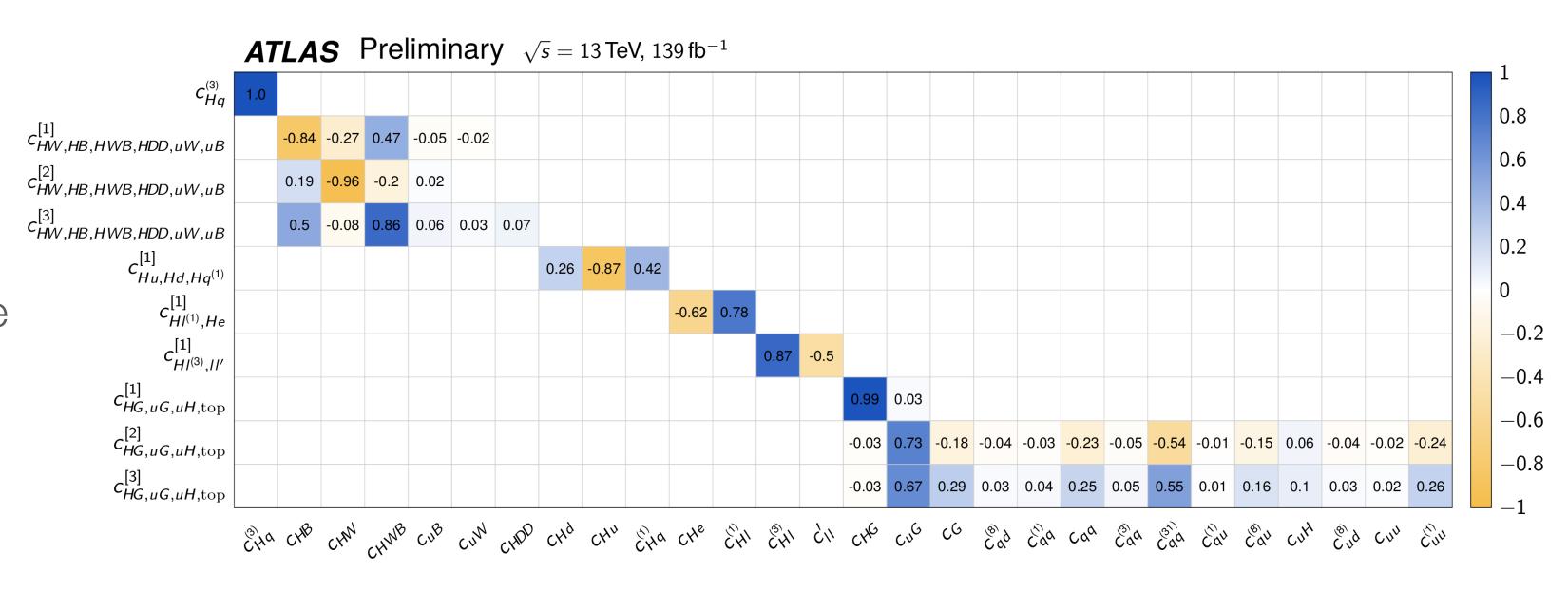
Interpretations: SM Effective Field Theory

- Model independent way to parametrize effects of BSM theories
- Parametrized as higher dimensional operators that respect SM symmetry → cross-sections measurements used to constrain Wilson cofficient (c_i) at fixed scale ($\Lambda = 1$ TeV)

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i}^{N_{d6}} \frac{c_i}{\Lambda^2} O_i^{(6)} + \sum_{j}^{N_{d8}} \frac{b_j}{\Lambda^4} O_j^{(8)} + \dots$$

Consider d = 6 operators using the Warsaw basis

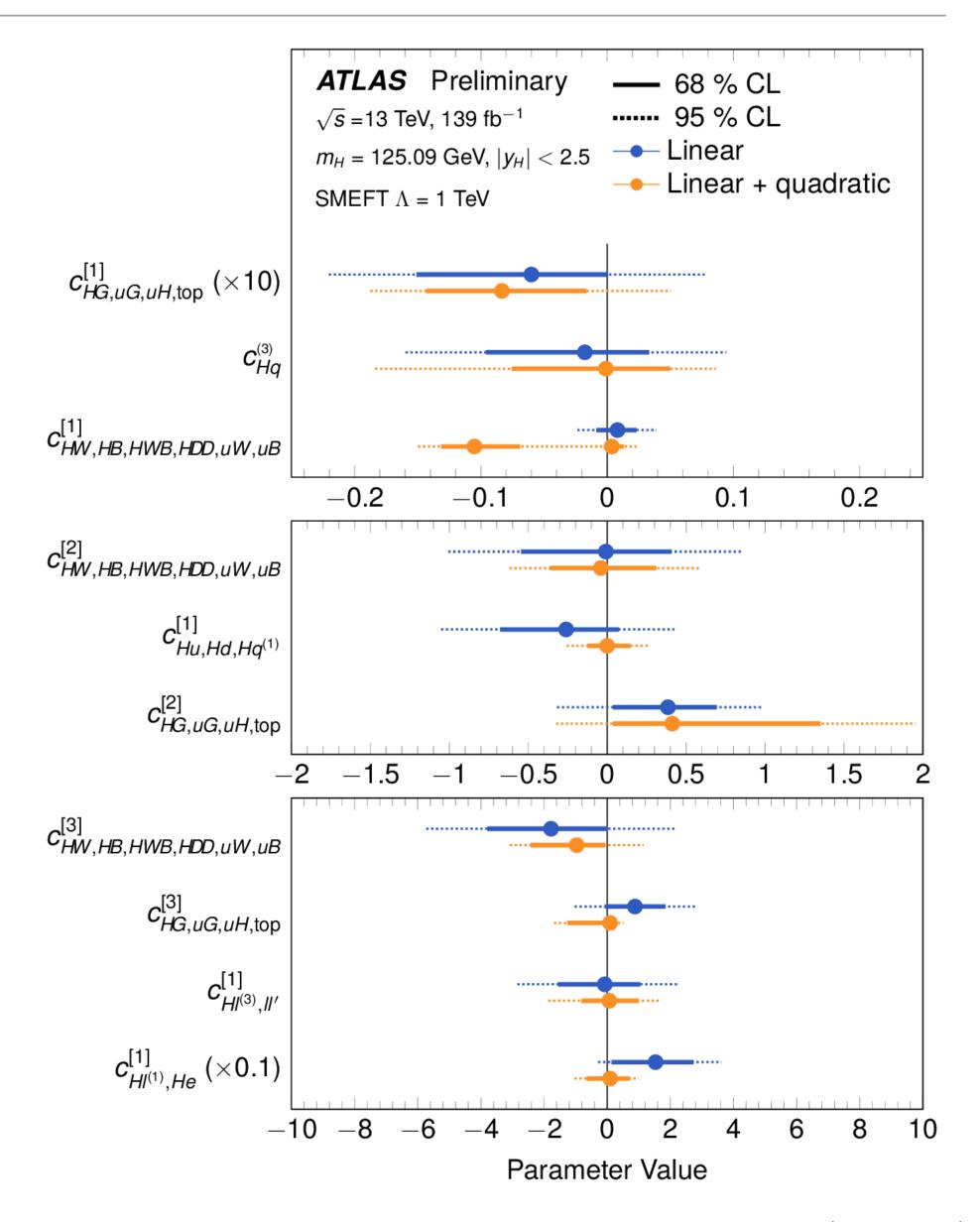
- Interpretations using full STXS scheme
- Probe as many c_i as possible
- Eigenvector decomposition to determine combinations of SMEFT operators analysis is sensitive to



SM Effective Field Theory

- Matrix element squared from d=6 operators have linear (c_i/Λ^{-2}) and quadratic ($c_i c_k / \Lambda^{-4}$) terms
- Parametrize (σ x B) using linear or linear+quadratic terms
 - For quadratic terms, interference with d = 8 operators not considered
- Including quadratic terms shows non-negligible influence
- All results compatible with the SM

For more details on combination: <u>ATLAS-CONF-2020-053</u>

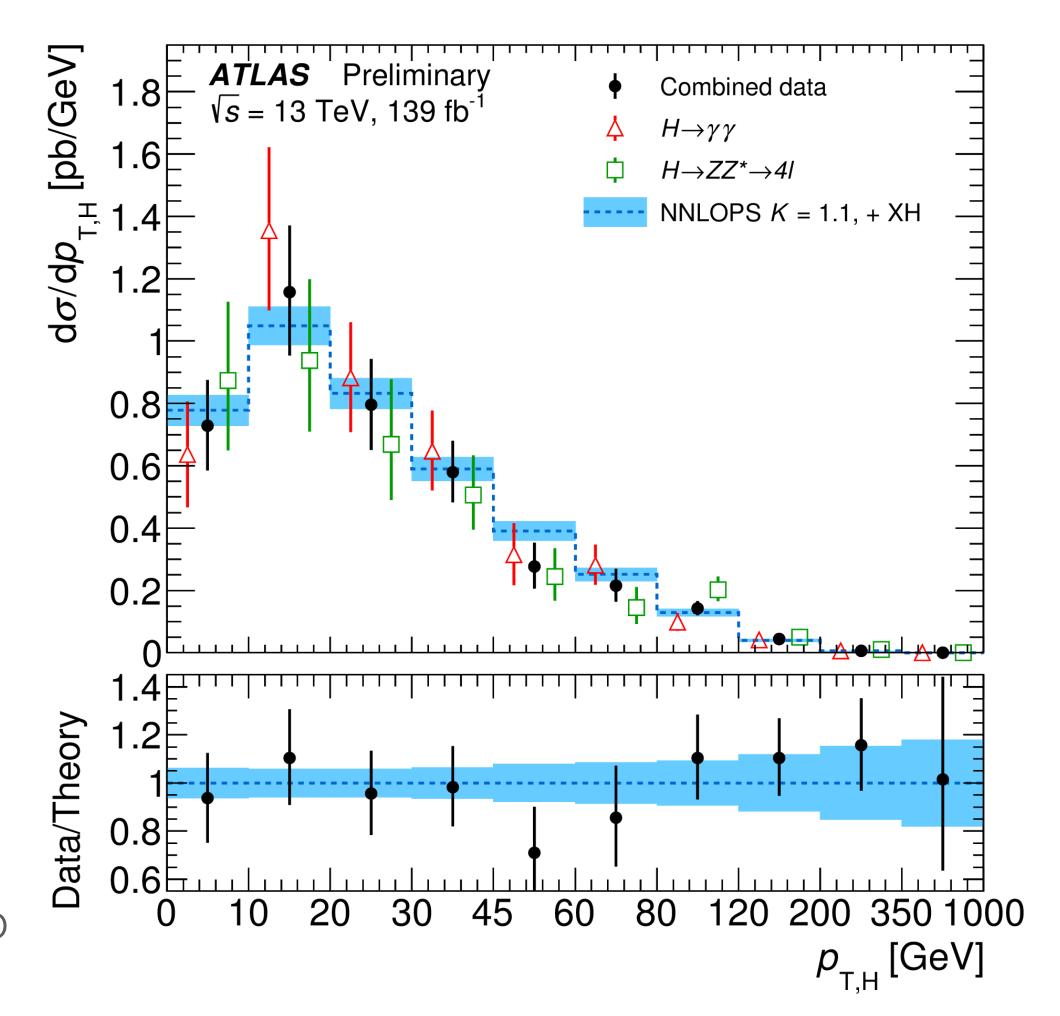


Differential combination: pt,H

- Measuring differential XS probes the SM and is largely model independent
 - Deviations in p_{T,H} distribution can indicate BSM physics such as:
 - Modified light quark coupling at low pt,H
 - New BSM particles in ggF loop at high pt,H
- Input results:

Analysis Decay Channel	Prod. Modes	\mathcal{L} [fb ⁻¹]	Link
$H o \gamma \gamma$	All	139	ATLAS-CONF-2019-029
$H o ZZ^*$	All	139	arXiv:1504.05833

- P-value of 78%, compatible with SM
- · More results to be added, detailed interpretations on combined to be performed
 - Other observables to be included in combination



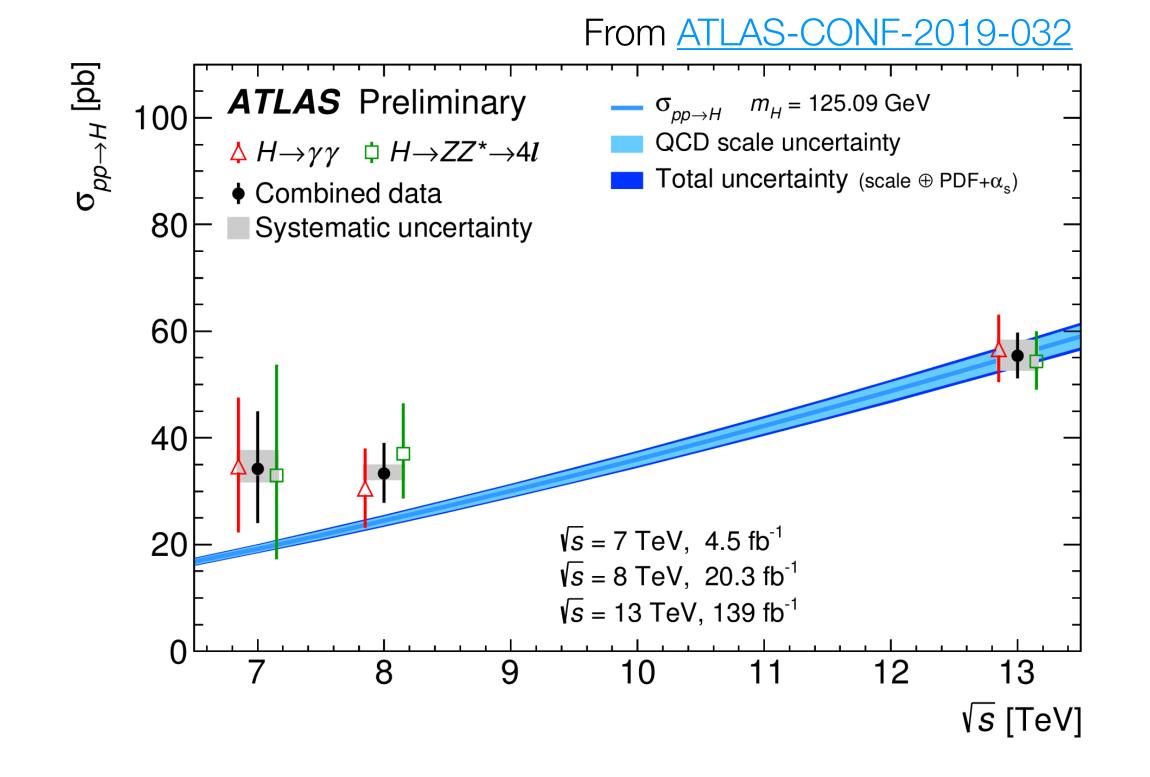
Summary

Couplings

- Extended to include full Run-2 results for several channels!
- Signal strength, production modes and branching ratios combined measurements made with latest available results from analyses
- Extended phase space measured in STXS!
- Interpretations of XS and BRs show consistency with SM

Differential

• p_{T,H} combination for $H \rightarrow ZZ^* \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$ show good agreement with SM

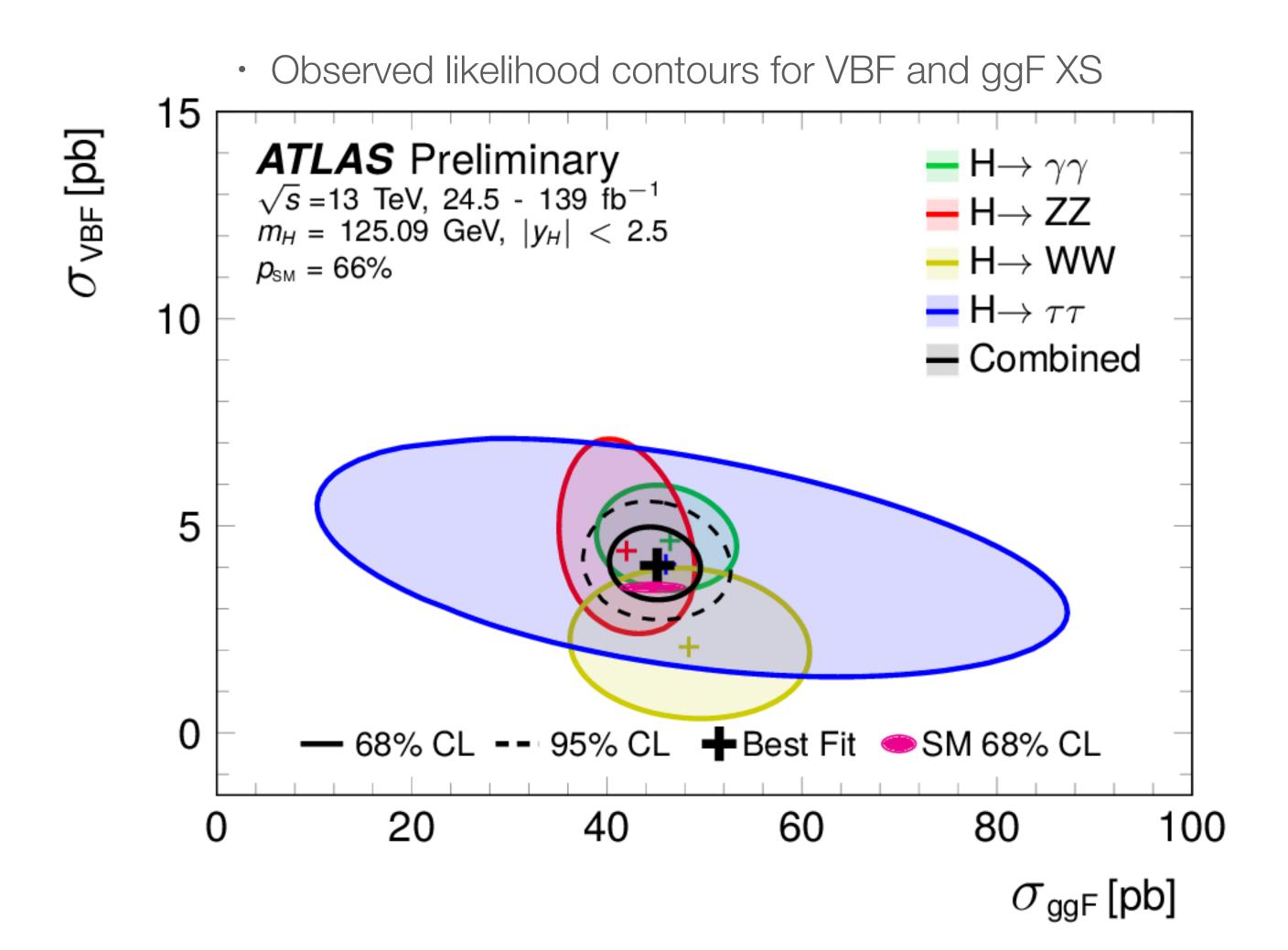


Outlook

- More full Run-2 results to be added to combinations soon!
 - Most recent H→WW (ATLAS-CONF-2021-014)
 - Increased precision in several regions of phase space with addition of analyses
- Combination work on other observables to come soon too!

Backup

Production mode measurements: Additional information

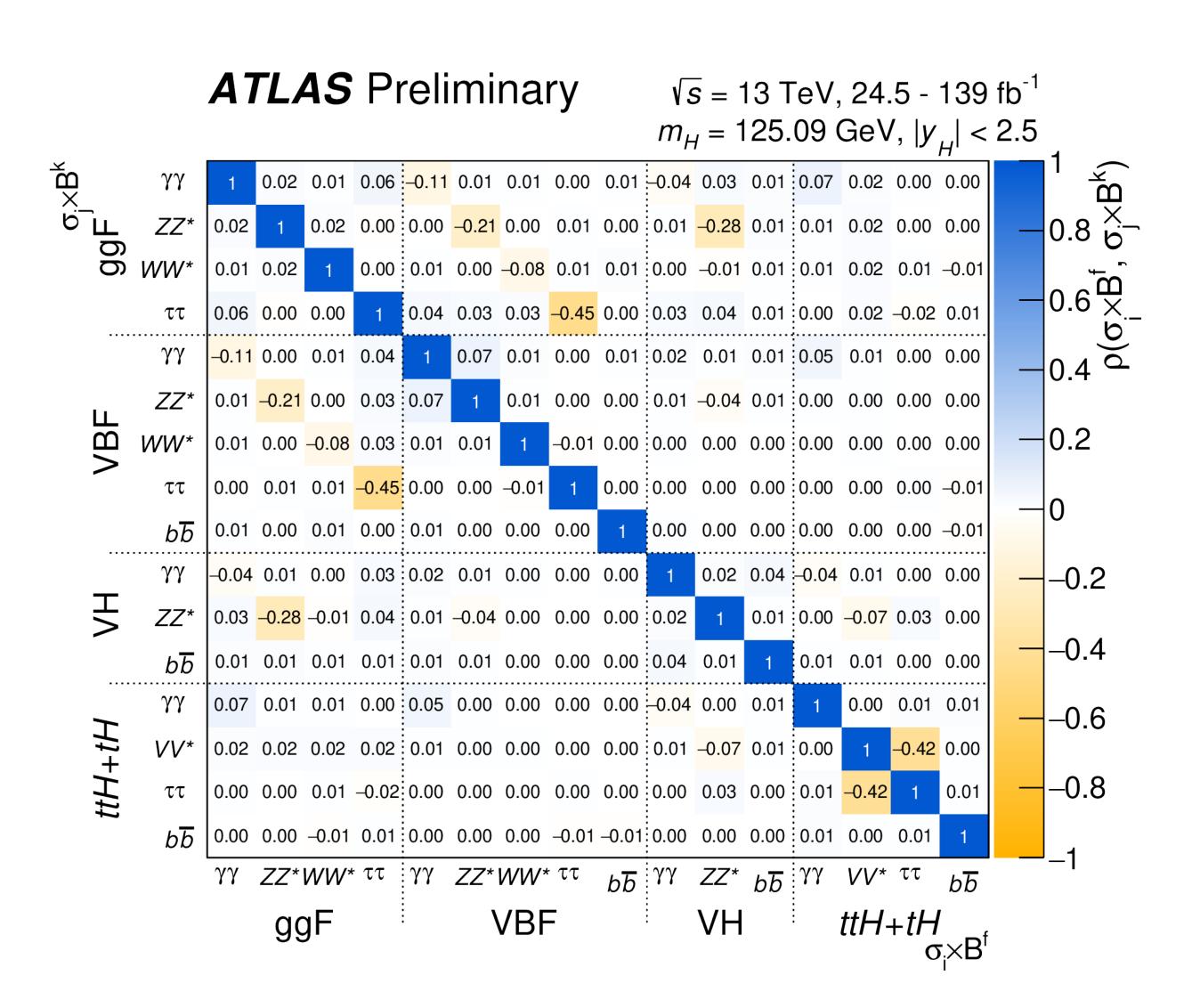


- Decomposition of uncertainty into components
- Systematic uncertainty approaching/same as statistical uncertainty

Process	Value		Uncertainty [pb]			SM pred.		
$(y_H <2.5)$	[pb]	Total	Stat.	Syst.	Exp.	Sig. Th.	Bkg. Th.	[pb]
ggF	44.7	± 3.1	± 2.2	± 2.2	+ 1.8	+ 1.0 - 0.9	+ 0.9 - 0.7	44.7 ± 2.2
VBF	4.0	± 0.6	± 0.5	± 0.4	+ 0.3	± 0.3	± 0.1	$3.51 + 0.08 \\ -0.07$
WH	1.45	+ 0.28 - 0.25	+ 0.20 - 0.19	+ 0.18 - 0.17	+ 0.13 - 0.12	+ 0.08 - 0.06	+ 0.10 - 0.09	1.204 ± 0.024
ZH	0.78	+ 0.18 - 0.17	± 0.13	+ 0.12 - 0.10	+ 0.08 - 0.07	+ 0.07 - 0.05	± 0.06	$0.797 {}^{+\ 0.033}_{-\ 0.026}$
$t\bar{t}H + tH$	0.64	± 0.12	± 0.09	± 0.08	+ 0.06 - 0.05	+ 0.03 - 0.02	± 0.05	$0.59 ^{+ 0.03}_{- 0.05}$

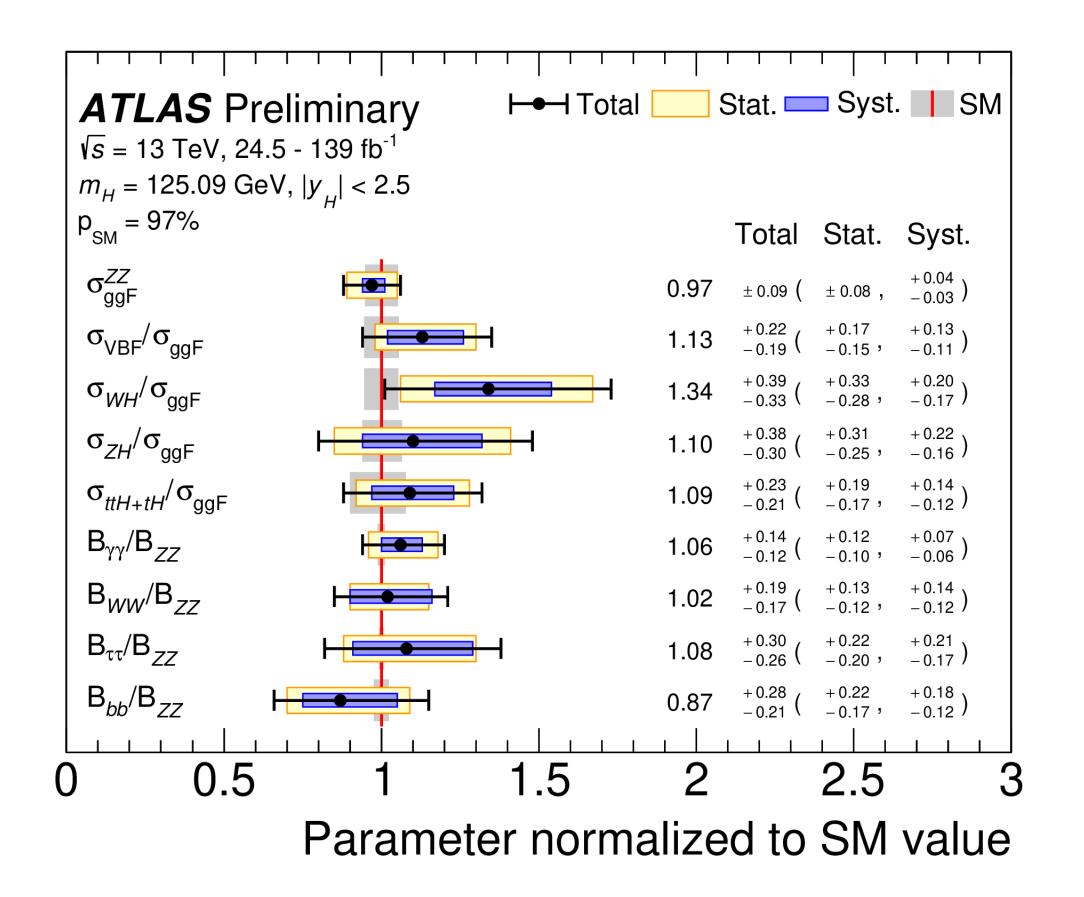
Production mode and branching ratios correlation matrix

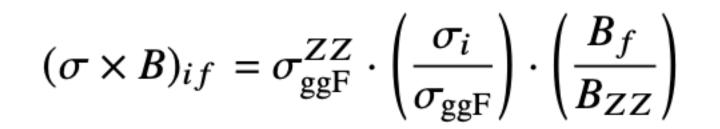
- Can also test the SM by measuring (σ x B)_{if}
- Statistically limited channels are fixed to the SM
 - ggF→H→bb
 - VH, H → WW/ττ
- Relative fraction of ZH and WH fixed to the SM
- Good agreement with the SM (p-value of 87%)

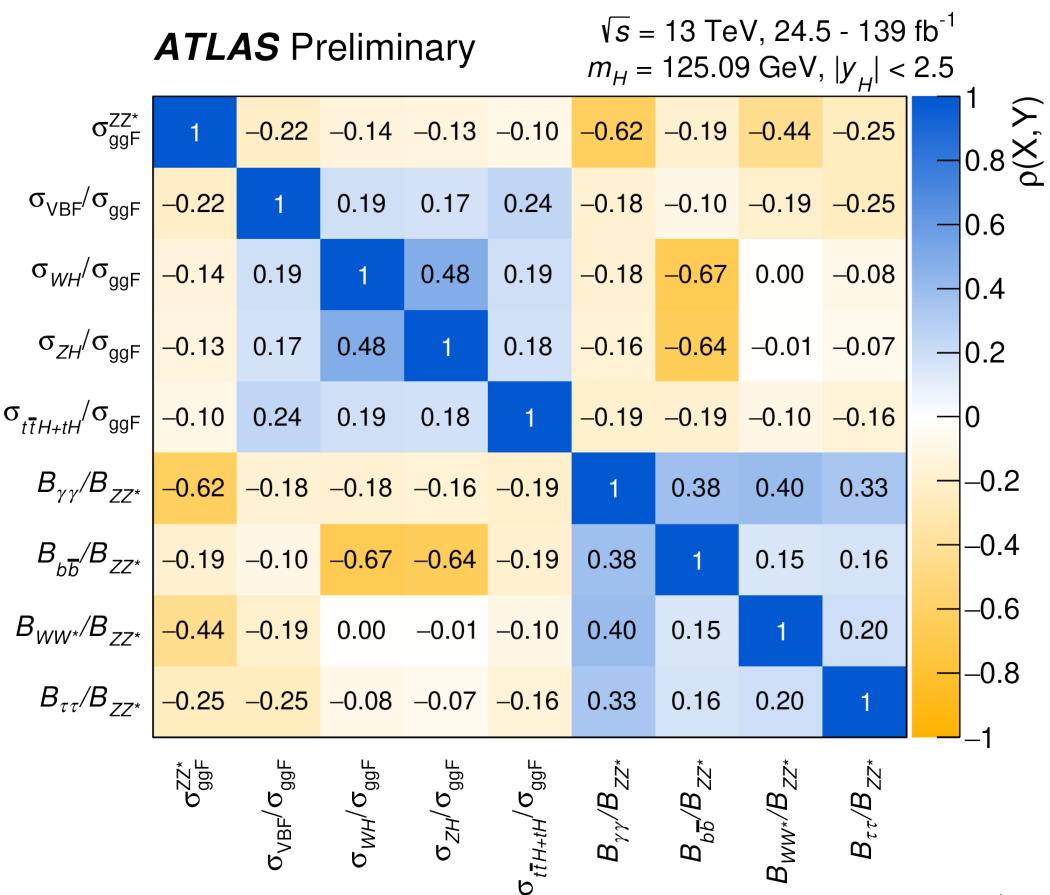


Production mode and branching ratios: ratio model

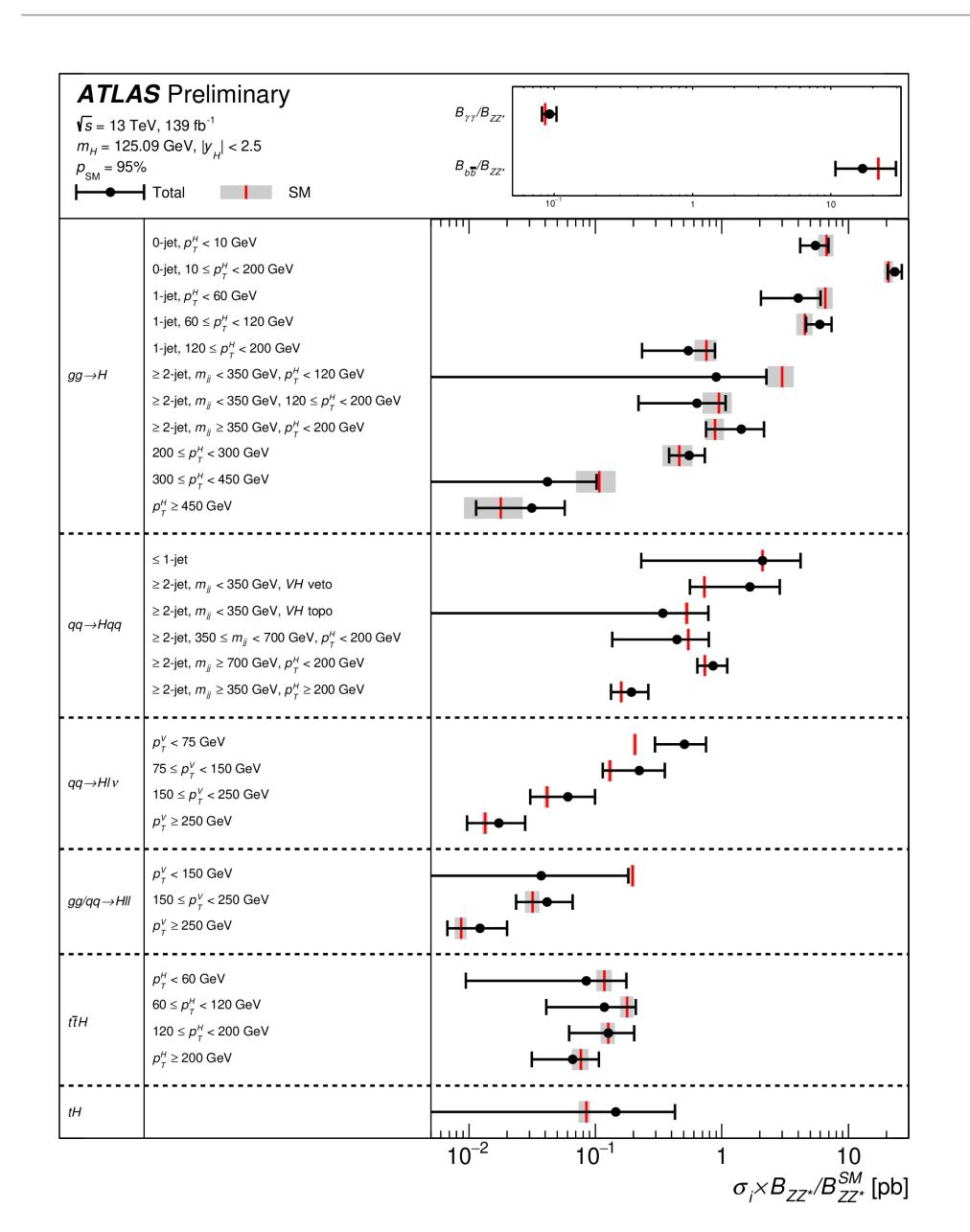
- Can also measure (σ x B)_{if} with respect to a reference process
- $gg \rightarrow H \rightarrow 4\ell$ chosen due to its small experimental uncertainties
 - Systematics cancel in the ratio!

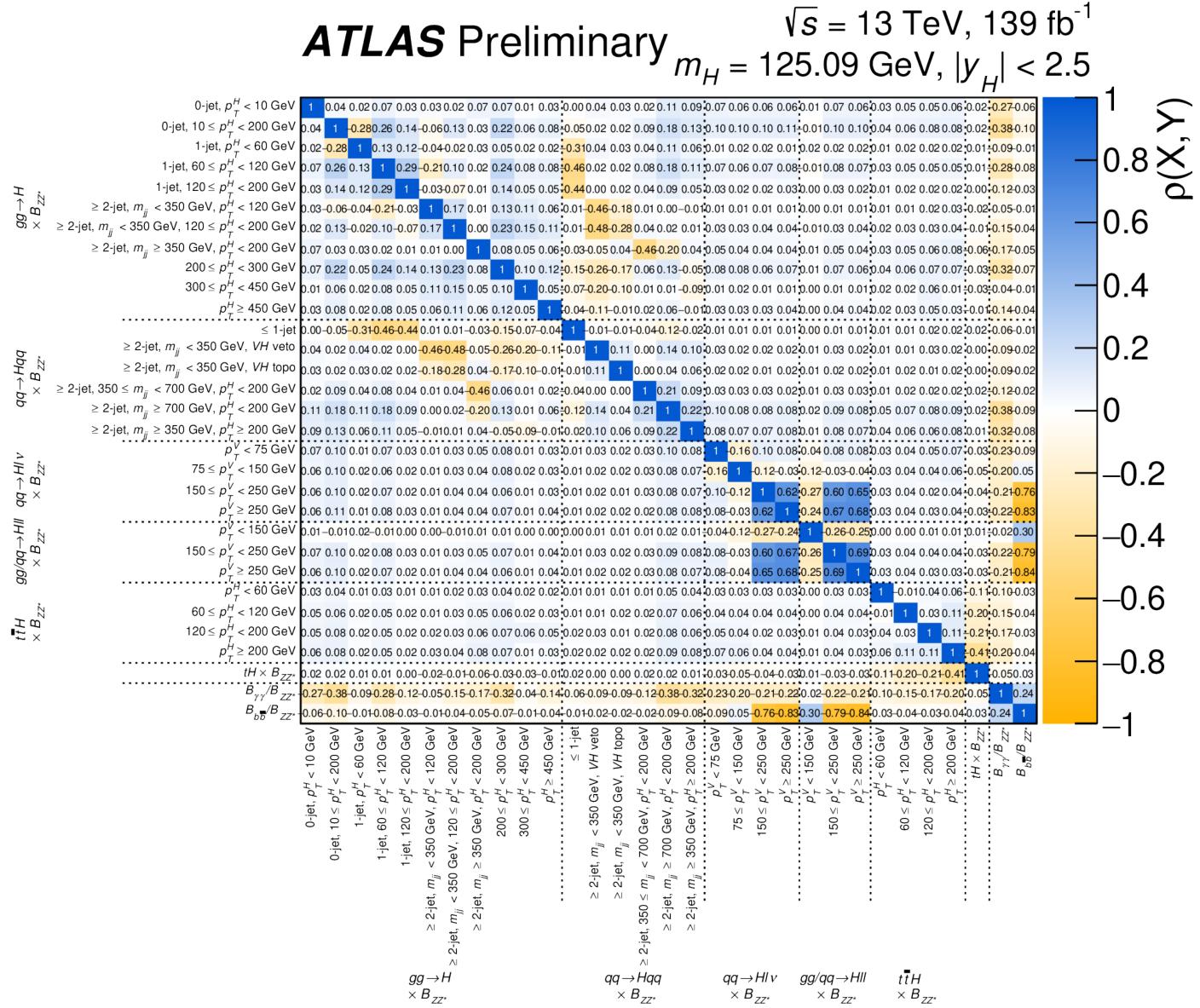






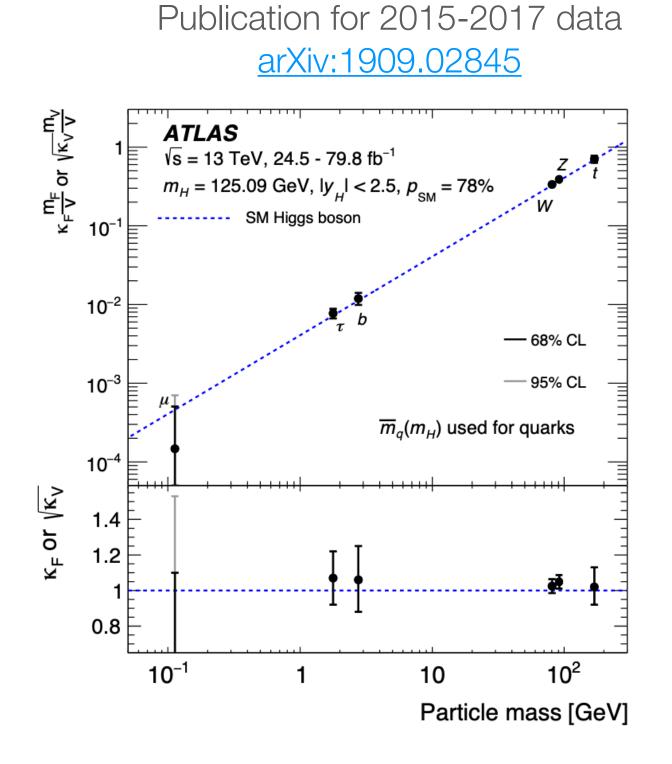
Additional results: STXS

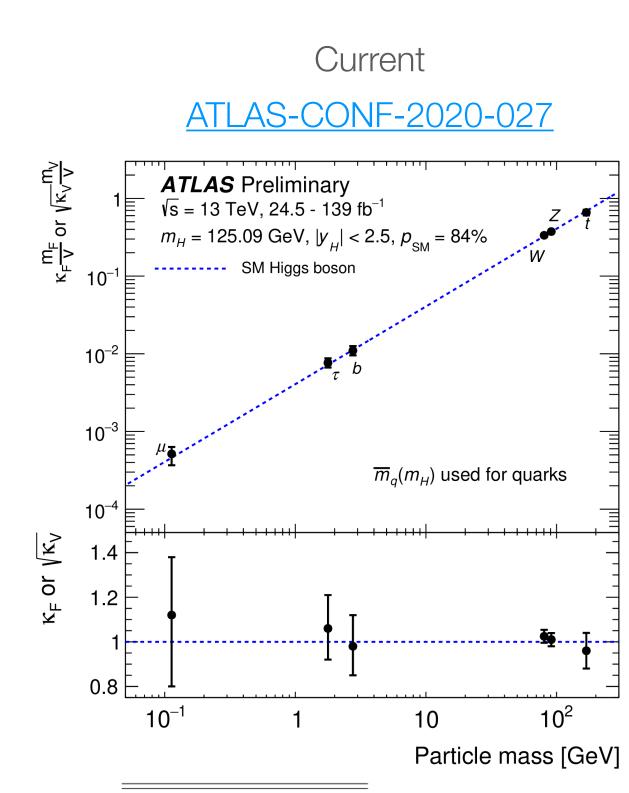




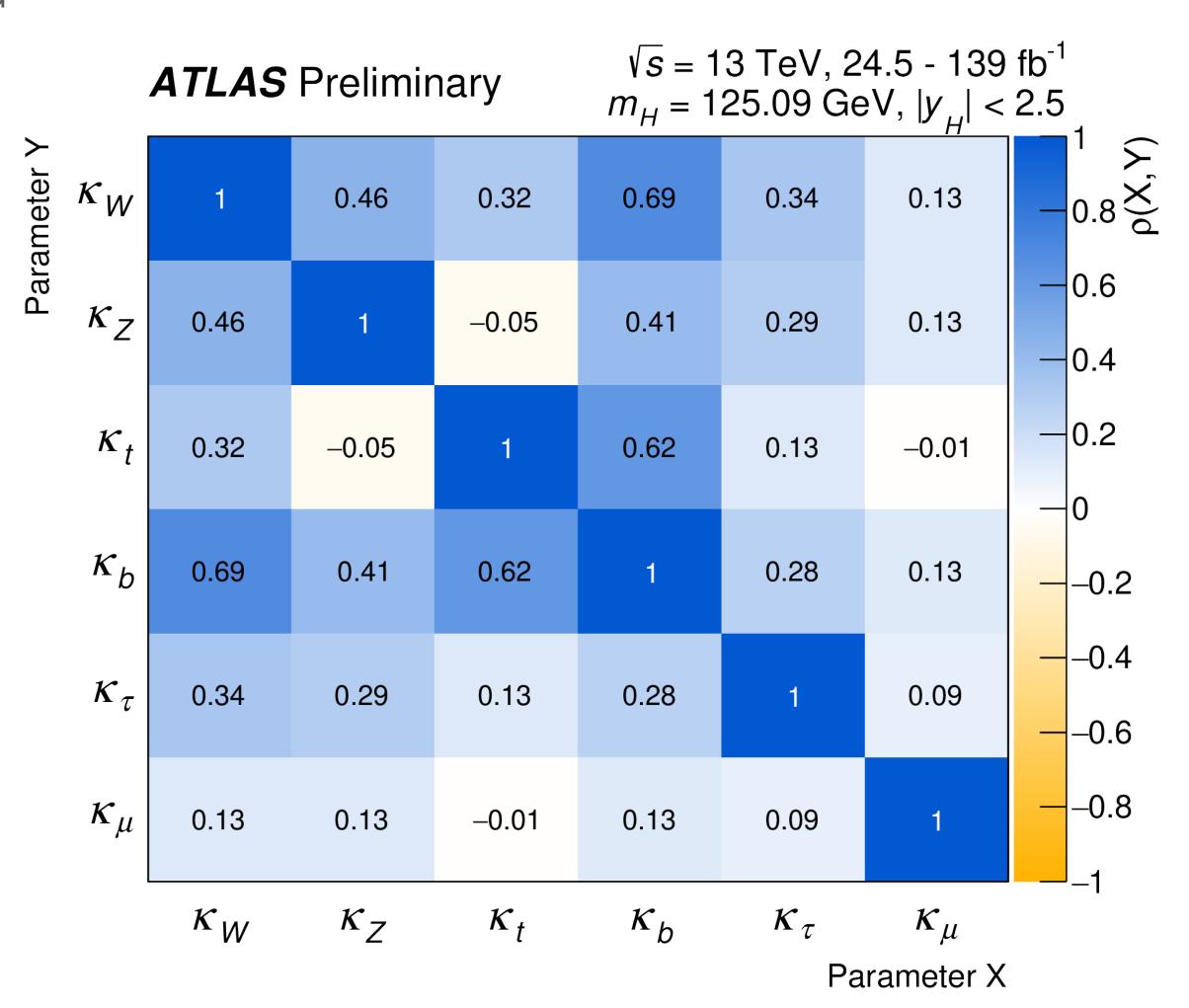
Generic parametrization

Excluding BSM couplings, fit for κ for W, Z, t, b, τ and μ



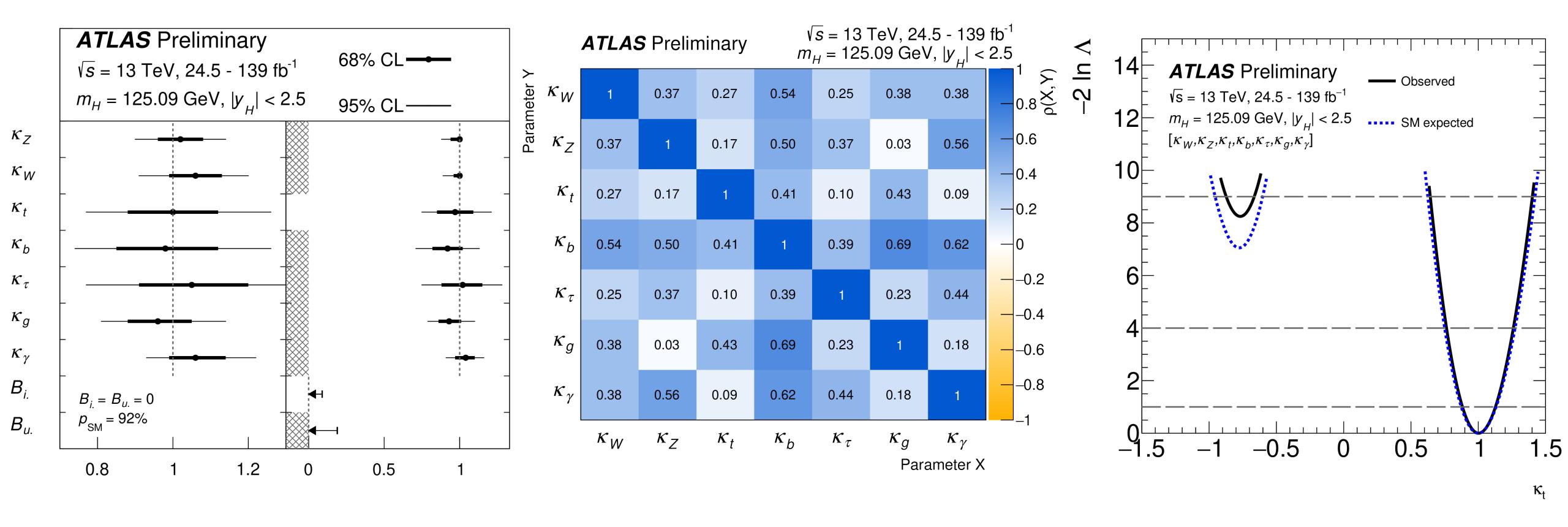


Parameter	Result
κ_Z	1.02 ± 0.06
κ_W	1.05 ± 0.06
κ_b	$0.98^{+0.14}_{-0.13}$
κ_t	0.96 ± 0.08
$\kappa_{ au}$	$1.06^{+0.15}_{-0.14}$
κ_{μ}	$1.12 ^{+\ 0.26}_{-\ 0.32}$



Generic parametrization: float effective couplings

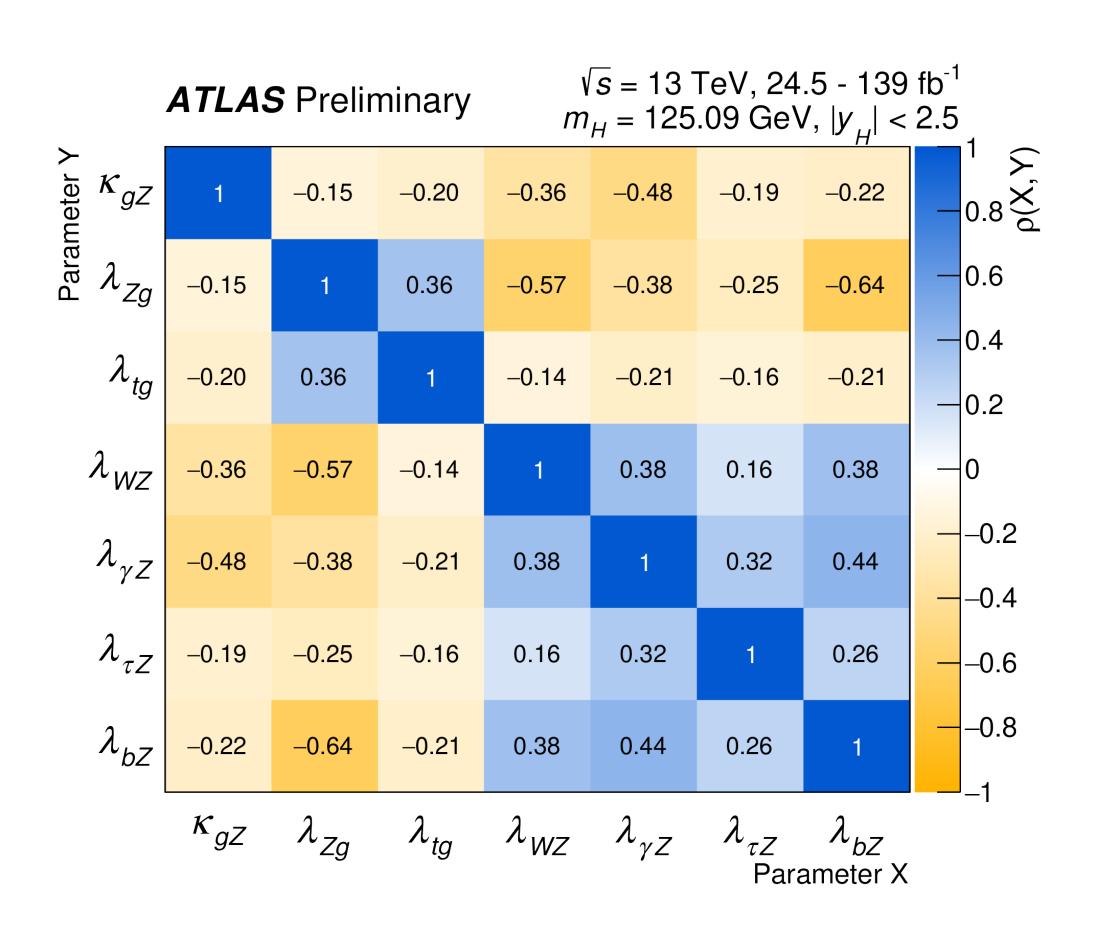
- Effective coupling-strength modifiers, κ_g and κ_γ , for loop processes
- Negative κ_t excluded at 2.9σ (2.7σ expected) assuming no BSM contributions to total width



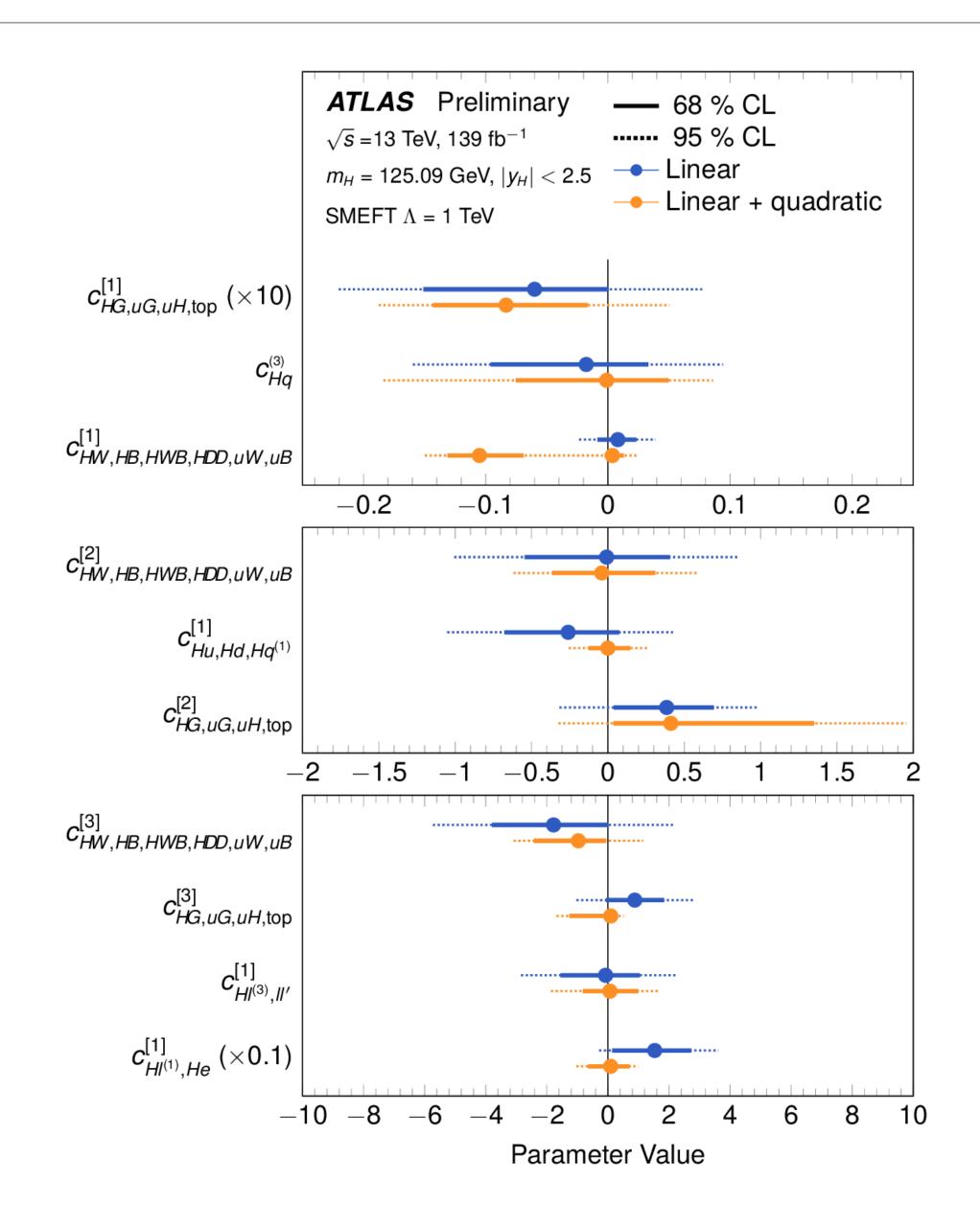
Generic parametrization using ratios

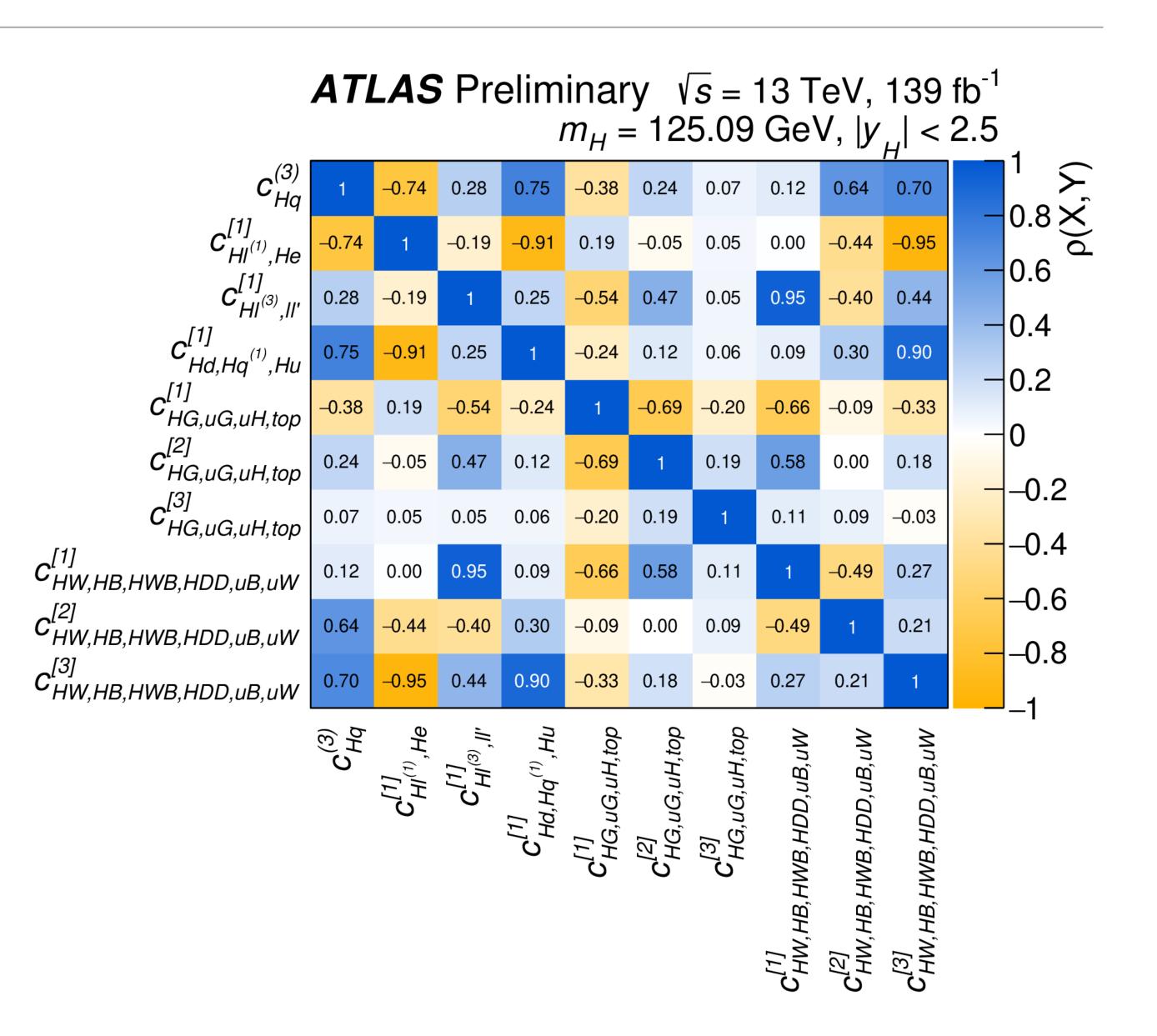
- Express coupling-strength $(\kappa_t, \kappa_b, \kappa_\tau, \kappa_W, \kappa_Z)$ and effective loop $(\kappa_g, \kappa_\gamma)$ scale factors as ratios to $gg \to H \to ZZ^*$
 - Ratios are independent of assumptions on total width
- λwz should be 1
 - required by SU(2) custodial symmetry and
 - p measurements at LEP and Tevatron
- $\lambda \gamma z$ sensitive to charge particle contribution in loops
- λ_{tg} sensitive to new coloured particles in ggF loop

Parameter	Definition in terms of κ modifiers	Result
κ_{gZ}	$\kappa_g \kappa_Z / \kappa_H$	0.98 ± 0.05
λ_{tg}	κ_t/κ_g	1.04 ± 0.12
λ_{Zg}	κ_Z/κ_g	$1.06^{+0.12}_{-0.11}$
λ_{WZ}	κ_W/κ_Z	$1.04 {}^{+\ 0.08}_{-\ 0.07}$
$\lambda_{\gamma Z}$	$\kappa_{\gamma}/\kappa_{Z}$	$1.04 {}^{+\ 0.07}_{-\ 0.06}$
$\lambda_{ au Z}$	$\kappa_{ au}/\kappa_{Z}$	1.04 ± 0.13
λ_{bZ}	κ_b/κ_Z	$0.96^{+0.12}_{-0.11}$



SMEFT Correlation matrix

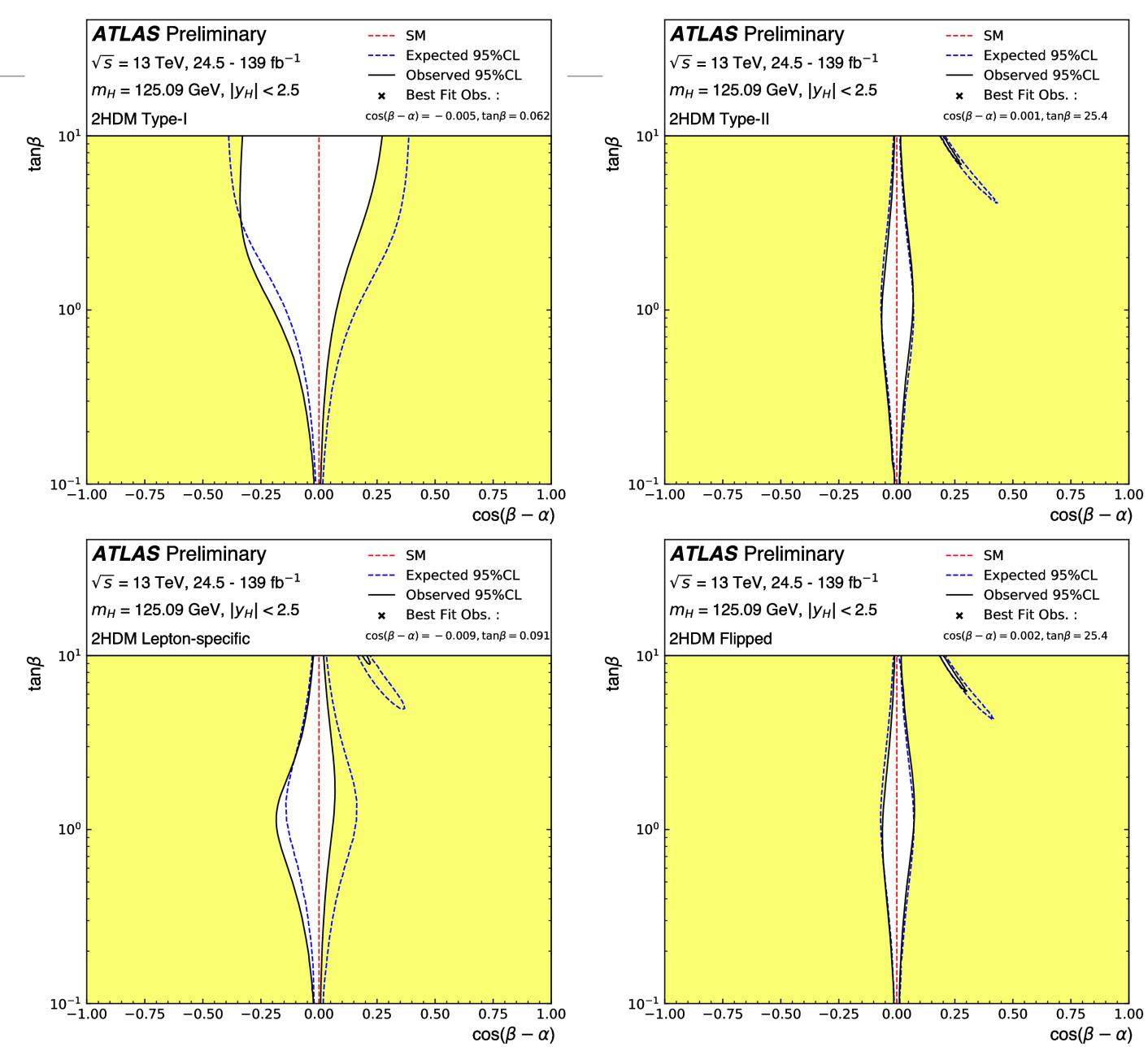




2HDM

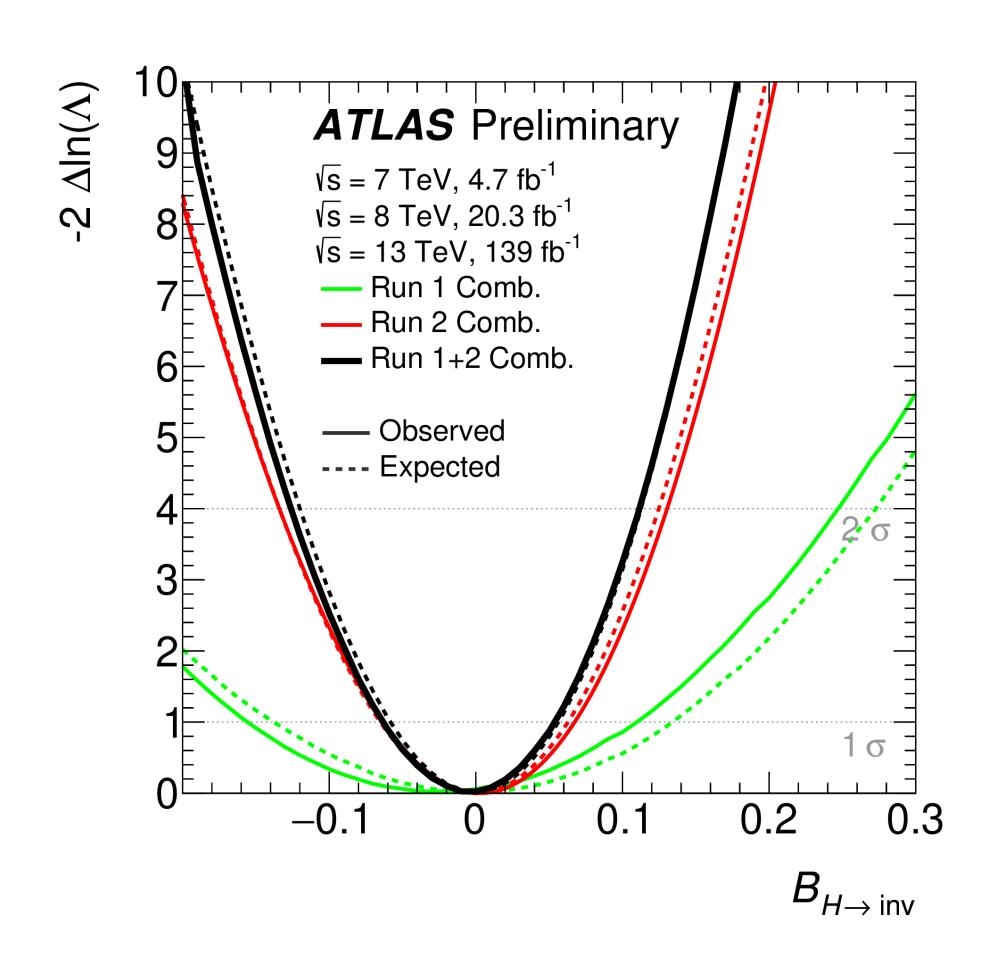
- Can interpret results in 2HDM
 - Reparametrization of κ_Z , κ_b , κ_W , κ_t , κ_τ , and κ_μ
- Use coupling to each SM particle, assume no BSM contribution to total width

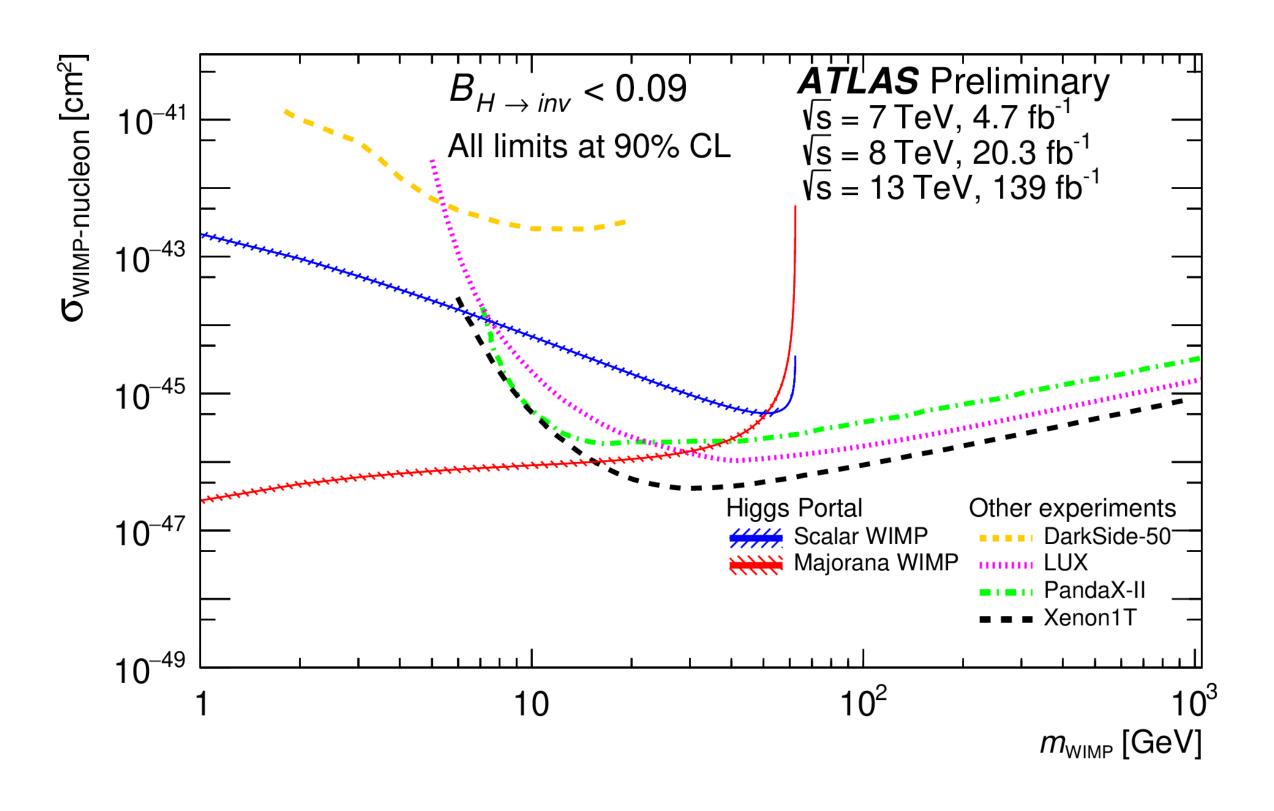
- A. Type I: One Higgs doublet couples to vector bosons, other couples to fermions
- B. Type II: One Higgs doublet couples to up-type quarks and other to down-type quarks and charged leptons
- C. Lepton-specific: The Higgs bosons have the same coupling to quarks as in Type I and to charged leptons as in Type II
- D. Flipped: The Higgs bosons have the same couplings to quarks as in Type II model and to charged leptons as in Type I



B-Inv

Provides a complementary search space to direct-search experiments





SM EFT diagrams

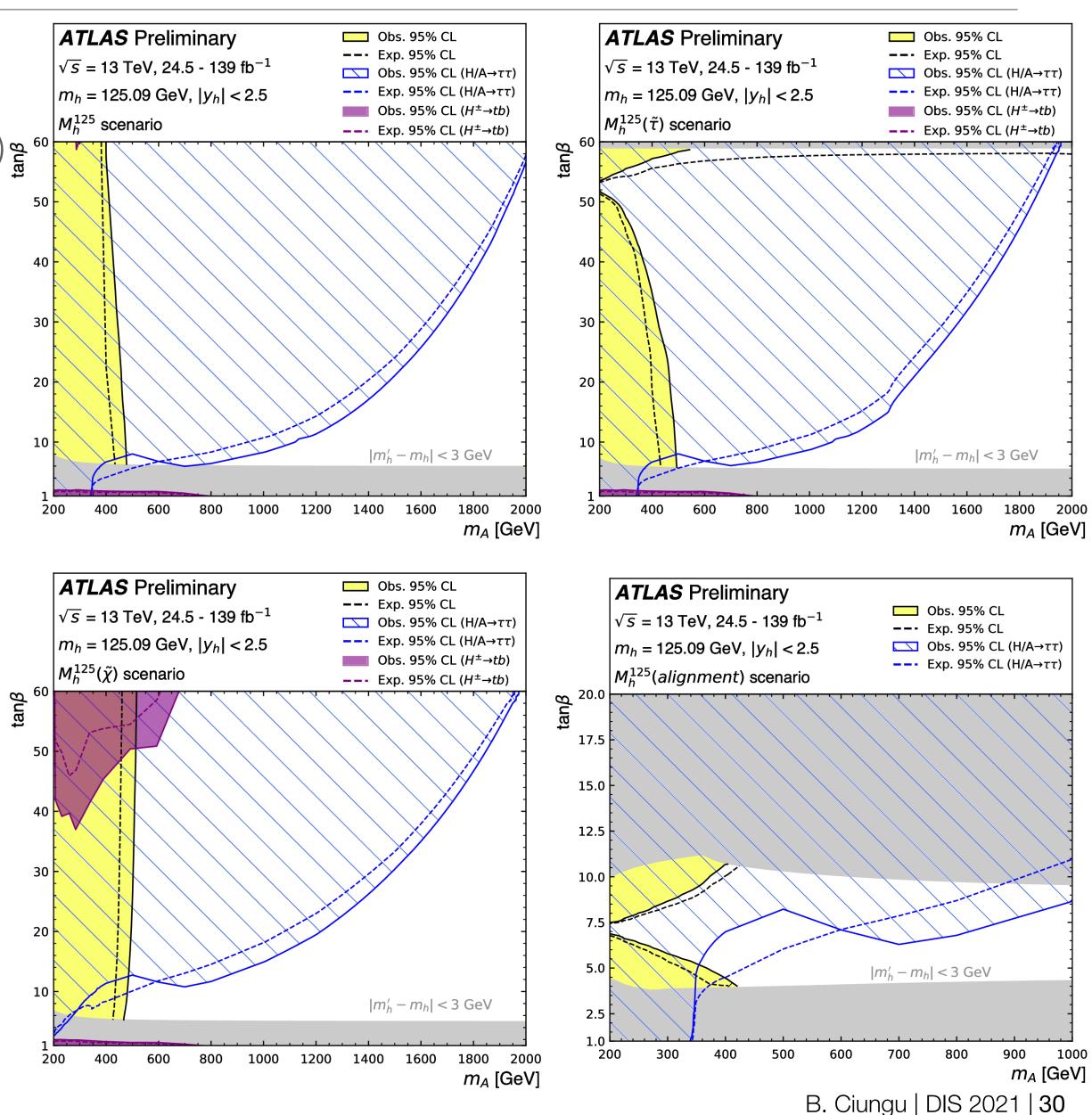
Coofficient	Onomaton	Evamula process
Coefficient	Operator	Example process
c_{HDD}	$\left(H^\dagger D^\mu H\right)^* \left(H^\dagger D_\mu H\right)$	$q \xrightarrow{Z} q$
CHDD	$(II \mathcal{D} II) (II \mathcal{D}_{\mu}II)$	Z > H
		$\frac{q \rightarrow \cdots q}{q}$
c_{HG}	$H^\dagger HG^A_{\mu u}G^{A\mu u}$	в Э <i>Н</i>
110	$\mu \nu$	g C
		$q \xrightarrow{q} q$
c_{HB}	$H^\dagger H \ B_{\mu u} B^{\mu u}$	$Z \rightarrow \cdots H$
		$q \xrightarrow{Z >} q$
	rrt rr rrd rrduv	$q \xrightarrow{W} q$
c_{HW}	$H^\dagger H W^I_{\mu u} W^{I \mu u}$	$W \cdot \cdot$
		$q \xrightarrow{\gamma \leftarrow} q$
Crrre	$H^\dagger au^I H W^I_{\mu u} B^{\mu u}$	$q \xrightarrow{\gamma \leqslant} q$
c_{HWB}	$H \leftarrow H W_{\mu\nu} B$	Z > H
		$q \longrightarrow q$
c_{eH}	$(H^\dagger H)(ar{l}_p e_r H)$	Н₹ с
		₹ ℓ
c ⁽¹⁾	$(H^\dagger i \overleftrightarrow{D}_\mu H) (\bar{l}_p \gamma^\mu l_r)$	$q \setminus Z \neq \ell$
$c_{Hl}^{ ilde{\scriptscriptstyle (1)}}$	$(II \ \iota D_{\mu}II)(\iota_p f \ \iota_r)$	$q \nearrow \bigvee \stackrel{\ell}{\longleftrightarrow} \stackrel{\ell}{H}$
- Ch	. ↔	$q \sim w \neq v$
$c_{Hl}^{_{(3)}}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	\sim ℓ
		<i>q</i> ' ` <i>H</i>
c_{He}	$(H^\dagger i \overleftrightarrow{D}_\mu H) (\bar{e}_p \gamma^\mu e_r)$	$q \searrow_{Z} \swarrow_{e}^{e}$
ne	$\zeta = \mu^{-\gamma} \langle \gamma \rangle \gamma^{-\gamma} \gamma^{\gamma}$	$q \nearrow {}^{\vee} \stackrel{\epsilon}{\searrow} H$
	. ↔	a , Z_{r} ℓ
$c_{Hq}^{{\scriptscriptstyle (1)}}$	$(H^\dagger i \overleftrightarrow{D}_\mu H) (\bar{q}_p \gamma^\mu q_r)$, Sing 6
		<i>q</i> / H
c ⁽³⁾	$(H^{\dagger}; \overrightarrow{D} I H)(\overline{a}, \pi^{I} \circ \mu_{\alpha})$	$q \bigvee_{k} \ell$
$c_{m{H}m{q}}^{ ext{ iny (3)}}$	$(H^\dagger i \overleftrightarrow{D}_\mu^I H) (\bar{q}_p \tau^I \gamma^\mu q_r)$	No - A
		$q \sim H$
c_{Hu}	$(H^\dagger i \overleftrightarrow{D}_\mu H) (\bar{u}_p \gamma^\mu u_r)$	$u \leftarrow \ell$
		$u \nearrow^{\sim} H$
		d. Zrl
c_{Hd}	$(H^\dagger i \overleftrightarrow{D}_\mu H) (\bar{d}_p \gamma^\mu d_r)$	" Dire 6
		$d \nearrow H$
		a' H

 Most relevant EFT operators affecting Higgs boson production and decay in the considered phase space with examples

Coefficient	Operator	Example process
c_{uG}	$(\bar{q}_p\sigma^{\mu\nu}T^Au_r)\widetilde{H}G^A_{\mu\nu}$	$g \xrightarrow{t} t$
c_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{H} W^I_{\mu\nu}$	q Z t t
c_{uB}	$(\bar{q}_p\sigma^{\mu\nu}u_r)\widetilde{H}B_{\mu\nu}$	$q \nearrow \sqrt{\bar{t}} H$
$c_{m{q}m{q}}^{{\scriptscriptstyle (1)}}$	$(\bar{q}_p\gamma_\mu q_t)(\bar{q}_r\gamma^\mu q_s)$	
$c_{m{q}m{q}}^{ ext{ iny (3)}}$	$(ar{q}_p \gamma_\mu au^I q_r) (ar{q}_s \gamma^\mu au^I q_t)$	
c_{qq}	$(ar q_p \gamma_\mu q_t) (ar q_r \gamma^\mu q_s)$	
$c_{m{q}m{q}}^{ ext{ iny (31)}}$	$(\bar{q}_p \gamma_\mu au^I q_t) (\bar{q}_r \gamma^\mu au^I q_s)$	
c_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	$q \underbrace{t}_{t} H$
$c_{uu}^{{\scriptscriptstyle (1)}}$	$(\bar{u}_p \gamma_\mu u_t)(\bar{u}_r \gamma^\mu u_s)$	$q \xrightarrow{t}^{t}$
$c_{m{qu}}^{{\scriptscriptstyle (1)}}$	$(\bar{q}_p \gamma_\mu q_t)(\bar{u}_r \gamma^\mu u_s)$	
$c_{ud}^{^{(8)}}$	$(\bar{u}_p \gamma_\mu T^A u_r)(\bar{d}_s \gamma^\mu T^A d_t)$	
$c_{m{qu}}^{^{(8)}}$	$(\bar{q}_p \gamma_\mu T^A q_r)(\bar{u}_s \gamma^\mu T^A u_t)$	
$c_{m{q}m{d}}^{^{(8)}}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$	
c_G	$f^{ABC}G_{\mu}^{A u}G_{ u}^{B ho}G_{ ho}^{C\mu}$	$g \xrightarrow{g} \frac{t}{\bar{t}} H$

Minimal supersymmetric extension of SM (MSSM)

- Supersymmetry is theoretically motivated to address unanswered questions in the SM
- Minimal SUSY (MSSM) predicts partners for SM states and two SU(2) $_{\rm T}$ for doubles which both acquire a VEV, v₁ and v₂ with ratio $\beta=\nu_2/\nu_1$
- Over 100 parameters in MSSM but under certain assumptions can reduce the parameter space
- Observed Higgs boson in light CP-even Higgs boson h of MSSM
- 1. M_h^{125} : Superparticles are so heavy that production/decay of MSSM Higgs bosons are only mildly affected
- 2. $M_h^{125}(\tilde{\tau})$: Light staus and gaugino-like charginos and neutrinos
- 3. $M_h^{125}(\tilde{\chi})$: Chargino & neutralinos relatively light with significant higgsino-gaugino mixing
- 4. M_h^{125} (alignment): For a given $\tan(\beta)$, one of the two neutral CP-even scalars has SM-like couplings independently of the mass spectrum of the remaining Higgs bosons



Minimal supersymmetric extension of SM (MSSM)

- 5. $M_{h,EFT}^{125}$ scenario: characterized by a flexible mass scale of the superpartners. In 1-4 sfermions are tried to TeV scale. To reopen $\tan(\beta)$ <5 the sfermion mass scale is adjusted dynamically to achieve a 125 GeV Higgs boson. All super particles chosen to be heavy.
- 6. $M_{h,EFT}^{125}(\tilde{\chi})$ scenario: Similar to $M_{h,EFT}^{125}$ but features light neutralinos and charginos that significantly alter phenomenology of Higgs boson. SUSY scale adjusted at every parameter point to achieve 125 GeV Higgs

