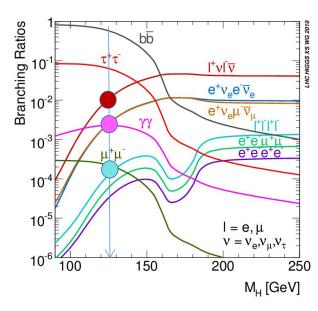


Measurement of the Higgs boson in decays to bosons using the ATLAS detector

Dongshuo Du

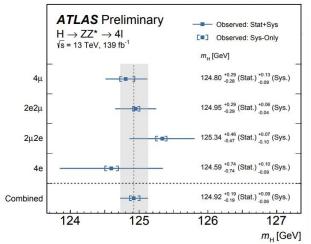
Shandong University
(On behalf of the ATLAS collaboration)

XXVIII International Workshop on Deep-Inelastic Scattering and Related Subjects Virtual Event @ Stony Brook University, April 12-16, 2021


Outline

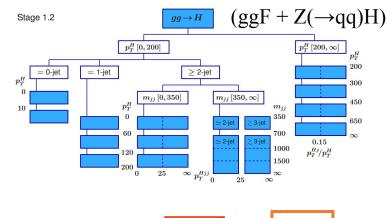
- >Overview of Higgs physics in diboson final states
- >Property measurement
 - Higgs mass measurement in ZZ* decay channel
- > Higgs boson cross sections measurement
 - Measurement of Simplified Template Cross Section (STXS) in $H \rightarrow WW^*$, $H \rightarrow ZZ^*$ and $H \rightarrow \gamma\gamma$ decay channels
 - Fiducial inclusive and differential cross-section measurements in $H\rightarrow ZZ^*$ and $H\rightarrow \gamma\gamma$ decay channels
- **>**Summary

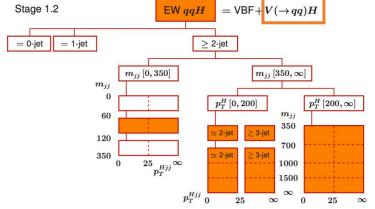
Higgs Physics In Diboson Final States

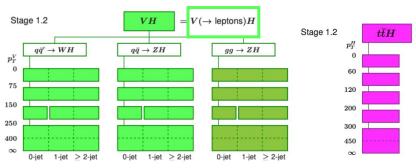

- \triangleright The most prolific decay: H \rightarrow bb (58%), very hard to observe
- The branching ratios (BR) of H \rightarrow WW*(\rightarrow lvlv) /ZZ*(\rightarrow 41)/ $\gamma\gamma$ are 1.0%, 0.012% and 0.23%, respectively
- The final states (e, μ , γ) are very sensitive & leave a clean signature in the ATLAS detector
 - \rightarrow H \rightarrow ZZ* \rightarrow 4l and H $\rightarrow\gamma\gamma$: the most sensitive channels for observation
 - \rightarrow H \rightarrow ZZ* \rightarrow 41, S/B > 2
 - \rightarrow H \rightarrow $\gamma\gamma$, S/B \sim 5%
 - \rightarrow H \rightarrow WW* \rightarrow lvlv (high yield with fair S/B)
 - Larger branching ratio Clean signature
 - High background

Powerful tool for measuring the Higgs properties

ATLAS-CONF-2020-005

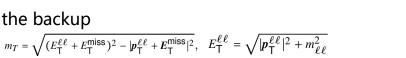

- Full Run2 dataset @13TeV, integrated luminosity of 139 fb-1
- H \rightarrow ZZ* \rightarrow 41, (4e, 4 μ , 2e2 μ and 2 μ 2e final states)
 - Best for Higgs mass measurement (statistics dominated)
 - The uncertainty on the mass depends on the mass resolution.
- Improve resolution:
 - ➤ A kinematic fit the invariant mass of the leading lepton pair to the Z boson mass;
 - > Final-state radiation (FSR) photons included in the mass computation;
 - > Consider the invariant mass resolution of the four-lepton system on a per-event basis.
 - ➤ 4 BDT bins to further distinguish signal from ZZ*

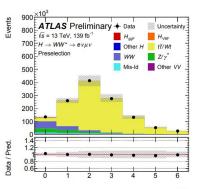


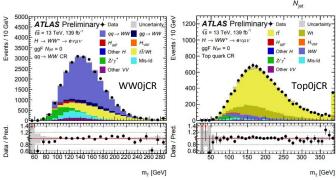

- Extracted via profile likelihood fit to 16 analysis categories
- Combined results: $m_H = 124.92^{+0.21}_{-0.20} GeV$
- > Statistically limited channel

Simplified Template Cross Section (STXS)

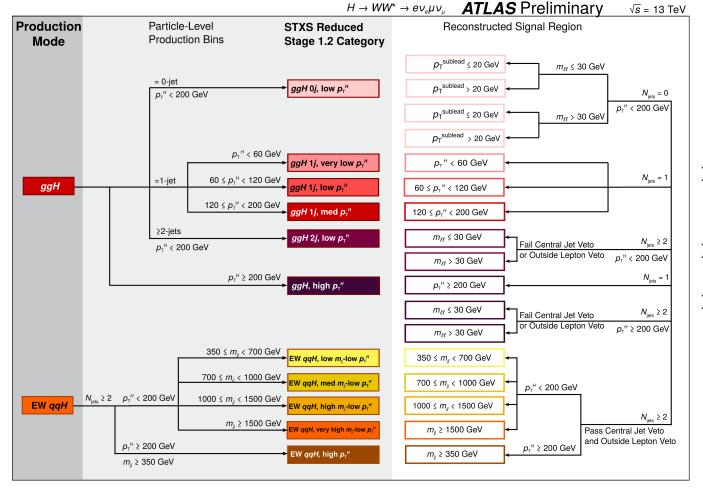
- The aim with STXS method:
 - Improve sensitivity of measurements
 - Reduce their dependence on the theory
 - High p_T^H bins more sensitive to beyond standard model (BSM) effects
- ➤ STXS framework provides different stages (e.g. stage 0, stage 1, stage 1.2) with varying degrees of granularity
- Categorising events into bins of key (truth) variables (p_T^H, N_{jets}, m_{jj}) in different production modes (ggH, qqH, VH and ttH)
- STXS well-suited to combine different decay channels
- Higgs boson properties measured with 139 fb⁻¹ ($\sqrt{s} = 13 \text{ TeV}$) for Higgs boson rapidity $|y_H| < 2.5$


H→WW*: Analysis Strategy


- Full Run2 dataset @13TeV, integrated luminosity of 139 fb-1
- Signal: different flavour (eμ+μe) opposite charge leptons + MET
- Events split in 4 analysis categories based on N_{iets}(*)
 - ggF: $N_{\text{jets}} = 0, 1, \ge 2$, cut based
 - m_T used as discriminant variable
 - VBF: $N_{jets} \ge 2$, "deep" neural network (DNN) based
 - DNN used as discriminant variable



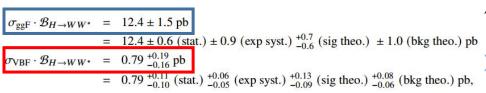
- Non-resonant qqWW, top and $Z\rightarrow \tau\tau$
 - ggF: qqWW, top and $Z\rightarrow \tau\tau$ normalized by control regions (CR)
 - VBF: top and $Z \rightarrow \tau \tau$ normalized by CRs
- Background with mis-identified leptons estimated by data-driven fake factor method



ATLAS-CONF-2021-014

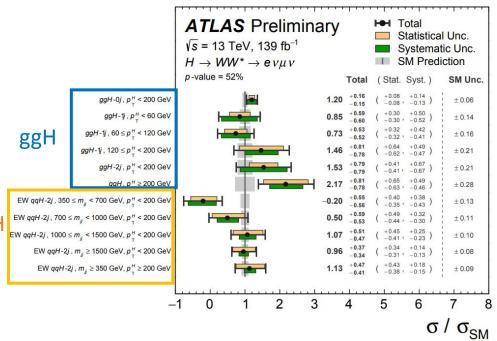
H→WW*: STXS

- Split by p_T^H, N_{jets}, m_{jj} into 11 categories
 - 17 signal regions (SR)
- > 27 control regions (CR)


- > This analysis based on the reduced stage 1.2 category to ensure sensitivity for all measurements.
- CRs split similar to SRs where statistics allow

$$p_{\mathsf{T}}^H = |oldsymbol{p}_{\mathsf{T}}^{\ell\ell} + oldsymbol{E}_{\mathsf{T}}^{\mathsf{miss}}|$$

H→WW*: Results

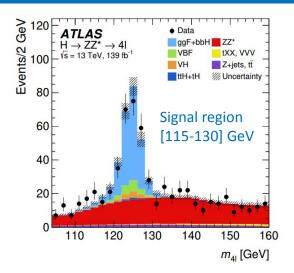

ATLAS-CONF-2021-014

Coupling results ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{$

> Compatible with SM predictions within 1 σ

STXS results

- Extracted by profile likelihood fit: 17 SRs (m_T/DNN) + 27 CRs
- ggH uncertainties limited by both stat. + syst. uncertainty
- qqH uncertainties limited by statistical uncertainty at high m_{jj} / p_T^H
- Compatible with the SM predictions with a p-value of 52%


$H \rightarrow ZZ^* \rightarrow 4\ell$: Four-lepton Invariant Mass Distribution

Analysis features:

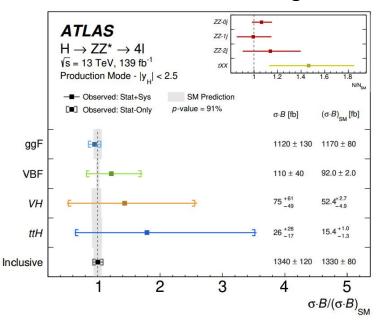
- \triangleright Small branching fraction (0.0124% at m_H = 125 GeV)
- > Best final S/B ratio, better than 2:1
- > Clean signature with fully reconstructed final state
- **>** good mass resolution = 1-2%

Full Run2 dataset @13TeV, integrated luminosity of 139 fb⁻¹

Signal: 4 leptons (4e, 4μ , $2e2\mu$ and $2\mu2e$)

Eur. Phys. J. C 80, 957 (2020).

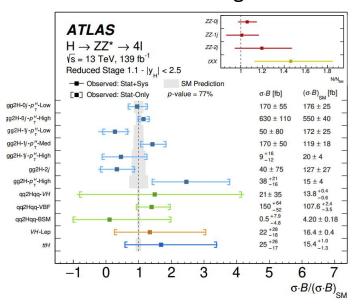
Backgrounds:


- \triangleright Irreducible background for ZZ*/Z γ *, the normalisation constrained with a data-driven technique.
 - obtained from data by using the mass interval with 105–160 GeV
- Reducible background with non-prompt leptons for Z+jets, tt+jets, Zjets, WW+jets, and WZ+jets estimated from data.

Multivariate discriminants using neural networks used to separate ggF from ZZ* background, and to separate the production modes ggF/VH/VBF for 1 and 2 jets reconstruction categories

H→ZZ*→4ℓ: Production Mode Cross Sections

Eur. Phys. J. C 80, 957 (2020).


Production Mode Stage

The inclusive $H \rightarrow ZZ^*$ production cross-section for $|y_H| < 2.5$: 1.34 \pm 0.12 pb

Good agreement with the SM predictions:
 1.33 ± 0.08 pb

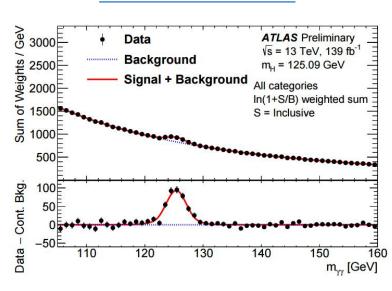
Reduced Stage 1.1

- Compatible with SM predictions with a p-value of 77%.
- Due to finer categorisation, results are statistically limited.

$H \rightarrow \gamma \gamma$: Diphoton Invariant Mass Distribution

Analysis features:

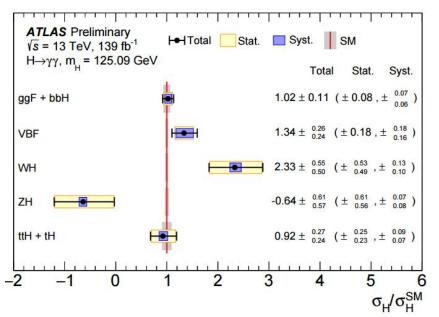
- > Fairly high branching fraction wrt $H \rightarrow ZZ^* \rightarrow 4\ell$: ~20 times larger
- Fair final S/B-ratio: about 1:20
- Excellent performance of photon reconstruction and identification
- > Final states are fully reconstructable
- Good mass resolution = 1-2%


Full Run2 dataset @13TeV, integrated luminosity of 139 fb⁻¹

Signal: diphoton

Backgrounds:

 \triangleright SM diphoton production or γ +jets, jet+jets (estimated from data)


ATLAS-CONF-2020-026

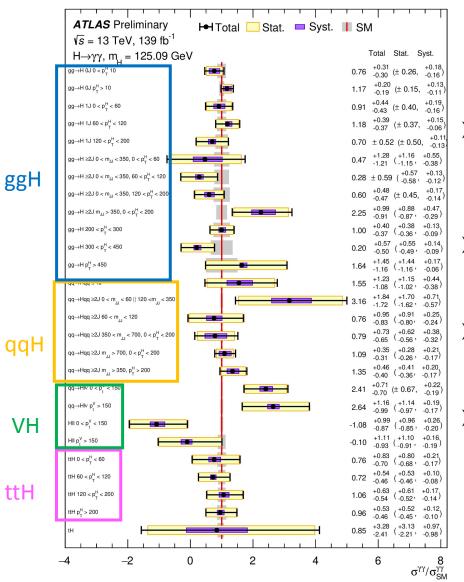
Signal + background model fit for all categories, and the residual plot after subtracting the backgrounds

$H \rightarrow \gamma \gamma$: Production Mode Cross Sections

ATLAS-CONF-2020-026

- Good agreement with SM prediction for ggF+bbH and ttH+tH measurements
- \triangleright VBF is about 1.4 σ higher than SM prediction
- ➤ The combined cross section of WH and ZH(VH) is consistent with SM prediction.

$$\sigma_{VH} = 5.9 \pm 1.4 \,\text{fb}$$
 versus $\sigma_{VH, \text{exp}} = 4.53 \pm 0.12 \,\text{fb}$


 \blacktriangleright The inclusive H $\rightarrow \gamma \gamma$ production cross-section for $|y_H| < 2.5$:

$$(\sigma \times B_{\gamma\gamma})_{\text{obs}} = 127 \pm 10 \text{ fb}$$

Good agreement with the SM predictions:

$$(\sigma \times B_{\gamma\gamma})_{\text{exp}} = 116 \pm 5 \text{ fb}.$$

$H \rightarrow \gamma \gamma$: STXS

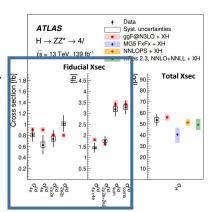
ATLAS-CONF-2020-026

- More statistics with Full Run2 dataset, finer binning expecially for non-ggH production mode.
- Cross-sections of 27 STXS regions are measured
 - > First to measure ttH differentially
- In general, measurements are compatible with SM predictions
- Due to finer categorisation, measurements are statistically limited.

Differential and Fiducial Cross Sections

- Measured in fiducial volume: a restricted truth phase space used for a cross section measurement
 - Minimise model-dependent acceptance extrapolations —> The fiducial selection defined closely match the selection requirements of detector-level analysis

$$\sigma^{\text{fid}} = \sigma^{\text{Total}} \times \mathbf{A} \times BR = \frac{N_{\text{s}}}{C \times L_{\text{int}}}$$

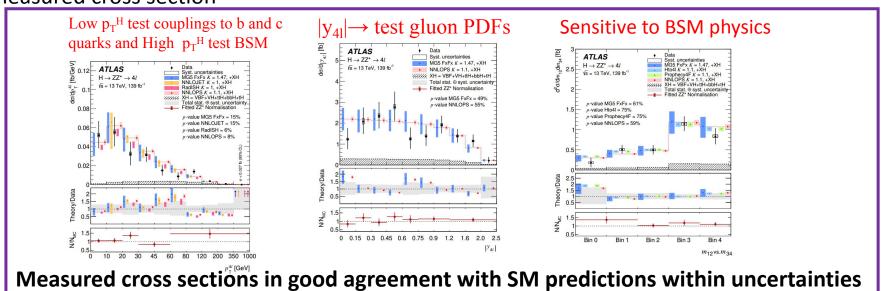

 N_s : number of observed signal events, $c = \frac{N_{Rec}}{N_{Fid}}$: the correction factor for detector efficiency and resolution effect, L_{int} : Integrated luminosity

- ▶ Inclusive fiducial cross-section: No attempt to separate Higgs production/decay modes
 → compare with best available predictions in the detector phase space
- \blacktriangleright Differential cross-section: Measure differential cross section as a function of Higgs p_T , $N_{jets}...$
 - \triangleright The Higgs p_T distribution can test couplings to b and c quarks, and high pt can tests new physics.
 - ➤ The jet multiplicity is sensitive to different production mechanisms and the theoretical modelling of high-quark and gluon emission.

$H \rightarrow ZZ^* \rightarrow 4\ell$: Inclusive and Differential Cross Section

Eur. Phys. J. C 80, 942 (2020)

- ➤ H→ZZ*→4ℓ decay mode provides excellent resolution for Higgs kinematic variables
- Fitting 4ℓ distribution in each final state (right) or differential bin (bottom)to extract the measured cross section


Inclusive fiducial cross section:

$$\sigma_{\text{fid}} = 3.28 \pm 0.30 \text{ (stat.)} \pm 0.11 \text{ (syst.) fb}$$

$$\sigma_{\text{fid},SM} = 3.41 \pm 0.18 \text{ fb}$$

The measurement has precision at 10% level

Good agreement with LHCXSWG prediction

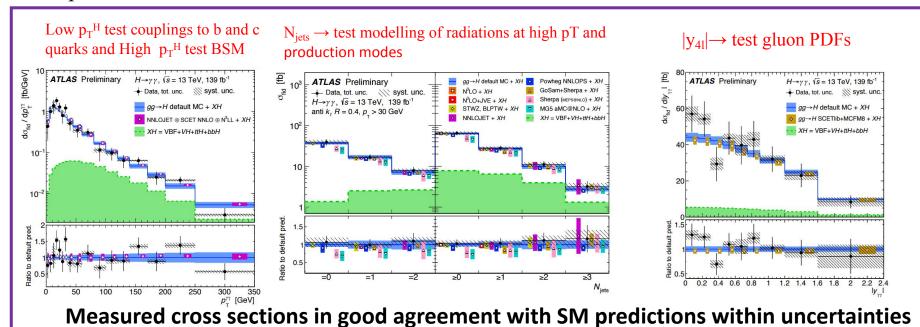
Limited by statistical uncertainties

$H \rightarrow \gamma \gamma$: Inclusive and Differential Cross Section

ATLAS-CONF-2019-029

- ➤ Excellent performance of photon reconstruction and identification

 → good resolution for Higgs variables
- The H $\rightarrow \gamma \gamma$ signal yields are extracted from fits to the diphoton invariant mass spectrum


Inclusive fiducial cross section:

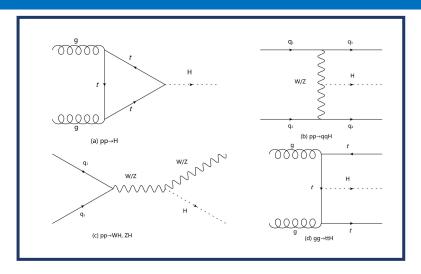
$$\sigma_{\rm fid} = 65.2 \pm 7.1 \, {\rm fb}$$

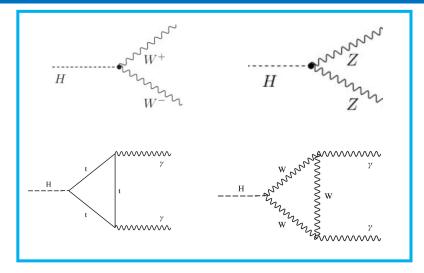
$$\sigma_{{\rm fid},SM} = 63.6 \pm 3.3 \, {\rm fb}$$

The measurement has precision at 11% level

Differential cross-section still limited by statistical uncertainties

Summary

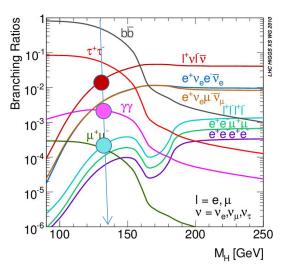

- \triangleright H → ZZ*, H → $\gamma\gamma$, H → WW* channels investigated with 139 fb⁻¹ of data collected with the ATLAS detector @13TeV
 - Inclusive, STXS and differential cross section measurements are presented
 - all the measurements are in agreement with the SM predictions
- Thanks to the increased statistics with full Run2 dataset, more finely-grained measurements are presented.


Stay tuned for more results to come from Run2

Thank you for your attention

Back up

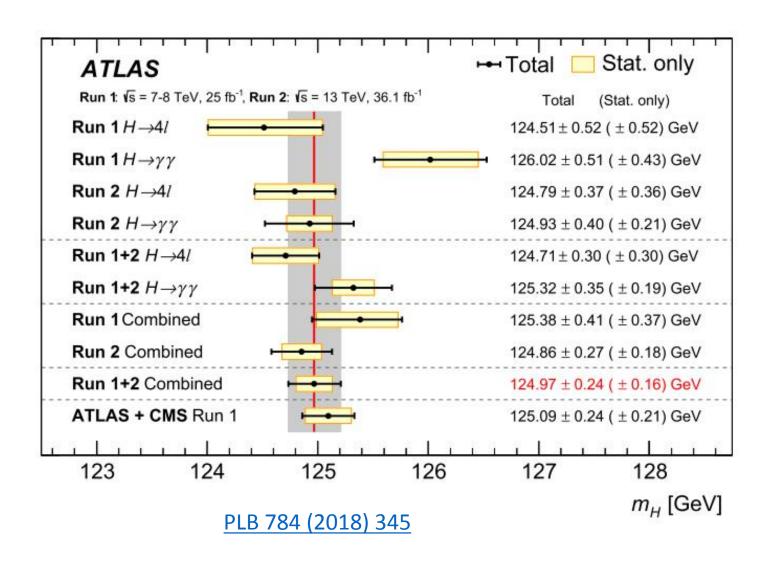
Higgs Physics In Diboson Final States



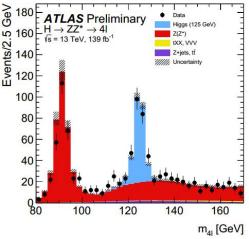
Production modes

- \triangleright The most prolific decay: H \rightarrow bb (58%), very hard to observe
- The branching ratios (BR) of H \rightarrow WW*(\rightarrow lvlv) /ZZ*(\rightarrow 41)/ $\gamma\gamma$ are 1.0%, 0.012% and 0.23%, respectively
- The final states (e, μ , γ) are very sensitive & leave a clean signature in the ATLAS detector

Higgs decay to diboson

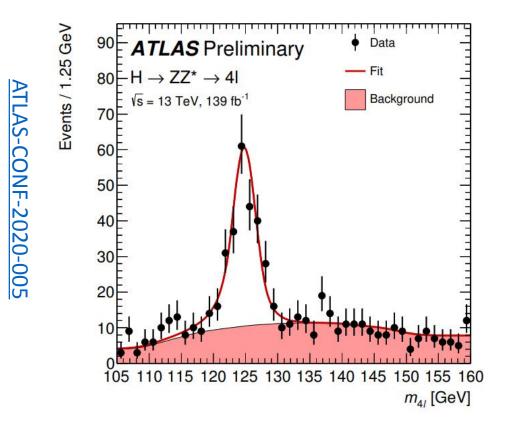


Process	Generator	PDF
qqZZ	SHERPA v2.2.2 [68–71]	NNPDF3.0nnlo
qqZZ (alternate)	Powheg-Box v2	CT10
qqZZ (alternate)	MadGraph5_aMC@NLO	PDF4LHC (NLO)
ggZZ	Sherpa v2.2.2	NNPDF3.0nnlo
EW ZZ	SHERPA V2.2.2	NNPDF3.0nnlo
WZ	Powheg-Box v2	CT10
Z+jets	SHERPA v2.2.1	NNPDF3.0nnlo
$t\bar{t}$	Powheg-Box v2	NNPDF3.0nnlo
tXX	MadGraph5_aMC@NLO	NNPDF3.0nnlo
VVV	Sherpa v2.2.2	NNPDF3.0nnlo


VVV: ZZZ, WZZ, and WWZ

tXX: one or more top quarks or electroweak bosons: tW Z, ttbarW+W-

, ttbart , ttbarttbar and tZ


- ➤ BDT inputs: The transverse momentum and pseudorapidity of the four-lepton system are used together with a matrixelement-based kinematic discriminant D_{ZZ*}
- Signal and Z(Z*) estimated from MC expecion
- > tXX and VVV estimated from MC expecion
- Z+jets and ttbar estimated from data-driven method
- ➤ No cut on the value of the BDT output applied, but the events are categorised in four exclusive equal-size BDT bins in order to better separate the signal from the background contribution in the m_H fit.

 D_{ZZ^*} is defined as $\ln(|\mathcal{M}_{HZZ^*}|^2/|\mathcal{M}_{ZZ^*}|^2)$

ATLAS-CONF-2020-005

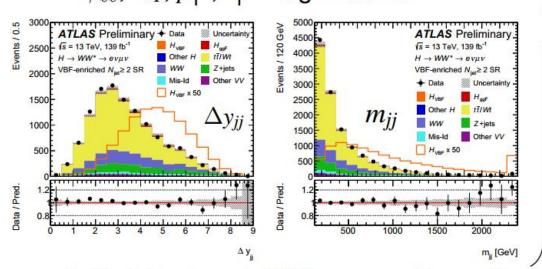
- ➤ An analytic model that takes into account the invariant mass resolution of the four-lepton system on a per-event basis is employed
- The mass of the Higgs boson has been measured from a fit to the invariant mass and the predicted invariant mass resolution of the $H \rightarrow ZZ^* \rightarrow 4I$ decay channel.

$$m_H = 124.92^{+0.21}_{-0.20} \text{ GeV}$$

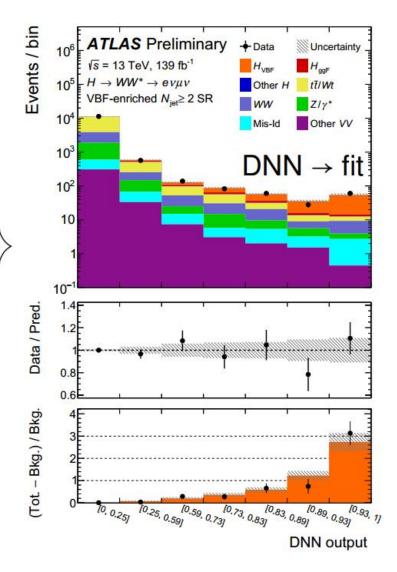
Impact of the leading systematic uncertainties on m_H

Systematic Uncertainty	Impact (GeV)
Muon momentum scale	+0.08,-0.06
Electron energy scale	±0.02
Muon momentum resolution	±0.01
Muon sagitta bias correction	±0.01

H→WW*: analysis

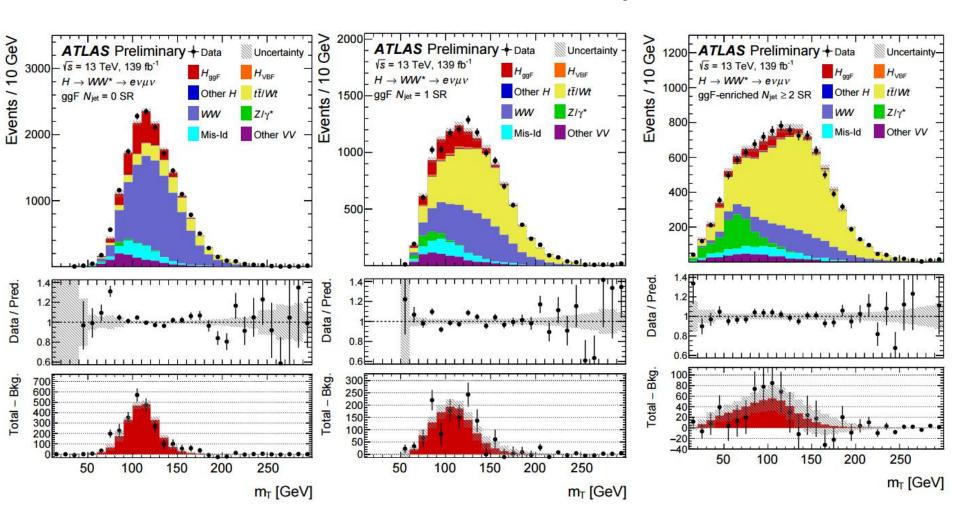

Category	$N_{\text{jet},(p_T>30 \text{ GeV})} = 0 \text{ ggF}$	$N_{\text{jet},(p_T>30 \text{ GeV})} = 1 \text{ ggF}$	$N_{\text{jet},(p_T>30 \text{ GeV})} \ge 2 \text{ ggF}$	$N_{\text{jet},(p_T>30 \text{ GeV})} \ge 2 \text{ VBF}$			
Preselection	Two isolated, different-flavour leptons ($\ell = e, \mu$) with opposite charge $p_{\rm T}^{\rm lead} > 22 \text{ GeV}$, $p_{\rm T}^{\rm sublead} > 15 \text{ GeV}$						
resciection							
miles was a market		$N_{b ext{-jet},(p_{ ext{T}})}$	$p_{20 \text{ GeV}} = 0$ $m_{TT} < m_Z - 25 \text{ GeV}$				
Background rejection	$\Delta \phi_{\ell\ell, E_{\mathrm{T}}^{\mathrm{miss}}} > \pi/2$ $p_{\mathrm{T}}^{\ell\ell} > 30 \text{ GeV}$						
		jet Avg; $\overline{\eta}_{pet}$					
$H \rightarrow WW^* \rightarrow e \nu \mu \nu$ topology			fail central jet veto or fail outside lepton veto	central jet veto outside lepton veto			
2			$ m_{jj} - 85 > 15 \text{ GeV}$ or $\Delta y_{jj} > 1.2$	$m_{jj} > 120 \text{ GeV}$			
Discriminant variable		m_{T}		DNN			

H→WW*: analysis

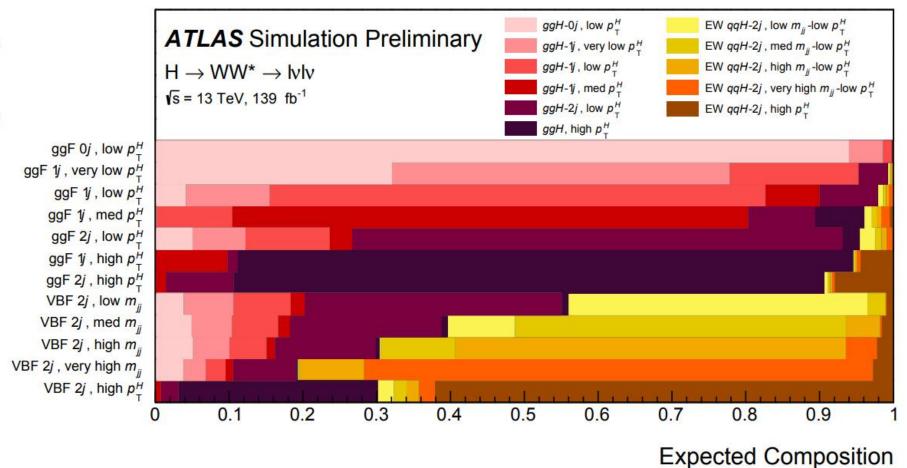

CR	$N_{\text{jet},(p_T>30 \text{ GeV})} = 0 \text{ ggF}$	$N_{\text{jet},(p_T>30 \text{ GeV})} = 1 \text{ ggF}$	$N_{\text{jet},(p_T>30 \text{ GeV})} \ge 2 \text{ ggF}$	$N_{\text{jet},(p_T>30 \text{ GeV})} \ge 2 \text{ VBF}$
		$N_{b\text{-jet},(p_T>20 \text{ GeV})} = 0$		
	$55 < m_{\ell\ell} < 110 \text{ GeV}$	$m_{\ell\ell} > 8$		
$qq \rightarrow WW$	$\Delta \phi_{\ell\ell} < 2.6$	$ m_{\tau\tau} - m_Z > 25 \text{ GeV}$ $\max(m_T^{\ell}) > 50 \text{ GeV}$	$m_{\tau\tau} < m_Z - 25 \text{ GeV}$ $m_{T2} > 165 \text{ GeV}$	
$qq \rightarrow w w$			fail central jet veto or fail outside lepton veto	
			$ m_{jj} - 85 > 15 \text{ GeV}$ or $\Delta y_{jj} > 1.2$	
	$N_{b\text{-jet},(20 \text{ GeV} < p_T < 30 \text{ GeV})} > 0$	$N_{b\text{-jet},(p_T>30 \text{ GeV})} = 1$ $N_{b\text{-jet},(20 \text{ GeV} < p_T < 30 \text{ GeV})} = 0$	$N_{b ext{-jet},(p_{\text{T}}>20\text{ GeV})}=0$	$N_{b ext{-jet},(p_{\text{T}}>20 \text{ GeV})} = 1$
	$\Delta \phi(\ell \ell, E_{\mathrm{T}}^{\mathrm{miss}}) > \pi/2$		$m_{\tau\tau} < m_Z - 25 \text{ GeV}$	
$p_{\mathrm{T}}^{\ell\ell} > 30~\mathrm{GeV}$ $\Delta\phi_{\ell\ell} < 2.8$	$\max\left(m_{\mathrm{T}}^{\ell}\right) > 50 \text{ GeV}$	$m_{\ell\ell} > 80 \text{ GeV}$ $\Delta \phi_{\ell\ell} < 1.8$ $m_{T2} < 165 \text{ GeV}$		
		fail central jet veto or fail outside lepton veto	central jet veto outside lepton veto	
		$ m_{jj} - 85 > 15 \text{ GeV}$ or $\Delta y_{jj} > 1.2$		
		$N_{b ext{-jet},(p_{\mathrm{T}}>}$	_{20 GeV)} = 0	
	no $p_{\mathrm{T}}^{\mathrm{miss}}$ re	< 80 GeV quirement	<i>m</i> _{ℓℓ} < 55 GeV	$m_{\ell\ell}$ < 70 GeV
71.*	$\Delta \phi_{\ell\ell} > 2.8$	$m_{\tau\tau} > m_Z - 25 \text{ GeV}$		$ m_{\tau\tau} - m_Z \le 25 \text{ GeV}$
Z/γ^*			fail central jet veto or fail outside lepton veto	central jet veto outside lepton veto
			$ m_{jj} - 85 > 15 \text{ GeV}$ or $\Delta y_{jj} > 1.2$	

VBF ≥2 Jet: Deep Neural Network (DNN)

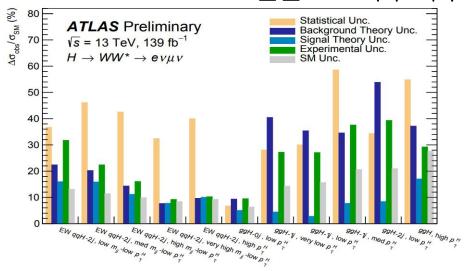
- More complex final state
- DNN inputs: (after preselection, $m_{\tau\tau} < m_Z 25 \, \text{GeV} \, \& \, b\text{-veto}$) m_{jj} , Δy_{jj} , $\sum_{\ell} C_{\ell} \, (C_{\ell} = |2\eta_{\ell} \sum_{\ell} \eta_{j}|/\Delta \eta_{jj})$ $p_{\mathsf{T}}^{j0,j1,j2}$, $m_{\ell ij}$, $m_{\ell \ell}$, $\Delta \phi_{\ell \ell}$, m_{T} , $p_{\mathsf{T}}^{\mathsf{tot}}$, $E_{\mathsf{T}}^{\mathsf{miss}}$ significance



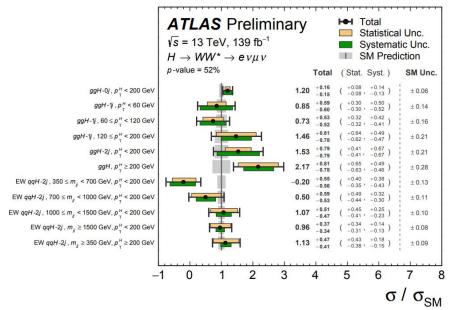
Training target: VBF vs. non-H + ggF → reduce ggF/VBF interplay

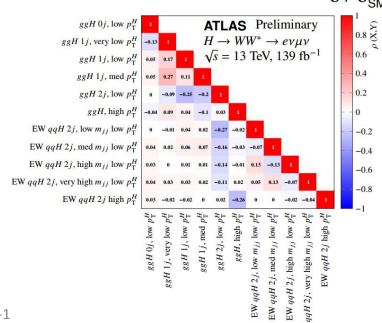

ATLAS-CONF-2021-014

H→WW*: analysis

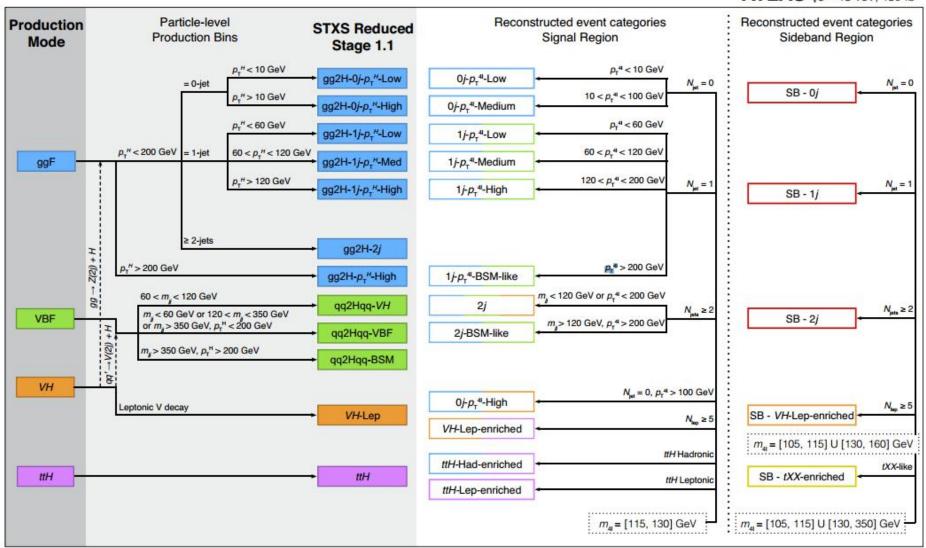

Break down

Source	$\frac{\Delta \sigma_{\text{ggF}} \cdot \mathcal{B}_{H \to WW^*}}{\sigma_{\text{ggF}} \cdot \mathcal{B}_{H \to WW^*}} $ [%]	$\frac{\Delta\sigma_{\text{VBF}}\cdot\mathcal{B}_{H\to WW^*}}{\sigma_{\text{VBF}}\cdot\mathcal{B}_{H\to WW^*}}\left[\%\right]$
Data statistical uncertainties	5	13
Total systematic uncertainties	11	18
MC statistical uncertainties	4	3.2
Experimental uncertainties	6	7
Flavour Tagging	2.4	0.9
Jet energy scale	1.4	3.3
Jet energy resolution	2.3	1.9
$E_{\mathrm{T}}^{\mathrm{miss}}$	1.9	5
Muons	2.1	0.7
Electrons	1.5	0.3
Fake factors	2.4	1.0
Pile-up	2.4	1.3
Luminosity	2.0	2.1
Theoretical uncertainties	8	16
ggF	5	4
VBF	0.7	13
Top	4	5
Ζττ	2.0	2.1
WW	4	5
Other VV	3	1.2
Background normalisations	5	5
WW	3.1	0.5
Тор	2.4	2.2
Ζττ	3.1	4
TOTAL	12	22




EW

H→WW*: STXS



STXS category $(\sigma_i \times B_{WW})$	Value			Uncerta	inty [fb]		SM prediction
STAS category $(U_i \times BWW)$	[fb]	Total	Stat.	Exp. Syst.	Sig. Theo.	Bkg. Theo.	[fb]
ggH -0 j , low p_{T}^{H} p_{T}^{H} < 200 GeV	7000	+900 -900	+400 -400	+600 -500	+300 -300	+600 -500	5900 ± 400
ggH -1 j , very low p_{T}^{H} p_{T}^{H} < 60 GeV	1190	+820 -840	+390 -390	+380 -380	+70 -60	+550 -580	1400 ± 200
$\begin{split} &ggH1j, \text{low } p_{\text{T}}^{H} \\ &60 \leq p_{\text{T}}^{H} < 120 \text{ GeV} \end{split}$	710	+510 -510	+290 -290	+270 -260	+30 -30	+340 -340	970 ± 150
ggH -1 j , med p_T^H $120 \le p_T^H < 200 \text{ GeV}$	230	+130 -120	+90 -90	+60 -60	+10 -10	+60 -50	160 ± 30
ggH -2 j , low p_{T}^{H} p_{T}^{H} < 200 GeV	1560	+800 -800	+350 -350	+400 -400	+90 -80	+550 -540	1010 ± 210
ggH , high p_{T}^{H} $p_{\mathrm{T}}^{H} \ge 200 \text{ GeV}$	270	+100 -100	+70 -70	+40 -40	+30 -10	+50 -40	122 ± 34
EW qqH -2 j , low m_{jj} -low p_{T}^H 350 $\leq m_{jj} <$ 700 GeV, $p_{\mathrm{T}}^H <$ 200 GeV	-20	+60 -60	+40 -40	+30 -40	+10 -20	+20 -30	109 ± 14
$\begin{aligned} & \text{EW } qqH\text{-}2j, \text{med } m_{jj}\text{-low } p_{\text{T}}^H \\ & 700 \leq m_{jj} < 1000 \text{GeV}, p_{\text{T}}^H < 200 \text{GeV} \end{aligned}$	28	+33 -30	+27 -24	+12 -13	+10 -8	+11 -11	56± 6
$\begin{aligned} & \text{EW } qqH\text{-}2j, \text{high } m_{jj}\text{-low } p_{\text{T}}^H \\ & 1000 \leq m_{jj} < 1500 \text{ GeV}, p_{\text{T}}^H < 200 \text{ GeV} \end{aligned}$	54	+26 -24	+23 -20	+8 -8	+7 -5	+7 -7	51 ± 5
EW qqH -2 j , very high m_{jj} -low p_{T}^H $m_{jj} \geq 1500$ GeV, $p_{\mathrm{T}}^H < 200$ GeV	48	+19 -17	+17 -15	+5 -5	+5 -3	+4 -4	50 ± 4
EW qqH -2 j , high p_{T}^{H} $m_{jj} \geq 350$ GeV, $p_{\mathrm{T}}^{H} \geq 200$ GeV	36	+15 -13	+13 -12	+3 -3	+4 -3	+3 -3	32± 3

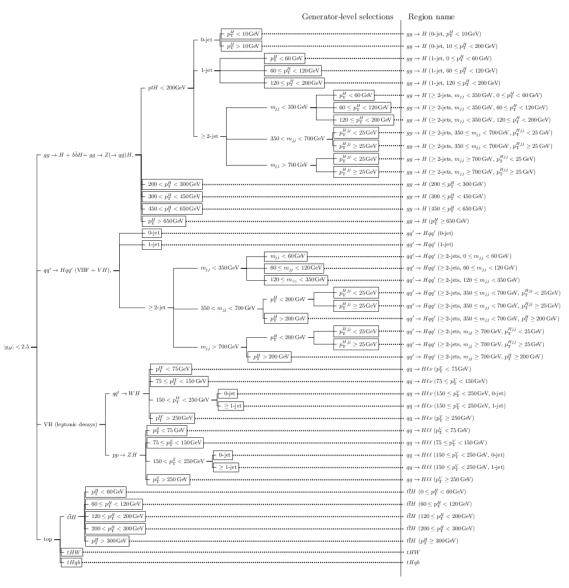
ATLAS \(s = 13 \text{ TeV}, 139 \text{ fb}^1 \)

- > Two types of NNs are used: feed-forward multilayer perceptron (MLP) and recurrent (RNN)
- > The input variables used to train the MLP, and the two RNNs for the four leptons and the jets

Category	Processes	MLP	Lepton RNN	Jet RNN	Discriminant
$0j-p_{\mathrm{T}}^{4\ell}$ -Low $0j-p_{\mathrm{T}}^{4\ell}$ -Med	ggF, ZZ*	$p_{\rm T}^{4\ell}, D_{ZZ^*}, m_{12}, m_{34},$ $ \cos \theta^* , \cos \theta_1, \phi_{ZZ}$	$p_{\mathrm{T}}^{\ell},\eta_{\ell}$	(5)	NN _{ggF}
$1j$ - $p_{\mathrm{T}}^{4\ell}$ -Low	ggF, VBF, ZZ*	$p_{\mathrm{T}}^{4\ell}, p_{\mathrm{T}}^{j}, \eta_{j},$ $\Delta R_{4\ell j}, D_{ZZ^{*}}$	$p_{\mathrm{T}}^{\ell},\eta_{\ell}$	(*)	NN_{VBF} for $NN_{ZZ} < 0.25$ NN_{ZZ} for $NN_{ZZ} > 0.25$
1 <i>j</i> - <i>p</i> ^{4ℓ} _T -Med	ggF, VBF, ZZ*	$p_{\mathrm{T}}^{4\ell}, p_{\mathrm{T}}^{j}, \eta_{j}, E_{\mathrm{T}}^{\mathrm{miss}},$ $\Delta R_{4\ell j}, D_{ZZ^{*}}, \eta_{4\ell}$	$p_{\mathrm{T}}^{\ell},\eta_{\ell}$	8 4 0	NN_{VBF} for $NN_{ZZ} < 0.25$ NN_{ZZ} for $NN_{ZZ} > 0.25$
$1j-p_{\mathrm{T}}^{4\ell}$ -High	ggF, VBF	$p_{\mathrm{T}}^{4\ell}, p_{\mathrm{T}}^{j}, \eta_{j}, \ E_{\mathrm{T}}^{\mathrm{miss}}, \Delta R_{4\ell j}, \eta_{4\ell}$	$p_{\mathrm{T}}^{\ell},\eta_{\ell}$	857	NN _{VBF}
2 <i>j</i>	ggF, VBF, VH	$m_{jj}, p_{\mathrm{T}}^{4\ell jj}$	$p_{\mathrm{T}}^{\ell},\eta_{\ell}$	$p_{\mathrm{T}}^{j},\eta_{j}$	NN_{VBF} for $NN_{VH} < 0.2$ NN_{VH} for $NN_{VH} > 0.2$
2 <i>j</i> -BSM-like	ggF, VBF	$\eta_{ZZ}^{\text{Zepp}}, p_{\text{T}}^{4\ell jj}$	$p_{\mathrm{T}}^{\ell},\eta_{\ell}$	$p_{\mathrm{T}}^{j},\eta_{j}$	NN _{VBF}
VH-Lep-enriched	VH, ttH	$N_{ m jets}, N_{b ext{-jets},70\%}, \ E_{ m T}^{ m miss}, H_{ m T}$	p_{T}^{ℓ}	•	NN_{ttH}
ttH-Had-enriched	ggF, ttH, tXX	$p_{\mathrm{T}}^{4\ell}, m_{jj},$ $\Delta R_{4\ell j}, N_{b\text{-jets},70\%},$	$p_{\mathrm{T}}^{\ell},\eta_{\ell}$	$p_{\mathrm{T}}^{j},\eta_{j}$	NN_{ttH} for $NN_{tXX} < 0.4$ NN_{tXX} for $NN_{tXX} > 0.4$

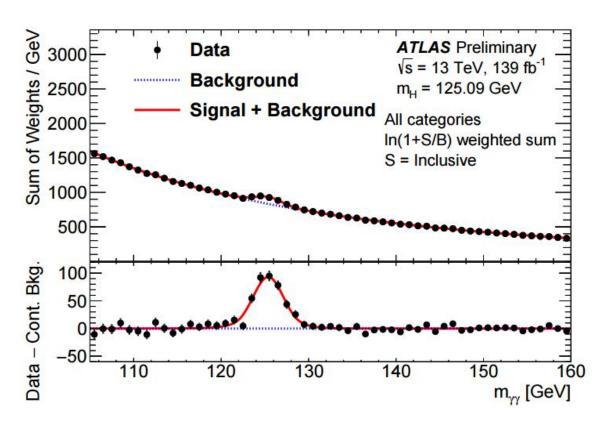
$H \rightarrow ZZ^*: STXS$

Eur. Phys. J. C 80, 957 (2020).



$H \rightarrow ZZ^*: STXS$ Eur. Phys. J. C 80, 957 (2020).

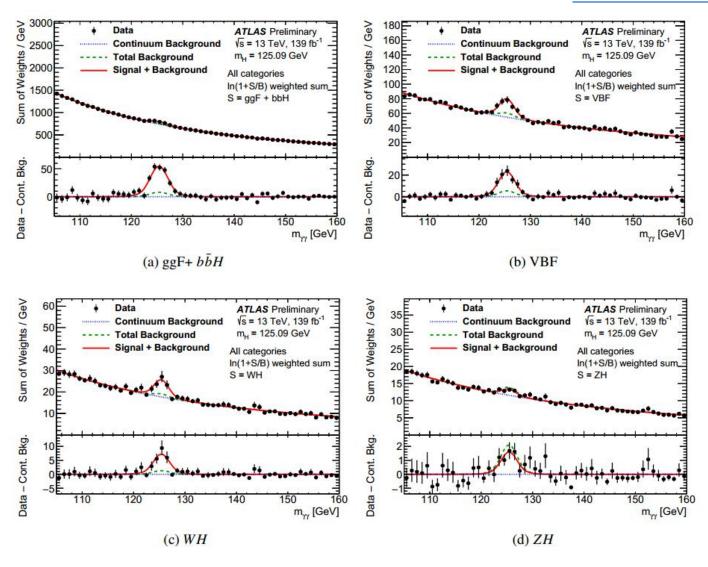
	Experimental uncertainties [%]					Theory uncertainties [%]				
Measurement	Lumi.	e, μ	Jets,	Reducible	Background			Ļ		
	Luiii.	pile-up	flav. tag	bkg	ZZ^*	tXX	PDF	QCD	Shower	
Inclusive cross-section										
	1.7	2.5	0.5	< 0.5	1	< 0.5	< 0.5	1	2	
	•	Pr	oduction m	ode cross-sec	ctions					
ggF	1.7	2.5	1	< 0.5	1.5	< 0.5	0.5	1	2	
VBF	1.7	2	4	< 0.5	1.5	< 0.5	1	5	7	
VH	1.9	2	4	1	6	< 0.5	2	13.5	7.5	
ttH	1.7	2	6	< 0.5	1	0.5	0.5	12.5	4	
	F	Reduced S	tage-1.1 pr	oduction bin	cross-se	ctions				
gg2H-0 j - p_{T}^{H} -Low	1.7	3	1.5	0.5	6.5	< 0.5	< 0.5	1	1.5	
gg2H- $0j$ - p_{T}^{H} -High	1.7	3	5	< 0.5	3	< 0.5	< 0.5	0.5	5.5	
gg2H-1 j - p_{T}^{H} -Low	1.7	2.5	12	0.5	7	< 0.5	< 0.5	1	6	
$gg2H-1j-p_T^H-Med$	1.7	3	7.5	< 0.5	1	< 0.5	< 0.5	1.5	5.5	
gg2H-1 j - p_{T}^{H} -High	1.7	3	11	0.5	2	< 0.5	< 0.5	2	7.5	
gg2H-2 <i>j</i>	1.7	2.5	16.5	1	12.5	0.5	< 0.5	2.5	10.5	
$gg2H-p_{T}^{H}-High$	1.7	1.5	3	0.5	3.5	< 0.5	< 0.5	2	3.5	
qq2Hqq-VH	1.8	4	17	1	4	1	0.5	5.5	8	
qq2Hqq-VBF	1.7	2	3.5	< 0.5	5	< 0.5	< 0.5	6	10.5	
qq2Hqq-BSM	1.7	2	4	< 0.5	2.5	< 0.5	< 0.5	3	8	
VH-Lep	1.8	2.5	2	1	2	0.5	< 0.5	1.5	3	
ttH	1.7	2.5	5	0.5	1	0.5	< 0.5	11	3	


the luminosity uncertainty, which is measured to be 1.7% and increases for the VH signal processes due to the simulation-based normalisation of the background.

$H \rightarrow \gamma \gamma : STXS$

H→γγ: Production Mode Cross Sections

ATLAS-CONF-2020-026

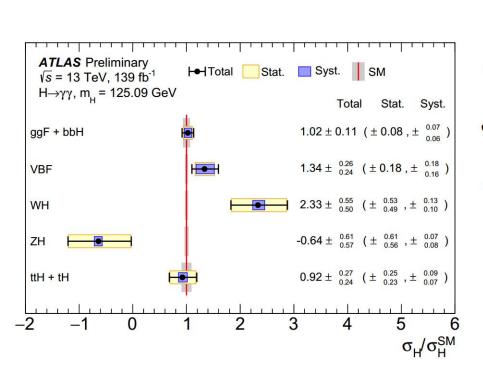

The events in each category are weighted by ln(1+S/B)

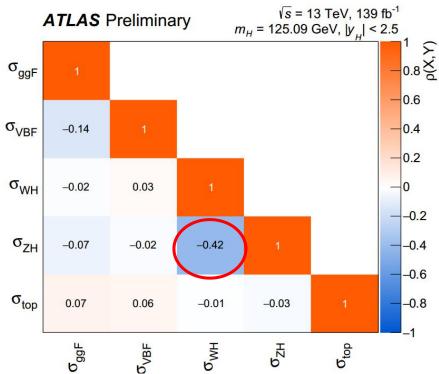
The fitted signal plus background PDFs from all categories are also weighted and summed

➤ This choice of event weight is designed to enhance the contribution of events from categories with higher signal-to-background ratio in a way that approximately matches the impact of these events in the categorized analysis of the data

H→γγ: Production Mode Cross Sections

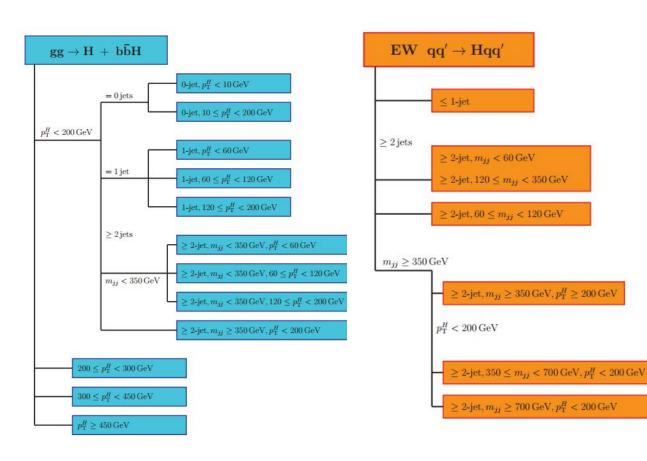
ATLAS-CONF-2020-026



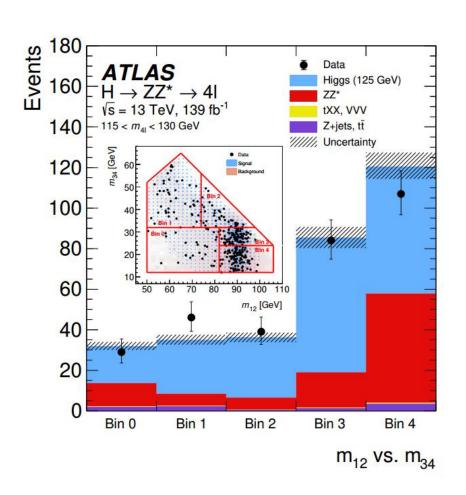

H→γγ: Production Mode Cross Sections (breakdown)

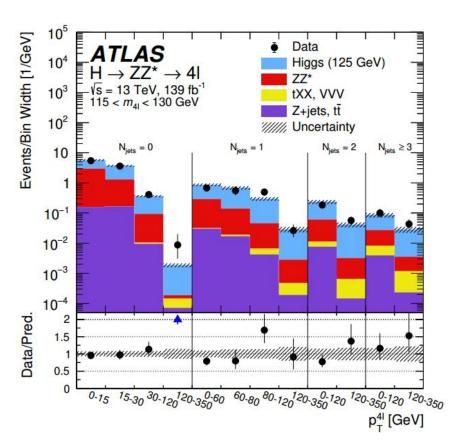
ATLAS-CONF-2020-026

	ggF+ bbH	VBF	WH	ZH	$t\bar{t}H + tH$
Uncertainty source	$\Delta\sigma$ [%]				
Underlying Event and Parton Shower (UEPS)	±2.3	±10	< ±1	±9.6	±3.5
Modeling of Heavy Flavor Jets in non-tīH Processes	$< \pm 1$	$< \pm 1$	$< \pm 1$	$< \pm 1$	± 1.3
Higher-Order QCD Terms (QCD)	±1.6	$< \pm 1$	$< \pm 1$	±1.9	$< \pm 1$
Parton Distribution Function and α_S Scale (PDF+ α_S)	$< \pm 1$	± 1.1	$< \pm 1$	±1.9	$< \pm 1$
Photon Energy Resolution (PER)	±2.9	± 2.4	± 2.0	±1.3	±4.9
Photon Energy Scale (PES)	$<\pm1$	$< \pm 1$	$< \pm 1$	± 3.4	± 2.2
Jet/E _T ^{miss}	±1.6	±5.5	±1.2	±4.0	± 3.0
Photon Efficiency	±2.5	± 2.3	± 2.4	±1.4	± 2.4
Background Modeling	±4.1	±4.7	± 2.8	± 18	± 2.4
Flavor Tagging	$< \pm 1$				
Leptons	< ±1	$< \pm 1$	$< \pm 1$	$< \pm 1$	$< \pm 1$
Pileup	± 1.8	± 2.7	± 2.1	± 3.8	± 1.1
Luminosity and Trigger	±2.1	±2.1	± 2.3	±1.1	± 2.3
Higgs Boson Mass	$< \pm 1$	$< \pm 1$	$< \pm 1$	±3.7	±1.9

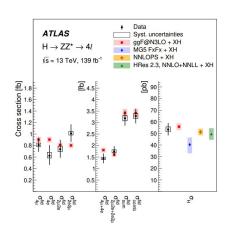

H→γγ: Production Mode Cross Sections

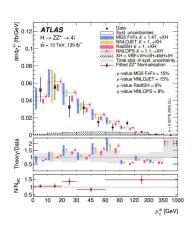
$H \rightarrow \gamma\gamma$: STXS (27 pois)

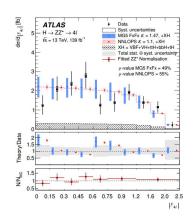

ATLAS-CONF-2020-026

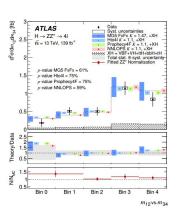


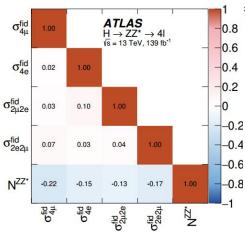
$H \rightarrow ZZ^* \rightarrow 4\ell$: Inclusive and Differential Cross Section


Eur. Phys. J. C 80, 942 (2020)






$H \rightarrow ZZ^* \rightarrow 4\ell$: Inclusive and Differential Cross Section


Eur. Phys. J. C 80, 942 (2020)

