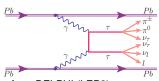
THE SENSITIVITY TO BSM IN DI-TAON PRODUCTION AT THE LHC

Mariola Kłusek-Gawenda Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland

✓ M. Dyndał, M. K-G, M. Schott and A. Szczurek, Anomalous electromagnetic moments of τ lepton in γγ → τ⁺τ⁻ reaction in Pb+Pb collisions at the LHC, Phys. Lett. B809 (2020) 135682



Introduction

UPC of heavy ions provide a very clean environment to study two-photon induced processes

- Study $Pb + Pb \rightarrow Pb + Pb + \tau^+\tau^-$ at the LHC
- The presence of $\gamma \tau \tau$ vertex (twice) gives sensitivity to anomalous (a_{τ}) and electric (d_{τ}) moments

• So far the strongest experimental constraints on a_{τ} comes from DELPHI (LEP2) measurement on $e^+e^- \rightarrow e^+e^-\tau^+\tau^-$

$$\text{-0.052} < a_{\tau}^{exp} < 0.013$$

• The theoretical Standard Model value is

$$a_{\tau}^{th} = 0.00117721 \pm 0.00000005$$

- Physics beyond the Standard Model (BSM):
 - * lepton compositness,
 - TeV-scale leptoquarks.
 - * left-right symmetric models,
 - * unparticle physics,
 - * $a_{ au}$ can be $\left(\frac{m_{ au}}{m_{\mu}}\right)^2$ times more sensitive than a_{μ}
- Many interesting proposals how to improve experimental sensitivity on a_{τ} and d_{τ} using lepton beams

THEORETICAL FRAMEWORK

Nuclear cross section in UPC: $\sigma (PbPb \rightarrow PbPb\ell^{+}\ell^{-}; \sqrt{s_{AA}}) =$ $\int \sigma\left(\gamma\gamma\to\ell^+\ell^-;W_{\gamma\gamma}\right)N(\omega_1,b_1)N(\omega_2,b_2)S_{abs}^2(\boldsymbol{b})\frac{W_{\gamma\gamma}}{2}dW_{\gamma\gamma}dY_{\ell^+\ell^-}d\overline{b}_xd\overline{b}_yd^2b$ (1)

Differential elementary cross section

$$\frac{\mathrm{d}\sigma(\gamma\gamma\to\ell^+\ell^-)}{\mathrm{d}\cos\theta} = \frac{2\pi}{64\pi^2s} \frac{\mathbf{p}_{out}}{\mathbf{p}_{in}} \frac{1}{4} \sum_{\mathrm{spin}} |\mathcal{M}|^2 . \tag{2}$$

• The amplitude for the *t*- and *u*-channel

$$\mathcal{M} = (-i) \epsilon_{1\mu} \epsilon_{2\nu} \bar{u}(p_3) \left(i \Gamma^{(\gamma \ell^+ \ell^-) \mu}(p_3, p_t) \frac{i(p_t + m_\ell)}{t - m_\ell^2 + i\epsilon} i \Gamma^{(\gamma \ell^+ \ell^-) \nu}(p_{t'} - p_4) \right) + i \Gamma^{(\gamma \ell^+ \ell^-) \nu}(p_3, p_u) \frac{i(p_u + m_l)}{u - m_\ell^2 + i\epsilon} i \Gamma^{(\gamma \ell^+ \ell^-) \mu}(p_{u'} - p_4) v(p_4).$$
(3)

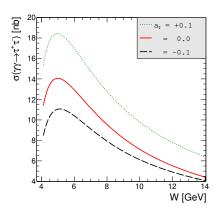
• Photon-lepton vertex function as a function of momentum transfer (q = p' - p)

$$i\Gamma_{\mu}^{(\gamma\ell^{+}\ell^{-})}(p',p) = -ie\left[\gamma_{\mu}F_{1}(q^{2}) + \frac{i}{2m_{\ell}}\sigma_{\mu\nu}q^{\nu}F_{2}(q^{2}) + \frac{i}{2m_{\ell}}\gamma^{5}\sigma_{\mu\nu}q^{\nu}F_{3}(q^{2})\right], \quad (4)$$

Dirac form factor

Pauli form factor

electric dipole form factor


 $F_1(0) = 1$

 $F_2(0) = a_{\ell}$

 $F_3(0) = d_\ell \frac{2m_\ell}{2}$

ELEMENTARY CROSS SECTION, a_{τ} DEPENDENCE

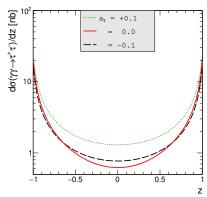


Fig.: ... as a function of energy

... as a function of $\cos \theta$ for W = 15 GeV

 $\gamma\gamma o au^+ au^-$ strongly depends on $a_ au$

Nuclear cross section, a_{τ} dependence



Fig.: Ratio of the total nuclear cross sections for Pb+Pb \rightarrow Pb+Pb $\tau\tau$ production @ LHC as a function of a_{τ} , relative to SM ($a_{\tau}=0$).

RELATIVELY SMALL DEPENDENCE ON $p_{t, au}$

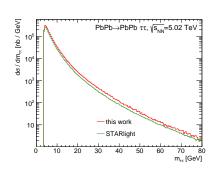


Fig.: Comparison of SM results with STARLIGHT

DIFFERENCE $\approx 20\%$;

MODELING OF PHOTON FLUXES

AND ABSORPTION FACTOR

FIDUCIAL SELECTION AND au DECAYS

- Tau is the heaviest lepton with a lifetime of 3×10^{-13} s
- Tau can decay into lighter leptons (electron or muon) or hadrons (mainly pions and kaons)
- Tau decay channels produce:
 - ightharpoonup one charged particle (denoted as 1*ch*, or one-prong) pprox 80%

$$\frac{\tau \to \nu_{\tau} + \ell + \nu_{\ell} \ (\ell = e, \ \mu)}{\tau \to \nu_{\tau} + \pi^{\pm} + n\pi^{0}}$$

 \rightarrow three charged particles (denoted as 3*ch*, or three-prong) $\approx 20\%$

$$\tau \rightarrow \nu_{\tau} + \pi^{\pm} + \pi^{\mp} + \pi^{\pm} + n\pi^{0}$$

Selection requirements of the $\gamma\gamma\to\tau^+\tau^-$ candidates events:

- \checkmark the leading lepton has $p_{t,e/\mu} >$ 4 GeV & $|\eta| < 2.5$
- ✓ au lepton pairs have low p_t → identification tools are not applicable → all charged-particle tracks from au_{1ch} or au_{3ch} : $p_T > 0.2$ GeV & $|\eta| < 2.5$
- ✓ condition on lepton-track system: $p_T^{\ell,ch}>$ 1 GeV for $\tau_\ell \tau_{1ch}$ category to suppress e^+e^- & $\mu^+\mu^-$ bkg

SELECTION FOR ATLAS & CMS DETECTORS

FIDUCIAL CROSS SECTION FOR SM SCENARIO

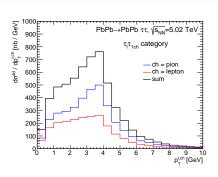


Fig.: ... as a function of ho_{Γ} of the lepton+track system (ho_{Γ}^{ℓ} ch) in the $au_{\ell} au_{1ch}$ category

$$ho_T^{\ell ch} > 1$$
 GeV ($pprox 90\%$ of signal events)

TO SUPPRESS $\gamma\gamma o \mu^+\mu^-/e^+e^-$ BKG

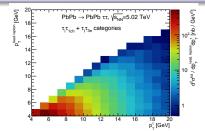


Fig.: $p_T^{\tau} \& p_T^{lead.lepton}$ correlation

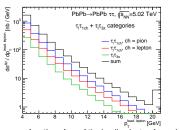
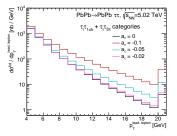
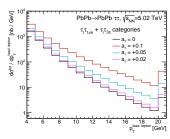
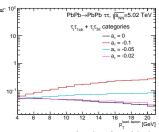



FIG.: ... as a function of p_T of the leading lepton for various event categories

FIDUCIAL CROSS SECTION FOR VARIOUS a_{τ} VALUES




Fig.: .. as a function of p_T of the leading lepton for all event categories summed together

PREDICTIONS FOR CURRENT LHC PB+PB DATASET AND EXPECTED HL-LHC DATASET

a_{τ} value	$\sigma_{\it fid}$ [nb]	Expected events	Expected events
		$(L_{int} = 2 \text{ nb}^{-1}, C = 0.8)$	$(L_{int} = 20 \text{ nb}^{-1}, C = 0.8)$
-0.1	4770	7650	76 500
-0.05	3330	5350	53 500
-0.02	3060	4900	49 000
0 (SM)	3145	5050	50 500
+0.02	3445	5500	55 000
+0.05	4350	6950	69 500
+0.1	7225	11550	115 500

Ratio between $\gamma\gamma \to \tau^+\tau^-$ and $\gamma\gamma \to \ell^+\ell^-$

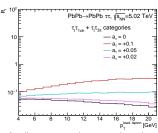


Fig.: ... as a function of p_T of the leading lepton for all event categories summed together

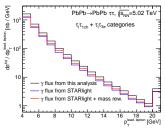
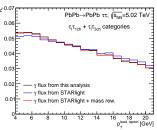
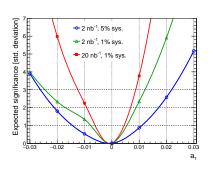
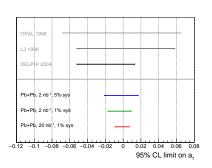



FIG.: Fiducial cross section &




Results with extra $m_{\ell\ell}$ shape reweighting

EXPECTED SIGNAL SIGNIFICANCE AS A FUNCTION OF a_{τ}

FOR VARIOUS ASSUMPTIONS ON PB+PB INTEGRATED LUMINOSITY AND TOTAL SYSTEMATIC UNCERTAINTY

Assuming 2 nb⁻¹ of integrated Pb+Pb luminosity and 5% systematic uncertainty:

$$-0.021 < a_{\tau}^{expected} < 0.017$$

 $^{^{1}}$ DELPHI limits: -0.052 $< a_{ au}^{exp} <$ 0.013

ELECTRIC DIPOLE MOMENT

EXPECTED

Including 95% CL sensitivity on $|d_{\tau}|$ and assuming $a_{\tau}=0$:

at the LHC with 5% systematic uncertainty

$$|\emph{d}_{\tau}| < 6.3 \cdot 10^{-17}~e \cdot \mathrm{cm}$$

at the LHC with 1% systematic uncertainty

$$|\textit{d}_\tau| < 4.4 \cdot 10^{-17}~\textit{e} \cdot \text{cm}$$

at HL-LHC with 1% systematic uncertainty

$$|\textit{d}_\tau| < 3.5 \cdot 10^{-17}~\textit{e} \cdot \text{cm}$$

The **CURRENT** best limits are measured by Belle experiment:

$$-2.2 < Re(d_{\tau}) < 4.5 (10^{-17} \text{ e} \cdot \text{cm})$$

and
 $-2.5 < Im(d_{\tau}) < 0.8 (10^{-17} \text{ e} \cdot \text{cm})$

Our results on d_{τ} can be therefore competitive with Belle limits

CONCLUSION

- We have used UPC calculation for $Pb + Pb \rightarrow Pb + Pb + \tau^+\tau^-$;
- We have studied the dependence of the $\gamma\gamma \to \tau^+\tau^-$ on a_τ ;
- All channels with at least one leading lepton have been accepted;
- We suggest to measure the ratio of

$$\gamma\gamma\to\tau^+\tau^-\to$$
 (......) to $\gamma\gamma\to e^+e^-(\mu^+\mu^-)$

- O This allows to significantly cancel many uncertainties
- O The experimental knowledge of a_e and a_μ is several orders of magnitude more precise than a_τ
- The limitations from present analysis seems better than those from DELPHI;
- Spin-spin correlations probably small (see appendix of our paper);
- Our studies suggest that the currently available datasets of the LHC experiments are already sufficient to improve limits on a_{τ} by a factor of two, hence, we consider this analysis as highly interesting and worthwhile to be done in the future;
- ATLAS & CMS combination for better precision?
- High statistics studies may discover BSM effects.

