# Transverse-momentum-dependent parton distribution functions for spin-1 hadrons 

Qin-Tao Song (Zhengzhou University)

XXVIII International Workshop on Deep-Inelastic Scattering (DIS) and Related Subjects, 12-16 April 2021, Stony Brook, NY.

## Spin structure of spin-1 hadrons

[^0]
## Quark correlation function of spin-1 hadrons

$$
\Phi_{i j}^{[c]}(k, P, S, T)=\int \frac{d^{4} \xi}{(2 \pi)^{4}} e^{i k \cdot \xi}
$$

$$
\times\langle P, S, T| \bar{\psi}_{j}(0) W^{[c]}(0, \xi) \psi_{i}(\xi)|P, S, T\rangle \quad \text { Terms of } \mathrm{A}_{13}-\mathrm{A}_{20} \text { are given by Bacchetta and Mulders. }
$$

$$
\text { The new terms of } \mathrm{B}_{21}-\mathrm{B}_{52} \text { terms are dependent on the }
$$

$S$ is the spin vector and $T$ is spin tensor (5 parameters). lightcone vector $n$ due to the gauge link.

$$
\begin{aligned}
& \Phi(k, P, T \mid n)=\frac{A_{13}}{M} T_{k k}+\frac{A_{14}}{M^{2}} T_{k k} \not P+\frac{A_{15}}{M^{2}} T_{k k} k+\frac{A_{16}}{M^{3}} \sigma_{P k} T_{k k}+A_{17} T^{k \nu} \gamma_{\nu}+\frac{A_{18}}{M} \sigma_{\nu P} T^{k \nu}+\frac{A_{19}}{M} \sigma_{\nu k} T^{k \nu} \\
& \quad+\frac{A_{20}}{M^{2}} \varepsilon^{\mu \nu P k} \gamma_{\mu} \gamma_{5} T_{\nu k}+\frac{B_{21} M}{P \cdot n} T_{k n}+\frac{B_{22} M^{3}}{(P \cdot n)^{2}} T_{n n}+\frac{B_{23}}{P \cdot n M} \varepsilon^{\mu k P n} T_{\mu k}\left(i \gamma_{5}\right)+\frac{B_{24} M}{(P \cdot n)^{2}} \varepsilon^{\mu k P n} T_{\mu n}\left(i \gamma_{5}\right)+\frac{B_{25}}{P \cdot n} \nsim T_{k k} \\
& \quad+\frac{B_{26} M^{2}}{(P \cdot n)^{2}} \nsim T_{k n}+\frac{B_{27} M^{4}}{(P \cdot n)^{3}} \nVdash T_{n n}+\frac{B_{28}}{P \cdot n} \not P T_{k n}+\frac{B_{29} M^{2}}{(P \cdot n)^{2}} \not P T_{n n}+\frac{B_{30}}{P \cdot n} \not k T_{k n}+\frac{B_{31} M^{2}}{(P \cdot n)^{2}} k T_{n n}+\frac{B_{32} M^{2}}{P \cdot n} \gamma_{\mu} T^{\mu n} \\
& \quad+\frac{B_{33}}{P \cdot n} \varepsilon^{\mu \nu P k} \gamma_{\mu} \gamma_{5} T_{\nu n}+\frac{B_{34}}{P \cdot n} \varepsilon^{\mu \nu P n} \gamma_{\mu} \gamma_{5} T_{\nu k}+\frac{B_{35} M^{2}}{(P \cdot n)^{2}} \varepsilon^{\mu \nu P n} \gamma_{\mu} \gamma_{5} T_{\nu n}+\frac{B_{36}}{P \cdot n M^{2}} \varepsilon^{\mu k P n} \gamma_{\mu} \gamma_{5} T_{k k} \\
& \quad+\frac{B_{37}}{(P \cdot n)^{2}} \varepsilon^{\mu k P n} \gamma_{\mu} \gamma_{5} T_{k n}+\frac{B_{38} M^{2}}{(P \cdot n)^{3}} \varepsilon^{\mu k P n} \gamma_{\mu} \gamma_{5} T_{n n}+\frac{B_{39}}{(P \cdot n)^{2}} \not \chi_{5} T_{\mu k} \varepsilon^{\mu k P n}+\frac{B_{40} M^{2}}{(P \cdot n)^{3}} \nVdash \gamma_{5} T_{\mu n} \varepsilon^{\mu k P n} \\
& \quad+\frac{B_{41}}{P \cdot n M} \sigma_{P k} T_{k n}+\frac{B_{42} M}{(P \cdot n)^{2}} \sigma_{P k} T_{n n}+\frac{B_{43}}{P \cdot n M} \sigma_{P n} T_{k k}+\frac{B_{44} M}{(P \cdot n)^{2}} \sigma_{P n} T_{k n}+\frac{B_{45} M^{3}}{(P \cdot n)^{3}} \sigma_{P n} T_{n n}+\frac{B_{46}}{P \cdot n M} \sigma_{k n} T_{k k} \\
& \quad+\frac{B_{47} M}{(P \cdot n)^{2}} \sigma_{k n} T_{k n}+\frac{B_{48} M^{3}}{(P \cdot n)^{3}} \sigma_{k n} T_{n n}+\frac{B_{49} M}{P \cdot n} \sigma_{\mu n} T^{\mu k}+\frac{B_{50} M M^{3}}{(P \cdot n)^{2}} \sigma_{\mu n} T^{\mu n}+\frac{B_{51} M}{P \cdot n} \sigma_{\mu P} T^{\mu n}+\frac{B_{52} M}{P \cdot n} \sigma_{\mu k} T^{\mu n},
\end{aligned}
$$

## Twist-2 TMDs

$$
\begin{aligned}
\Phi^{\left[\gamma^{+}\right]}\left(x, k_{T}, T\right)= & f_{1 L L}\left(x, k_{T}^{2}\right) S_{L L}-f_{1 L T}\left(x, k_{T}^{2}\right) \frac{S_{L T} \cdot k_{T}}{M} \\
& +f_{1 T T}\left(x, k_{T}^{2}\right) \frac{k_{T} \cdot S_{T T} \cdot k_{T}}{M^{2}},
\end{aligned}
$$

$$
\Phi^{\left[\gamma^{+} \gamma_{5}\right]}\left(x, k_{T}, T\right)=g_{1 L T}\left(x, k_{T}^{2}\right) \frac{S_{L T \mu} \varepsilon_{T}^{\mu \nu} k_{T \nu}}{M}
$$

$$
+g_{1 T T}\left(x, k_{T}^{2}\right) \frac{S_{T T \mu \rho} k_{T}^{\rho} \varepsilon_{T}^{\mu \nu} k_{T \nu}}{M^{2}}
$$

$$
\Phi^{\left[\sigma^{i+}\right]}\left(x, k_{T}, T\right)=h_{1 L L}^{\perp}\left(x, k_{T}^{2}\right) \frac{S_{L L} k_{T}^{i}}{M}+h_{1 L T}^{\prime}\left(x, k_{T}^{2}\right) S_{L T}^{i}
$$

$$
-h_{1 L T}^{\perp}\left(x, k_{T}^{2}\right) \frac{k_{T}^{i} S_{L T} \cdot k_{T}}{M^{2}}
$$

$$
-h_{1 T T}^{\prime}\left(x, k_{T}^{2}\right) \frac{S_{T T}^{i j} k_{T j}}{M}
$$

time reversal-odd ones $\gamma^{\mu} \gamma_{5}$ and $\sigma^{\mu \nu}$ terms 10 leading-twist TMDs

$$
+h_{1 T T}^{\perp}\left(x, k_{T}^{2}\right) \frac{k_{T} \cdot S_{T T} \cdot k_{T}}{M^{2}} \frac{k_{T}^{i}}{M}
$$

A. Bacchetta and P. Mulders, PRD 62, 114004 (2000).

## Twist-3 TMDs: time reversal-even ones

$$
\begin{aligned}
\Phi^{\left[\gamma^{i}\right]}\left(x, k_{T}, T\right)= & \frac{M}{P^{+}}\left[f_{L L}^{\perp}\left(x, k_{T}^{2}\right) S_{L L} \frac{k_{T}^{i}}{M}+f_{L T}^{\prime}\left(x, k_{T}^{2}\right) S_{L T}^{i}-f_{L T}^{\perp}\left(x, k_{T}^{2}\right) \frac{k_{T}^{i} S_{L T} \cdot k_{T}}{M^{2}}-f_{T T}^{\prime}\left(x, k_{T}^{2}\right) \frac{S_{T T}^{i j} k_{T j}}{M}\right. \\
& \left.+f_{T T}^{\perp}\left(x, k_{T}^{2}\right) \frac{k_{T} \cdot S_{T T} \cdot k_{T}}{M^{2}} \frac{k_{T}^{i}}{M}\right] \\
\Phi^{[1]}\left(x, k_{T}, T\right)= & \frac{M}{P^{+}}\left[e_{L L}\left(x, k_{T}^{2}\right) S_{L L}-e_{L T}^{\perp}\left(x, k_{T}^{2}\right) \frac{S_{L T} \cdot k_{T}}{M}+e_{T T}^{\perp}\left(x, k_{T}^{2}\right) \frac{k_{T} \cdot S_{T T} \cdot k_{T}}{M^{2}}\right] \\
\Phi^{\left[i \gamma_{5}\right]}= & \frac{M}{P^{+}}\left[\left(e_{L T}\left(x, k_{T}^{2}\right) \frac{S_{L T \mu} \varepsilon_{T}^{\mu \nu} k_{T \nu}}{M}-\left(e_{T T}\left(x, k_{T}^{2}\right) \frac{S_{T T \mu \rho} k_{T}^{\rho} \varepsilon_{T}^{\mu \nu} k_{T \nu}}{M^{2}}\right] .\right.\right.
\end{aligned}
$$

Only dependent on the new terms $\left(\mathrm{B}_{21}-\mathrm{B}_{52}\right)$ in the correlation function.

Twist-3 TMDs: time reversal-odd ones

$$
\begin{aligned}
\Phi^{\left[\sigma^{-+]}\right.}\left(x, k_{T}, T\right) & =\frac{M}{P^{+}}\left[h_{L L}\left(x, k_{T}^{2}\right) S_{L L}-h_{L T}\left(x, k_{T}^{2}\right) \frac{S_{L T} \cdot k_{T}}{M}+h_{T T}\left(x, k_{T}^{2}\right) \frac{k_{T} \cdot S_{T T} \cdot k_{T}}{M^{2}}\right], \\
\Phi^{\left[\sigma^{i j]}\right.}\left(x, k_{T}, T\right)= & \frac{M}{P^{+}}\left[h_{L T}^{\perp}\left(x, k_{T}^{2}\right) \frac{S_{L T}^{i} k_{T}^{j}-S_{L T}^{j} k_{T}^{i}}{M}-h_{T T}^{\perp}\left(x, k_{T}^{2}\right) \frac{S_{T T}^{i l} k_{T l} k_{T}^{j}-S_{T T}^{j l} k_{T l} k_{T}^{i}}{M^{2}}\right] . \\
\Phi^{\left[\gamma^{i} r_{j}\right]}\left(x, k_{T}, T\right)= & \frac{M}{P^{+}}\left[-g_{L L}^{\perp}\left(x, k_{T}^{2}\right) S_{L L} \frac{\varepsilon_{T}^{i j} k_{T j}}{M}-g_{L T}^{\prime}\left(x, k_{T}^{2}\right) \varepsilon_{T}^{i j} S_{L T j}+g_{L T}^{\perp}\left(x, k_{T}^{2}\right) \frac{\varepsilon_{T}^{i j} k_{T j} S_{L T} \cdot k_{T}}{M^{2}}\right. \\
& +g_{T T}^{\prime}\left(x, k_{T}^{2}\right) \frac{\varepsilon_{T}^{i j} S_{T T j l} k_{T}^{l}}{M}-\underbrace{\downarrow}_{\left.g_{T T}^{\perp}\left(x, k_{T}^{2}\right) \frac{k_{T} \cdot S_{T T} \cdot k_{T}}{M^{2}} \frac{\left.\varepsilon_{T}^{i j} k_{T j}\right] .}{M}\right] .}
\end{aligned}
$$

Only dependent on the new terms $\left(\mathrm{B}_{21}-\mathrm{B}_{52}\right)$ in the correlation function.

There are 20 twist- 3 TMDs.

Twist-4 TMDs

$$
\begin{aligned}
\Phi^{\left[\gamma^{-}\right]}= & \frac{M^{2}}{P^{+2}}\left[f_{3 L L}\left(x, k_{T}^{2}\right) S_{L L}-f_{3 L T}\left(x, k_{T}^{2}\right) \frac{S_{L T} \cdot k_{T}}{M}+f_{3 T T}\left(x, k_{T}^{2}\right) \frac{k_{T} \cdot S_{T T} \cdot k_{T}}{M^{2}}\right] \\
\Phi^{\left[\gamma^{-} \gamma_{5}\right]}= & \frac{M^{2}}{P^{+2}}\left[g_{3 L T}\left(x, k_{T}^{2}\right) \frac{S_{L T \mu} \varepsilon_{T}^{\mu \nu} k_{T \nu}}{M}+g_{3 T T}\left(x, k_{T}^{2}\right) \frac{S_{T T \mu \rho} k_{T}^{\rho} \varepsilon_{T}^{\mu \nu} k_{T \nu}}{M^{2}}\right], \\
\Phi^{\left[\sigma^{i-}\right]}= & \frac{M^{2}}{P^{+2}}\left[h \frac{\perp}{3 L L}\left(x, k_{T}^{2}\right) S_{L L} \frac{k_{T}^{i}}{M}+h_{3 L T}^{\prime}\left(x, k_{T}^{2}\right) S_{L T}^{i}-h_{3 L T}^{\perp}\left(x, k_{T}^{2}\right) \frac{k_{T}^{i} S_{L T} \cdot k_{T}}{M^{2}}-h_{3 T T}^{\prime}\left(x, k_{T}^{2}\right) \frac{S_{T T}^{i j} k_{T j}}{M}\right. \\
& \left.+h_{3 T T}^{\perp}\left(x, k_{T}^{2}\right) \frac{k_{T} \cdot S_{T T} \cdot k_{T}}{M^{2}} \frac{k_{T}^{i}}{M}\right] .
\end{aligned}
$$

There are 10 twist- 4 TMDs.

$$
\begin{aligned}
& \int d^{2} k_{T} h_{1 L T}\left(x, k_{T}^{2}\right)=0 \\
& \int d^{2} k_{T} g_{L T}\left(x, k_{T}^{2}\right)=0 \\
& \int d^{2} k_{T} h_{L L}\left(x, k_{T}^{2}\right)=0 \\
& \int d^{2} k_{T} h_{3 L T}\left(x, k_{T}^{2}\right)=0
\end{aligned}
$$

Sum rules for time-reversal-odd TMDs

## Summary

(1) A complete decomposition of quark correlation function for spin-1 hadrons.
(2) Twist-3 and Twist-4 TMDs are defined for spin- 1 hadrons.
(3) Sum rules are obtained for time-reversal-odd TMDs

Thank you very much


[^0]:    - $>$ Spinless (unpolarized) part: same as pion meson

    The TMDs in spin-1 hadrons
    > Vector-polarized part: same as proton
    $\longrightarrow$ Tensor-polarized part: NEW $\longrightarrow \longrightarrow \rightarrow \begin{aligned} & \text { Leading-twist quark TMDs: firstly } \\ & \text { studied by Profs. Bacchetta and Mulders. }\end{aligned}$
    

    In this talk we will discuss:
    J. P. Ralston and D. E. Soper, NPB152, 109 (1979).
    R. D. Tangerman and P. J. Mulders, PRD 51, 3357 (1995)
    P. J. Mulders and R. D. Tangerman, NPB461, 197 (1996).
    A. Bacchetta and P. Mulders, PRD 62, 114004 (2000).

    Daniel Boer, Sabrina Cotogno and Tom van Daal et al, JHEP 10, 013 (2016)
    a complete decomposition of quark correlation function and higher-twist TMDs for spin-1 hadrons

