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Abstract

We study the threshold resummation in the large-
momentum effective theory (LaMET) and pseudo
distribution approaches to calculate parton distri-
bution functions (PDFs) from lattice QCD, and
apply it to the lattice data for the pion valence
quark PDF. Our analysis shows that with the
current data quality and highest pion momen-
tum P z = 2.4 GeV, the effect of threshold re-
summation is negligible for the lowest moments
and large-x behavior of the PDF.

Introduction
Many present lattice QCD approaches to calculate
the parton distribution functions (PDFs) rely on a
factorization formula or effective theory expansion
to extract them from certain Euclidean matrix el-
ements in boosted hadron states. In the threshold
region, the perturbative matching in the factoriza-
tion or expansion formula includes large logarithms
that need to be resummed, which could affect the
prediction of the large-x behavior of PDFs.

The pion valence PDFs at large x, which is char-
acterized by a power law behavior (1 − x)β, has
been under debate among various approaches. In the
asymptotic limit, the Brodsky-Farrar quark count-
ing rules predicted that β ∼ 2, but recent analyses
by JAM and xFitter suggest that β ∼ 1. With
the inclusion of threshold resummation in the Drell-
Yan cross section formula, it was found that β ∼ 2.
Therefore, it will be important if lattice QCD can
offer insight on this property.
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Origin of threshold logarithms

Both the quasi-PDF (qPDF) in LaMET and
pseudo-PDF (pPDF) can be related to a 3D
distribution defined as
q̃(x,~b⊥, P z) = 1

2P 0

∫ dz
2π
eiz(xP z)

× 〈P |ψ̄(b)W (b, 0)γtψ(0)|P 〉 , (1)
where bµ = (0,~b⊥, z), and W (b, 0) is a straight
Wilson line connecting 0 and bµ.
The qPDF:

q̃(x, P z) = lim
b⊥→0

q̃(x,~b⊥, P z) . (2)

The pPDF:
P(x, b2

⊥) = lim
P z→∞

q̃(x,~b⊥, P z) . (3)
The leading soft divergence in the 3D distribution
q̃(x,~b⊥, P z) comes from the diagram in Fig. 1.
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Figure 1: One-loop Feynman diagrams (and conjugates) that
contribute to the leading soft divergence of the 3D distribution.

In the limit of the x→ 1,

q̃(1)
cs (x, pz) x→1−=⇒ −g

2CF
8π2

1
ε

(µ2

p2
z

)ε1 + (1− x)−2ε

1− x
, (4)

P (1)
cs (x, b2

⊥) x→1−=⇒ g2CF
4π2 Γ(−ε)(b2

⊥µ
2)ε(1− x)2ε

(1− x)
. (5)

The different signs of ε in the exponents in Eqs. (4)
and (5) lead to different dynamical behaviors of the
thershold logarithms, as the qPDF approaches the
infrared (IR) region while the pDF approaches an
ultraviolet (UV) fixed point. In the pPDF case, the
emitted gluon remains off-shell with virtual mass
−k2
⊥ ∼ 1/b2

⊥ in the limit of x→ 1, so the gluon is
in the UV region when b2

⊥ is small. Moreover, since
the limit pz →∞ has been taken first, only
collinear and soft emissions with k⊥→ 0 are
allowed, and the emission of a gluon with finite k⊥
is suppressed, which explains the suppression factor
(1− x)2ε. On the other hand, in the qPDF case,
since k⊥ is integrated over, the limit x→ 1
includes contributions from both hard and soft
transverse momentum modes, with the latter being
sensitive to IR physics.

Threshold resummation at next-to-leading-logarithmic accuracy

Let us work on the short-distance OPE of the
spatial correlator h̃γt(λ, z2µ2) that defines the
qPDF and pPDF,

h̃γt(λ, z2µ2) =
∞∑
N=0

(−iλ)N

N !
CN(z2

0µ
2)aN(µ) , (6)

where z0 = zeγE/2, and aN(µ) is the Mellin
moment of the PDF. At large N , the Wilson
coefficients CN include large threshold logarithms
of αs ln2N and αs lnN , which can be resummed as

lnCNLL
N =

∫
dx
xN−1 − 1

1− x

∫ (1−x)a

z2
0

µ2

dk2

k2 A(αs(k2))

+ B(αs((1− x)a/z2
0))

 , (7)

where a = −2 corresponds to a UV fixed point.
At next-to-leading-logarithmic (NLL) accuracy,

lnCNLL
N (αs(µ), z2

0µ
2) = −π

2

3
asCF + lnN ′g1(τ, L)

+ g2(τ, L), (8)
where τ = β0as lnN ′, L = ln(z2

0µ
2). The functions

g1 and g2 can be found in Ref. [1]. We can also
include the resummation of αsL with DGLAP
evolution,

Cevo
N (z2

0µ
2)=CN

(
αs(z−1

0 ), 1
)αs(z−1

0 )
αs(µ)


γ

(0)
N
β0
, (9)

where γ(0)
N is the anomalous dimension of CN and

η0 is the leading coefficient in the QCD β function.

Application to lattice QCD
Through a semi-model-independent approach, we
can demonstrate that the NLL threshold resumma-
tion tends to increase the value of β [1]. We also ap-
ply the resummed Wilson coefficients to analyze the
lattice matrix elements for the pion valence PDF.
By constructing the ratios of the matrix elements
at different pion momenta, we can fit them to the
resummed OPE formula as

h̃γt(z, P z)
h̃γt(z, P z

0 )
=
∑
N CN(z2µ2)(−izP z)N

N ! 〈x
N〉∑

N CN(z2µ2)(−izP z
0 )N

N ! 〈xN〉
. (10)

The lattice data are obtained from Ref. [2] at spac-
ings a = 0.04, 0.06 fm with valence pion mass
mπ = 300 MeV. The largest pion momenta are
P z = 2.15 GeV and 2.42 GeV for the a = 0.04 and
0.06 fm lattices, respectively. Due to the require-
ment of small z, the largest λ = zP z is limited, so
we can only reliably extract up to the fourth moment
〈x4〉, as shown in Fig. 2.
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Figure 2: Results of 〈x2〉 (red band)and 〈x4〉 (blue band) in
this work, compared with NLO fit, as well as global fits.

Compared to the fit with next-to-leading order
(NLO) OPE formula, the effect of threshold re-
summation is negligible for 〈x2〉 and 〈x4〉. We
also parameterized the PDF with a simple model
∼ xα(1−x)β and fit it to the lattice data, but found
that the NLL resummation barely changes β.
The main reason is because our lattice data are not
sensitive the higher moments or large-x PDF. There-
fore, to better constrain β, we will need to reach
larger P z and higher statistics, then the threshold
resummation will also become important.


