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® The theory of the strong interaction which provides the funda-
mental description of hadronic structure and dynamics in terms
of their elementary quarks and gluons degrees of freedom is
Quantum Chromodynamics (QCD).
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® The theory of the strong interaction which provides the funda-
mental description of hadronic structure and dynamics in terms
of their elementary quarks and gluons degrees of freedom is
Quantum Chromodynamics (QCD).

® The foremost problem of hadron physics is to unravel the in-
ternal structure of hadron.
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From Special Theory of Relativity:
® Space and time independently are not invariant quantities.

® Rather space-time is an invariant object.
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Figure 1: (a) the instant form, (b) the front form, (c) the point form.
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Figure 1: (a) the instant form, (b) the front form, (c) the point form.
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Figure 1: (a) the instant form, (b) the front form, (c) the point form.
Their initial surfaces are
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Why Light Front?

® |t is an ldeal Framework to describe theoretically the hadronic
structure in terms of quarks and gluons. It can overcome many
obstacles and has many advantages:
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Why Light Front?

® |t is an ldeal Framework to describe theoretically the hadronic
structure in terms of quarks and gluons. It can overcome many
obstacles and has many advantages:
® Simple vacuum structure ~ vacuum expectation value is zero.
® A dynamical system is characterized by ten fundamental quan-
tities: energy, momentum, angular momentum and boost.
~ seven out of which are kinematical. It allows unambiguous
definition of the partonic content of a hadron, exact formulae
for form factors, physics of angular momentum of constituents.
® Dispersion Relation (for ON shell particles)
2 2
k— — (kJ_l)(:Lm

~ no square root factor.
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Light-Front Coordinates

® A generic four Vector x* in light-cone coordinates is describe
as x* = (x7,xT, x1).

o xt =x% 4+ x3 is called as light-front time.

o x~ = x%—x3is called as light-front longitudinal space variable.
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A generic four Vector x* in light-cone coordinates is describe
as x* = (x7,xT, x1).

xT = x9 + x3 is called as light-front time.
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—x3 is called as light-front longitudinal space variable.

2) is the transverse variable.
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Light-Front Coordinates

A generic four Vector x* in light-cone coordinates is describe
as x* = (x7,xT, x1).

xT = x9 + x3 is called as light-front time.

o x~ = x%—x3is called as light-front longitudinal space variable.

e x1 = (x!,x?) is the transverse variable.

Similarly we can define the longitudinal momentum k+ = k% +
k3 and light-front energy k= = k% — k3.
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Distribution Function

® The spatial distribution of charge and current in a system can
be probed through elastic scattering of electrons, photons etc.
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Dastribution Function

The spatial distribution of charge and current in a system can
be probed through elastic scattering of electrons, photons etc.

The distribution of the constituents in momentum space can
be measured through deep inelastic knock-out scattering.
The longitudinal momentum distribution of partons in a hadron
is described by Parton distribution functions (PDFs).

The distribution of a partons in the transverse plane is described
by Generalized parton distributions (GPDs). They unify the
spatial picture produced by form factors with the momentum
picture produced by PDF's.
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Distribution Function

® Much more comprehensive picture of the hadron structure can
be obtained by Transverse momentum dependent parton
distributions (TMDs).
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® Much more comprehensive picture of the hadron structure can
be obtained by Transverse momentum dependent parton

distributions (TMDs).
® The TMD'’s give details of transverse momentum distributions
of partons inside the hadrons.
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Dastribution Function

® Much more comprehensive picture of the hadron structure can
be obtained by Transverse momentum dependent parton
distributions (TMDs).

® The TMD'’s give details of transverse momentum distributions
of partons inside the hadrons.

e Wigner distributions unify the position & momentum distri-
butions and provide subtle details for partons inside the hadron.
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Relation between Wigner, TMD’s, GPD’s and PDF’s

Belitsky, Ji, Yuan (2003);

W(z,k1,b1)
A LA dz~d?z)

S A a
eiwPta—ikLZip Fla=z/27%a(z/2)IP + 3)

= (2m)? 1673
s |
™D  f(z, k1) GPD  f(z,b1) ]
dx
fd;;-;\ .//dm
f(a;) ’ F(B'J_) Form factor
PDF /
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® |n SIDIS, we choose a frame where the hadron momentum P
has no transverse momentum component. The initial and final
hadron co-ordinates are given as
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® |n SIDIS, we choose a frame where the hadron momentum P
has no transverse momentum component. The initial and final
hadron co-ordinates are given as

M2
P: <P+,0,2F)+>
;o M? + AZ
P =(0-or o o)
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® |n SIDIS, we choose a frame where the hadron momentum P
has no transverse momentum component. The initial and final
hadron co-ordinates are given as

M2
P: <P+,0,2F)+>

, M? + A2
e R )

® Target polarization 4-vector and quark momentum is parametrized

as
(AP —AnM
5_< M ST Pt )

2 2
+p
P (X P 2XD+
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TMD:s

TMDs contain information on both the longitudinal and trans-
verse momentum of partons in the hadron.

They describe the probability to find a parton with longitudinal
momentum fraction x and transverse momentum with respect
to the direction of the parent hadron momentum in a hadron.

TMDs are also of particular importance because they give rise
to single spin asymmetries (SSAs).

They can be measured in a variety of reactions in lepton-proton
and proton-proton collisions as SIDIS [1, 2] and DY production
[3] where a final-state particle is observed with a transverse
momentum.
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T-odd quark-gluon—quark correlation function in the
light-front quark-diquark model

18/19



Introduction Methodology Calculation
00000000 00 ©®0000

T-odd quark-gluon—quark correlation function in the
light-front quark-diquark model

Most generalized form of quark-gluon-quark correlator is given by

[4]

a*¢ A e o
&% (p,p— p1; P, S) = / (2754 (27:; P glP1-(n—€)

< (P, |T(0)gA(n)is()| P.S)
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T-odd quark-gluon—quark correlation function in the
light-front quark-diquark model

Most generalized form of quark-gluon-quark correlator is given by
[4]

a d4€ d477 ip-§ 4ip1-(n—
¢AU(P7P—P1;P,5):/(2W)4(2ﬂ)4epfe"1 (n=5)

< (P, |T(0)gA(n)is()| P.S)

where,
® gA®(n) is the operator corresponding to gluon field.
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T-odd quark-gluon—quark correlation function in the
light-front quark-diquark model

Most generalized form of quark-gluon-quark correlator is given by
[4]

a d4€ d477 ip-§ 4ip1-(n—
¢AU(P7P—P1;P,5):/(2W)4(2ﬂ)4epfe"1 (n=5)

< (P, |T(0)gA(n)is()| P.S)

where,
® gA®(n) is the operator corresponding to gluon field.

® p & pp are parton's momenta.

18/19



Introduction Methodology Calculation
00000

We have started our work with this form of quark-gluon-quark cor-
relator [5]
= d’grds” ;
[+]o _ &
(2 )jj(stT): 2n)3 e
-
x (P, S|¥j(0)g f dn~ L51(0.97) FF ()
+oo

x L5187 (07 ET)Ui(E)IP, S)e nt=£t=0"

nr=ér
pt=xP*

where,
® FHV is the antisymmetric field strength tensor of the gluon,
o LB and L£&7, €7 are the gauge-links ensuring the
gauge-invariance of the definition.
® The sign & in the superscript or subscript indicates that the
gauge-link between the quark and the gluon is
future/past-pointing. 1419
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Above correlator can be rewritten as [5]

. [ Erdgmdy P
[£]e —
(@) =ie [ SR [ s

x ef[(X—X’)P+'~§_—PT'§T](p! SHZfJ'(O)E[i] (0, n—)F+a @)

x LT (7 ) 9i(6)IP, S)

n+=E+=D ’
nr==&r
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Above correlator can be rewritten as [5]

~ d2§ de—dn~ el Pt~
[£]a _ T n ’
(®47)5x pr) = ig f @) [ "X Tio

x ef[(X—X’)P+'$_—PT'ET](p! 5\,}/}}.(0)5[:1:] (0, n—)F+a @)

x LT (7 ) 9i(6)IP, S)

n+=E+=D ’
nr==&r

® |gnore all gauge links in the correlator.
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Above correlator can be rewritten as [5]

~ d2§ de—dn~ el Pt~
[£]a _ T n ’
(®47)5x pr) = ig f @) f "X Tio

x ef[(X—X’)P+'$_—PT'ET](p! 5\,}/}}.(0)5[:1:] (0, n—)F+a @)

x LT (7 ) 9i(6)IP, S)

n+=E+=0 ’
nr==&r

® |gnore all gauge links in the correlator.

® We choose to work in quark-diquark model by considering
axial-vector diquark.
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® This form of field strength tensor is used
Fro=—i(q7g* — q"g*’).

16/19



Introduction Methodology Calculation
00000000 00 0000e0

® This form of field strength tensor is used
Fro=—i(q7g* — q"g*’).
® Twist-3 T-even TMD's are

16/19



Introduction Methodology Calculation
00000000 0o 00000

® This form of field strength tensor is used
Fro=—i(q7g* — q"g*’).

° Tvv~ist—3 T-even TMD's are y
e~7 fJ_ag‘T (or é%’)?g%agf—a hLa hT and h%’

® Twist-3 T-odd TMD's are

16/19



Introduction Methodology Calculation
00000000 0o 000000

® This form of field strength tensor is used
Fta — _I'(q—i-gap _ qag+p)_

° Tvv~ist—3 T-even TMD's are y
e~7 fJ_ag‘T (or é%’)?g%agf—a hLa hT and h%’

® Twist-3 T-odd TMD's are y
éL, éT, 'é%—‘, fT (or f—;—), fJ‘, fLJ‘,é'J‘, h.
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This form of field strength tensor is used
Fro=—i(q7g* — q"g*’).

Twist-3 T-even TMD's are

& f &r (or &), &+, 81, b, hr and h+.

Twist-3 T-odd TMD's are

&, 87,6, fr (or 1), f, FL &4 h.

Real part of Left hand side term appearing in the above

correlator corresponds to T-odd(or T-even) TMD's if
imaginary (or real) part is considered.

1 1 o
— = P(—) +i8(x').
(x' Fie) b'd
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Two such T-odd Twist-3 TMD can be projected by [5]
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Two such T-odd Twist-3 TMD can be projected by [5]

pr- St

—Tr[@pqio“tys] = Sp(hy +ier) — (ht +ier)

2Mx
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Two such T-odd Twist-3 TMD can be projected by [5]

.St . 5
Pr T(hr-i-ler)

1 - -
—Tr[®aqic® T ys5| = S (hy +iér) —
o [ A V5] =Sic(hy +iép)

Above expression is proportional to

(F+a)[¢jf+(xj PT)%i»Jr(X, pr) + wfo(x, PTWiLo(Xa PT)
+YE (6 pr)Ui_(x pr) + ¥, (6 pr)Y Tt (xpr) (1)
+¢$0(X, pr)vo(x pr) + @bff(X? pr)E (% pr)l
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Two such T-odd Twist-3 TMD can be projected by [5]

St ~ -
d (hr +1ier)

! Tr[®anioc®tys] = Sy (h +iép) —
IMx Aa )/5 =orlng L

Above expression is proportional to

(F—HX)[w%Jr(Xa PT)¢1_L+(X7 pT) + wfo(x’ PT)¢1_LO(X7 pT)
+OZ_ (% pr)Yi_ (% pr) + Uiy (6 pr )Y (o pr) (1)
o (% pT)UE (% PT) + (% pr)YE_(x, pr)]

After fixing the helicity of nucleon using Light Front Wave Functions

(FF) [T, (%, pr)vT (x pr) + v (%, pPr)VIo(x pT)
+0T (% pr) T, (x p7) +"¢+o(x pT)V(x pr)]

()
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