T-odd quark-gluon-quark correlation function in the light-front quark-diquark model

DIS 2021 Presentation

Shubham Sharma
In Collaboration with
Dr. Harleen Dahiya
Department of Physics,
Dr. B.R. Ambedkar National Institute of Technology, Jalandhar 144011, INDIA.

Introduction

Introduction

- The theory of the strong interaction which provides the fundamental description of hadronic structure and dynamics in terms of their elementary quarks and gluons degrees of freedom is Quantum Chromodynamics (QCD).

Introduction

- The theory of the strong interaction which provides the fundamental description of hadronic structure and dynamics in terms of their elementary quarks and gluons degrees of freedom is Quantum Chromodynamics (QCD).
- The foremost problem of hadron physics is to unravel the internal structure of hadron.

From Special Theory of Relativity:

- Space and time independently are not invariant quantities.
- Rather space-time is an invariant object.

From Special Theory of Relativity:

- Space and time independently are not invariant quantities.
- Rather space-time is an invariant object.

b

Figure 1: (a) the instant form, (b) the front form, (c) the point form.

Figure 1: (a) the instant form, (b) the front form, (c) the point form.
Their initial surfaces are

Figure 1: (a) the instant form, (b) the front form, (c) the point form.
Their initial surfaces are
a) $x^{0}=0$

Figure 1: (a) the instant form, (b) the front form, (c) the point form.
Their initial surfaces are
a) $x^{0}=0$
b) $x^{0}+x^{3}=0$

Figure 1: (a) the instant form, (b) the front form, (c) the point form.
Their initial surfaces are
a) $x^{0}=0$
b) $x^{0}+x^{3}=0$
c) $x^{2}=a^{2}>0, x^{0}>0$

Why Light Front?

- It is an Ideal Framework to describe theoretically the hadronic structure in terms of quarks and gluons. It can overcome many obstacles and has many advantages:

Why Light Front?

- It is an Ideal Framework to describe theoretically the hadronic structure in terms of quarks and gluons. It can overcome many obstacles and has many advantages:
- Simple vacuum structure \sim vacuum expectation value is zero.

Why Light Front?

- It is an Ideal Framework to describe theoretically the hadronic structure in terms of quarks and gluons. It can overcome many obstacles and has many advantages:
- Simple vacuum structure \sim vacuum expectation value is zero.
- A dynamical system is characterized by ten fundamental quantities: energy, momentum, angular momentum and boost.
\sim seven out of which are kinematical.

Why Light Front?

- It is an Ideal Framework to describe theoretically the hadronic structure in terms of quarks and gluons. It can overcome many obstacles and has many advantages:
- Simple vacuum structure \sim vacuum expectation value is zero.
- A dynamical system is characterized by ten fundamental quantities: energy, momentum, angular momentum and boost. \sim seven out of which are kinematical. It allows unambiguous definition of the partonic content of a hadron, exact formulae for form factors, physics of angular momentum of constituents.

Why Light Front?

- It is an Ideal Framework to describe theoretically the hadronic structure in terms of quarks and gluons. It can overcome many obstacles and has many advantages:
- Simple vacuum structure \sim vacuum expectation value is zero.
- A dynamical system is characterized by ten fundamental quantities: energy, momentum, angular momentum and boost. \sim seven out of which are kinematical. It allows unambiguous definition of the partonic content of a hadron, exact formulae for form factors, physics of angular momentum of constituents.
- Dispersion Relation (for ON shell particles)

$$
k^{-}=\frac{(k \perp)^{2}+m^{2}}{k^{+}}
$$

\sim no square root factor.

Light-Front Coordinates

Light-Front Coordinates

- A generic four Vector x^{μ} in light-cone coordinates is describe as $x^{\mu}=\left(x^{-}, x^{+}, x_{\perp}\right)$.
- $x^{+}=x^{0}+x^{3}$ is called as light-front time.
- $x^{-}=x^{0}-x^{3}$ is called as light-front longitudinal space variable.

Light-Front Coordinates

- A generic four Vector x^{μ} in light-cone coordinates is describe as $x^{\mu}=\left(x^{-}, x^{+}, x_{\perp}\right)$.
- $x^{+}=x^{0}+x^{3}$ is called as light-front time.
- $x^{-}=x^{0}-x^{3}$ is called as light-front longitudinal space variable.
- $x^{\perp}=\left(x^{1}, x^{2}\right)$ is the transverse variable.

Light-Front Coordinates

- A generic four Vector x^{μ} in light-cone coordinates is describe as $x^{\mu}=\left(x^{-}, x^{+}, x_{\perp}\right)$.
- $x^{+}=x^{0}+x^{3}$ is called as light-front time.
- $x^{-}=x^{0}-x^{3}$ is called as light-front longitudinal space variable.
- $x^{\perp}=\left(x^{1}, x^{2}\right)$ is the transverse variable.
- Similarly we can define the longitudinal momentum $k^{+}=k^{0}+$ k^{3} and light-front energy $k^{-}=k^{0}-k^{3}$.

Distribution Function

- The spatial distribution of charge and current in a system can be probed through elastic scattering of electrons, photons etc.

Distribution Function

- The spatial distribution of charge and current in a system can be probed through elastic scattering of electrons, photons etc.
- The distribution of the constituents in momentum space can be measured through deep inelastic knock-out scattering.

Distribution Function

- The spatial distribution of charge and current in a system can be probed through elastic scattering of electrons, photons etc.
- The distribution of the constituents in momentum space can be measured through deep inelastic knock-out scattering.
- The longitudinal momentum distribution of partons in a hadron is described by Parton distribution functions (PDFs).

Distribution Function

- The spatial distribution of charge and current in a system can be probed through elastic scattering of electrons, photons etc.
- The distribution of the constituents in momentum space can be measured through deep inelastic knock-out scattering.
- The longitudinal momentum distribution of partons in a hadron is described by Parton distribution functions (PDFs).
- The distribution of a partons in the transverse plane is described by Generalized parton distributions (GPDs). They unify the spatial picture produced by form factors with the momentum picture produced by PDF's.

Distribution Function

- Much more comprehensive picture of the hadron structure can be obtained by Transverse momentum dependent parton distributions (TMDs).

Distribution Function

- Much more comprehensive picture of the hadron structure can be obtained by Transverse momentum dependent parton distributions (TMDs).
- The TMD's give details of transverse momentum distributions of partons inside the hadrons.

Distribution Function

- Much more comprehensive picture of the hadron structure can be obtained by Transverse momentum dependent parton distributions (TMDs).
- The TMD's give details of transverse momentum distributions of partons inside the hadrons.
- Wigner distributions unify the position \& momentum distributions and provide subtle details for partons inside the hadron.

Relation between Wigner, TMD's, GPD's and PDF's

Belitsky, Ji, Yuan (2003);

$$
\begin{aligned}
& W\left(x, \vec{k}_{\perp}, \vec{b}_{\perp}\right) \\
& =\int \frac{d^{2} \Delta_{\perp}}{(2 \pi)^{2}} e^{i \vec{b}_{\perp} \cdot \vec{\Delta}_{\perp}} \int \frac{d z^{-} d^{2} z_{\perp}}{16 \pi^{3}} e^{i x P^{+} z^{-}-i \vec{k}_{\perp} \cdot \vec{z}_{\perp}}\left\langle P-\frac{\Delta}{2}\right| \bar{q}(-z / 2) \gamma^{+} q(z / 2)\left|P+\frac{\Delta}{2}\right\rangle \\
& \int d \vec{b}_{\perp} \\
& \text { TMD } \quad f\left(x, \vec{k}_{\perp}\right) \quad \text { GPD } \quad f\left(x, \vec{b}_{\perp}\right) \\
& \int_{d t c} Q_{\text {charge }} \int_{\text {dab }}
\end{aligned}
$$

Methodology

- In SIDIS, we choose a frame where the hadron momentum P has no transverse momentum component. The initial and final hadron co-ordinates are given as

Methodology

- In SIDIS, we choose a frame where the hadron momentum P has no transverse momentum component. The initial and final hadron co-ordinates are given as

$$
\begin{gathered}
P=\left(P^{+}, \mathbf{0}, \frac{M^{2}}{2 P^{+}}\right) \\
P^{\prime}=\left((1-\zeta) P^{+},-\Delta_{T}, \frac{M^{2}+\Delta_{T}^{2}}{2(1-\zeta) P^{+}}\right)
\end{gathered}
$$

Methodology

- In SIDIS, we choose a frame where the hadron momentum P has no transverse momentum component. The initial and final hadron co-ordinates are given as

$$
\begin{gathered}
P=\left(P^{+}, \mathbf{0}, \frac{M^{2}}{2 P^{+}}\right) \\
P^{\prime}=\left((1-\zeta) P^{+},-\Delta_{T}, \frac{M^{2}+\Delta_{T}^{2}}{2(1-\zeta) P^{+}}\right)
\end{gathered}
$$

- Target polarization 4-vector and quark momentum is parametrized as

$$
\begin{aligned}
S & =\left(\frac{\lambda_{h} P^{+}}{M}, \mathbf{S}_{T}, \frac{-\lambda_{h} M}{2 P^{+}}\right) \\
p & =\left(x P^{+}, \mathbf{p}_{T}, \frac{p^{2}+p_{T}^{2}}{2 x P^{+}}\right)
\end{aligned}
$$

TMDs

- TMDs contain information on both the longitudinal and transverse momentum of partons in the hadron.
- They describe the probability to find a parton with longitudinal momentum fraction x and transverse momentum with respect to the direction of the parent hadron momentum in a hadron.
- TMDs are also of particular importance because they give rise to single spin asymmetries (SSAs).
- They can be measured in a variety of reactions in lepton-proton and proton-proton collisions as SIDIS [1, 2] and DY production [3] where a final-state particle is observed with a transverse momentum.

Calculation

T-odd quark-gluon-quark correlation function in the

 light-front quark-diquark modelT-odd quark-gluon-quark correlation function in the light-front quark-diquark model

Most generalized form of quark-gluon-quark correlator is given by [4]

$$
\begin{aligned}
\Phi_{A i j}^{\alpha}\left(p, p-p_{1} ; P, S\right)=\int & \frac{\mathrm{d}^{4} \xi}{(2 \pi)^{4}} \frac{\mathrm{~d}^{4} \eta}{(2 \pi)^{4}} e^{i p \cdot \xi} e^{i p_{1} \cdot(\eta-\xi)} \\
& \times\langle P, S| \bar{\psi}_{j}(0) g A^{\alpha}(\eta) \psi_{i}(\xi)|P, S\rangle
\end{aligned}
$$

T-odd quark-gluon-quark correlation function in the

light-front quark-diquark model

Most generalized form of quark-gluon-quark correlator is given by [4]
$\Phi_{A i j}^{\alpha}\left(p, p-p_{1} ; P, S\right)=\int \frac{\mathrm{d}^{4} \xi}{(2 \pi)^{4}} \frac{\mathrm{~d}^{4} \eta}{(2 \pi)^{4}} e^{i p \cdot \xi} e^{i p_{1} \cdot(\eta-\xi)}$

$$
\times\langle P, S| \bar{\psi}_{j}(0) g A^{\alpha}(\eta) \psi_{i}(\xi)|P, S\rangle
$$

where,

- $g A^{\alpha}(\eta)$ is the operator corresponding to gluon field.

T-odd quark-gluon-quark correlation function in the

light-front quark-diquark model

Most generalized form of quark-gluon-quark correlator is given by [4]
$\Phi_{A i j}^{\alpha}\left(p, p-p_{1} ; P, S\right)=\int \frac{\mathrm{d}^{4} \xi}{(2 \pi)^{4}} \frac{\mathrm{~d}^{4} \eta}{(2 \pi)^{4}} e^{i p \cdot \xi} e^{i p_{1} \cdot(\eta-\xi)}$

$$
\times\langle P, S| \bar{\psi}_{j}(0) g A^{\alpha}(\eta) \psi_{i}(\xi)|P, S\rangle
$$

where,

- $g A^{\alpha}(\eta)$ is the operator corresponding to gluon field.
- $p \& p_{1}$ are parton's momenta.

We have started our work with this form of quark-gluon-quark correlator [5]

$$
\begin{aligned}
& \left(\tilde{\Phi}_{A}^{[\pm] \alpha}\right)_{i j}\left(x, p_{T}\right) \equiv \int \frac{d^{2} \xi_{T} d \xi^{-}}{(2 \pi)^{3}} e^{i p \xi} \\
& \quad \times\langle P, S| \bar{\psi}_{j}(0) g \int_{ \pm \infty}^{\xi^{-}} d \eta^{-} \mathcal{L}^{[\pm]}\left(0, \eta^{-}\right) F^{+\alpha}(\eta) \\
& \quad \times \mathcal{L}^{\xi T},\left.\xi^{+}\left(\eta^{-}, \xi^{-}\right) \psi_{i}(\xi)|P, S\rangle_{c}\right|_{\substack{\eta^{+}=\xi^{+}=0 \\
\eta_{T}=\xi_{T} \\
p^{+}=x P^{+}}},
\end{aligned}
$$

where,

- $F^{\mu v}$ is the antisymmetric field strength tensor of the gluon,
- $\mathcal{L}^{[\pm]}$and $\mathcal{L} \xi_{T}, \xi^{+}$are the gauge-links ensuring the gauge-invariance of the definition.
- The sign \pm in the superscript or subscript indicates that the gauge-link between the quark and the gluon is future/past-pointing.

Above correlator can be rewritten as [5]

$$
\begin{aligned}
& \left(\tilde{\Phi}_{A}^{[\pm] \alpha}\right)_{i j}\left(x, p_{T}\right)=i g \int \frac{d^{2} \xi_{T} d \xi^{-} d \eta^{-}}{(2 \pi)^{4}} \int d x^{\prime} \frac{e^{i x^{\prime} P^{+} \eta^{-}}}{\left(x^{\prime} \mp i \epsilon\right)} \\
& \quad \times e^{i\left[\left(x-x^{\prime}\right) P^{+} \cdot \xi^{-}-\boldsymbol{p}_{T} \cdot \xi_{T}\right]}\langle P, S| \bar{\psi}_{j}(0) \mathcal{L}^{[\pm]}\left(0, \eta^{-}\right) F^{+\alpha}(\eta) \\
& \quad \times\left.\mathcal{L}^{\xi_{T}, \xi^{+}}\left(\eta^{-}, \xi^{-}\right) \psi_{i}(\xi)|P, S\rangle\right|_{\substack{\eta^{+}=\xi^{+}=0 \\
\eta_{T}=\xi_{T}}} .
\end{aligned}
$$

Above correlator can be rewritten as [5]

$$
\begin{aligned}
& \left(\tilde{\Phi}_{A}^{[\pm] \alpha}\right)_{i j}\left(x, p_{T}\right)=i g \int \frac{d^{2} \xi_{T} d \xi^{-} d \eta^{-}}{(2 \pi)^{4}} \int d x^{\prime} \frac{e^{i x^{\prime} P^{+} \eta^{-}}}{\left(x^{\prime} \mp i \epsilon\right)} \\
& \quad \times e^{i\left[\left(x-x^{\prime}\right) P^{+} \cdot \xi^{-}-\boldsymbol{p}_{T} \cdot \xi_{T}\right]}\langle P, S| \bar{\psi}_{j}(0) \mathcal{L}^{[\pm]}\left(0, \eta^{-}\right) F^{+\alpha}(\eta) \\
& \quad \times\left.\mathcal{L}^{\xi_{T}, \xi^{+}}\left(\eta^{-}, \xi^{-}\right) \psi_{i}(\xi)|P, S\rangle\right|_{\substack{\eta^{+}=\xi^{+}=0 \\
\eta_{T}=\xi_{T}}} .
\end{aligned}
$$

- Ignore all gauge links in the correlator.

Above correlator can be rewritten as [5]

$$
\begin{aligned}
& \left(\tilde{\Phi}_{A}^{[\pm] \alpha}\right)_{i j}\left(x, p_{T}\right)=i g \int \frac{d^{2} \xi_{T} d \xi^{-} d \eta^{-}}{(2 \pi)^{4}} \int d x^{\prime} \frac{e^{i x^{\prime} P^{+} \eta^{-}}}{\left(x^{\prime} \mp i \epsilon\right)} \\
& \quad \times e^{i\left[\left(x-x^{\prime}\right) P^{+} \cdot \xi^{-}-\boldsymbol{p}_{T} \cdot \xi_{T}\right]}\langle P, S| \bar{\psi}_{j}(0) \mathcal{L}^{[\pm]}\left(0, \eta^{-}\right) F^{+\alpha}(\eta) \\
& \quad \times\left.\mathcal{L}^{\xi_{T}, \xi^{+}}\left(\eta^{-}, \xi^{-}\right) \psi_{i}(\xi)|P, S\rangle\right|_{\substack{\eta^{+}=\xi^{+}=0 \\
\eta_{T}=\xi_{T}}} .
\end{aligned}
$$

- Ignore all gauge links in the correlator.
- We choose to work in quark-diquark model by considering axial-vector diquark.
- This form of field strength tensor is used $F^{+\alpha}=-i\left(q^{+} g^{\alpha \rho}-q^{\alpha} g^{+\rho}\right)$.
- This form of field strength tensor is used $F^{+\alpha}=-i\left(q^{+} g^{\alpha \rho}-q^{\alpha} g^{+\rho}\right)$.
- Twist-3 T-even TMD's are
- This form of field strength tensor is used $F^{+\alpha}=-i\left(q^{+} g^{\alpha \rho}-q^{\alpha} g^{+\rho}\right)$.
- Twist-3 T-even TMD's are $\tilde{e}, \tilde{f}^{\perp}, \tilde{g}_{T}\left(\operatorname{or} \tilde{g}_{T}^{\prime}\right), \tilde{g}_{T}^{\perp}, \tilde{g}_{L}^{\perp}, \tilde{h}_{L}, \tilde{h}_{T}$ and \tilde{h}_{T}^{\perp}.
- Twist-3 T-odd TMD's are
- This form of field strength tensor is used

$$
F^{+\alpha}=-i\left(q^{+} g^{\alpha \rho}-q^{\alpha} g^{+\rho}\right)
$$

- Twist-3 T-even TMD's are

$$
\tilde{e}, \tilde{f}^{\perp}, \tilde{g}_{T}\left(\text { or } \tilde{g}_{T}^{\prime}\right), \tilde{g}_{T}^{\perp}, \tilde{g}_{L}^{\perp}, \tilde{h}_{L}, \tilde{h}_{T} \text { and } \tilde{h}_{\bar{T}}^{\perp}
$$

- Twist-3 T-odd TMD's are $\tilde{e}_{L}, \tilde{e}_{T}, \tilde{e}_{T}^{\perp}, \tilde{f}_{T}\left(\right.$ or $\left.\tilde{f}_{T}^{\prime}\right), \tilde{f}_{T}^{\perp}, \tilde{f}_{L}^{\perp}, \tilde{g}^{\perp}, \tilde{h}$.
- This form of field strength tensor is used $F^{+\alpha}=-i\left(q^{+} g^{\alpha \rho}-q^{\alpha} g^{+\rho}\right)$.
- Twist-3 T-even TMD's are $\tilde{e}, \tilde{f}^{\perp}, \tilde{g}_{T}\left(\right.$ or $\left.\tilde{g}_{T}^{\prime}\right), \tilde{g}_{T}^{\perp}, \tilde{g}_{L}^{\perp}, \tilde{h}_{L}, \tilde{h}_{T}$ and \tilde{h}_{T}^{\perp}.
- Twist-3 T-odd TMD's are $\tilde{e}_{L}, \tilde{e}_{T}, \tilde{e}_{T}^{\perp}, \tilde{f}_{T}\left(\operatorname{or} \tilde{f}_{T}^{\prime}\right), \tilde{f}_{T}^{\perp}, \tilde{f}_{L}^{\perp}, \tilde{g}^{\perp}, \tilde{h}$.
- Real part of Left hand side term appearing in the above correlator corresponds to T-odd(or T-even) TMD's if imaginary (or real) part is considered.

$$
\frac{1}{\left(x^{\prime} \mp i \epsilon\right)}=\mathrm{P}\left(\frac{1}{x^{\prime}}\right) \pm i \delta\left(x^{\prime}\right)
$$

Two such T-odd Twist-3 TMD can be projected by [5]

Two such T-odd Twist-3 TMD can be projected by [5]

$$
\frac{1}{2 M x} \operatorname{Tr}\left[\tilde{\Phi}_{A \alpha} i \sigma^{\alpha+} \gamma_{5}\right]=S_{L}\left(\tilde{h}_{L}+i \tilde{e}_{L}\right)-\frac{p_{T} \cdot S_{T}}{M}\left(\tilde{h}_{T}+i \tilde{e}_{T}\right)
$$

Two such T-odd Twist-3 TMD can be projected by [5]

$$
\frac{1}{2 M x} \operatorname{Tr}\left[\tilde{\Phi}_{A \alpha} i \sigma^{\alpha+} \gamma_{5}\right]=S_{L}\left(\tilde{h}_{L}+i \tilde{e}_{L}\right)-\frac{p_{T} \cdot S_{T}}{M}\left(\tilde{h}_{T}+i \tilde{e}_{T}\right)
$$

Above expression is proportional to

$$
\begin{align*}
& \left(F^{+\alpha}\right)\left[\psi_{-+}^{ \pm}\left(x, p_{T}\right) \psi_{++}^{ \pm}\left(x, p_{T}\right)+\psi_{-0}^{ \pm}\left(x, p_{T}\right) \psi_{+0}^{ \pm}\left(x, p_{T}\right)\right. \\
& \quad+\psi_{--}^{ \pm}\left(x, p_{T}\right) \psi_{+-}^{ \pm}\left(x, p_{T}\right)+\psi_{++}^{ \pm}\left(x, p_{T}\right) \psi_{-+}^{ \pm}\left(x, p_{T}\right) \tag{1}\\
& \left.\quad+\psi_{+0}^{ \pm}\left(x, p_{T}\right) \psi_{-0}^{ \pm}\left(x, p_{T}\right)+\psi_{+-}^{ \pm}\left(x, p_{T}\right) \psi_{--}^{ \pm}\left(x, p_{T}\right)\right]
\end{align*}
$$

Two such T-odd Twist-3 TMD can be projected by [5]

$$
\frac{1}{2 M x} \operatorname{Tr}\left[\tilde{\Phi}_{A \alpha} i \sigma^{\alpha+} \gamma_{5}\right]=S_{L}\left(\tilde{h}_{L}+i \tilde{e}_{L}\right)-\frac{p_{T} \cdot S_{T}}{M}\left(\tilde{h}_{T}+i \tilde{e}_{T}\right)
$$

Above expression is proportional to

$$
\begin{align*}
& \left(F^{+\alpha}\right)\left[\psi_{-+}^{ \pm}\left(x, p_{T}\right) \psi_{++}^{ \pm}\left(x, p_{T}\right)+\psi_{-0}^{ \pm}\left(x, p_{T}\right) \psi_{+0}^{ \pm}\left(x, p_{T}\right)\right. \\
& \quad+\psi_{--}^{ \pm}\left(x, p_{T}\right) \psi_{+-}^{ \pm}\left(x, p_{T}\right)+\psi_{++}^{ \pm}\left(x, p_{T}\right) \psi_{-+}^{ \pm}\left(x, p_{T}\right) \tag{1}\\
& \left.\quad+\psi_{+0}^{ \pm}\left(x, p_{T}\right) \psi_{-0}^{ \pm}\left(x, p_{T}\right)+\psi_{+-}^{ \pm}\left(x, p_{T}\right) \psi_{--}^{ \pm}\left(x, p_{T}\right)\right]
\end{align*}
$$

After fixing the helicity of nucleon using Light Front Wave Functions

$$
\begin{align*}
& \left(F^{+\alpha}\right)\left[\psi_{-+}^{+}\left(x, p_{T}\right) \psi_{++}^{+}\left(x, p_{T}\right)+\psi_{-0}^{+}\left(x, p_{T}\right) \psi_{+0}^{+}\left(x, p_{T}\right)\right. \tag{2}\\
& \left.\quad+\psi_{++}^{+}\left(x, p_{T}\right) \psi_{-+}^{+}\left(x, p_{T}\right)+\psi_{+0}^{+}\left(x, p_{T}\right) \psi_{-0}^{+}\left(x, p_{T}\right)\right]
\end{align*}
$$

References

园
[1] A. Bacchetta, M. Diehl, K. Goeke, A. Metz, P. J. Mulders and M. Schlegel, JHEP 093, 0702 (2007).
[2] X. Ji, J. P. Ma and F. Yuan, Phys. Rev. D 71, 034005 (2005).
[3] S.P. Baranov, A.V. Lipatov and N.P. Zotov, Phys. Rev. D 89, 094025 (2014).
[4] D. Boer, P. J. Mulders, F. Pijlman, Nucl. Phys. B 667, 201-241 (2003).
國 [5] Zhun Lu and Ivan Schmidt, Phys. Lett. B 712, 451-455 (2012) . bacchetta [9] A. Bacchetta, F. Conti and M. Radici, Phys. Rev. D 78, 074010 (2008).

