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Introduction

• The theory of the strong interaction which provides the funda-
mental description of hadronic structure and dynamics in terms
of their elementary quarks and gluons degrees of freedom is
Quantum Chromodynamics (QCD).
• The foremost problem of hadron physics is to unravel the in-

ternal structure of hadron.
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From Special Theory of Relativity:

• Space and time independently are not invariant quantities.

• Rather space-time is an invariant object.
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Figure 1: (a) the instant form, (b) the front form, (c) the point form.

Their initial surfaces are
a) x0 = 0
b) x0 + x3 = 0
c) x2 = a2 > 0, x0 > 0
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Why Light Front?

• It is an Ideal Framework to describe theoretically the hadronic
structure in terms of quarks and gluons. It can overcome many
obstacles and has many advantages:

• Simple vacuum structure ∼ vacuum expectation value is zero.
• A dynamical system is characterized by ten fundamental quan-

tities: energy, momentum, angular momentum and boost.
∼ seven out of which are kinematical. It allows unambiguous
definition of the partonic content of a hadron, exact formulae
for form factors, physics of angular momentum of constituents.

• Dispersion Relation (for ON shell particles)

k− = (k⊥)2+m2

k+

∼ no square root factor.
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Light-Front Coordinates

• A generic four Vector xµ in light-cone coordinates is describe
as xµ = (x−, x+, x⊥).

• x+ = x0 + x3 is called as light-front time.

• x− = x0−x3 is called as light-front longitudinal space variable.

• x⊥ = (x1, x2) is the transverse variable.

• Similarly we can define the longitudinal momentum k+ = k0 +
k3 and light-front energy k− = k0 − k3.
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Distribution Function

• The spatial distribution of charge and current in a system can
be probed through elastic scattering of electrons, photons etc.

• The distribution of the constituents in momentum space can
be measured through deep inelastic knock-out scattering.

• The longitudinal momentum distribution of partons in a hadron
is described by Parton distribution functions (PDFs).

• The distribution of a partons in the transverse plane is described
by Generalized parton distributions (GPDs). They unify the
spatial picture produced by form factors with the momentum
picture produced by PDF’s.
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Distribution Function

• Much more comprehensive picture of the hadron structure can
be obtained by Transverse momentum dependent parton
distributions (TMDs).

• The TMD’s give details of transverse momentum distributions
of partons inside the hadrons.

• Wigner distributions unify the position & momentum distri-
butions and provide subtle details for partons inside the hadron.
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Relation between Wigner, TMD’s, GPD’s and PDF’s
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Methodology

• In SIDIS, we choose a frame where the hadron momentum P
has no transverse momentum component. The initial and final
hadron co-ordinates are given as

P =

(
P+, 0,

M2

2P+

)
P

′
=

(
(1− ζ)P+,−∆T ,

M2 + ∆2
T

2(1− ζ)P+

)
• Target polarization 4-vector and quark momentum is parametrized

as

S =

(
λhP

+

M
,ST ,

−λhM
2P+

)
p =

(
xP+,pT ,

p2 + p2T
2xP+

)
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TMDs

• TMDs contain information on both the longitudinal and trans-
verse momentum of partons in the hadron.

• They describe the probability to find a parton with longitudinal
momentum fraction x and transverse momentum with respect
to the direction of the parent hadron momentum in a hadron.

• TMDs are also of particular importance because they give rise
to single spin asymmetries (SSAs).

• They can be measured in a variety of reactions in lepton-proton
and proton-proton collisions as SIDIS [1, 2] and DY production
[3] where a final-state particle is observed with a transverse
momentum.
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Calculation
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T-odd quark-gluon–quark correlation function in the
light-front quark-diquark model

Most generalized form of quark-gluon-quark correlator is given by
[4]

Φα
Aij (p, p − p1;P,S) =

∫
d4ξ

(2π)4
d4η

(2π)4
e ip·ξe ip1·(η−ξ)

×
〈
P, S

∣∣ψ̄j(0)gAα(η)ψi (ξ)
∣∣P,S〉.

where,

• gAα(η) is the operator corresponding to gluon field.

• p & p1 are parton’s momenta.
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We have started our work with this form of quark-gluon-quark cor-
relator [5]

where,
• Fµv is the antisymmetric field strength tensor of the gluon,
• L[±] and LξT , ξ+ are the gauge-links ensuring the

gauge-invariance of the definition.
• The sign ± in the superscript or subscript indicates that the

gauge-link between the quark and the gluon is
future/past-pointing. 14 / 19
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Above correlator can be rewritten as [5]

• Ignore all gauge links in the correlator.

• We choose to work in quark-diquark model by considering
axial-vector diquark.
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• This form of field strength tensor is used
F+α = −i (q+gαρ − qαg+ρ).

• Twist-3 T-even TMD’s are
ẽ, f̃ ⊥, g̃T (or g̃ ′T ), g̃⊥T , g̃

⊥
L , h̃L, h̃T and h̃⊥T .

• Twist-3 T-odd TMD’s are
ẽL, ẽT , ẽ

⊥
T , f̃T (or f̃ ′T ), f̃ ⊥T , f̃

⊥
L , g̃

⊥, h̃.

• Real part of Left hand side term appearing in the above
correlator corresponds to T-odd(or T-even) TMD’s if
imaginary (or real) part is considered.
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ẽ, f̃ ⊥, g̃T (or g̃ ′T ), g̃⊥T , g̃

⊥
L , h̃L, h̃T and h̃⊥T .

• Twist-3 T-odd TMD’s are
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Two such T-odd Twist-3 TMD can be projected by [5]

Above expression is proportional to

(F+α)[ψ±−+(x, pT )ψ±++(x, pT ) + ψ±−0(x, pT )ψ±+0(x, pT )

+ψ±−−(x, pT )ψ±+−(x, pT ) + ψ±++(x, pT )ψ±−+(x, pT )

+ψ±+0(x, pT )ψ±−0(x, pT ) + ψ±+−(x, pT )ψ±−−(x, pT )]

(1)

After fixing the helicity of nucleon using Light Front Wave Functions

(F+α)[ψ+
−+(x, pT )ψ+

++(x, pT ) + ψ+
−0(x, pT )ψ+

+0(x, pT )

+ψ+
++(x, pT )ψ+

−+(x, pT ) + ψ+
+0(x, pT )ψ+

−0(x, pT )]
(2)
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