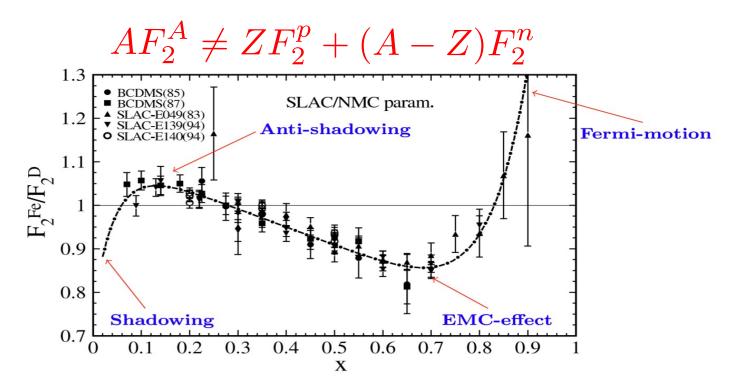
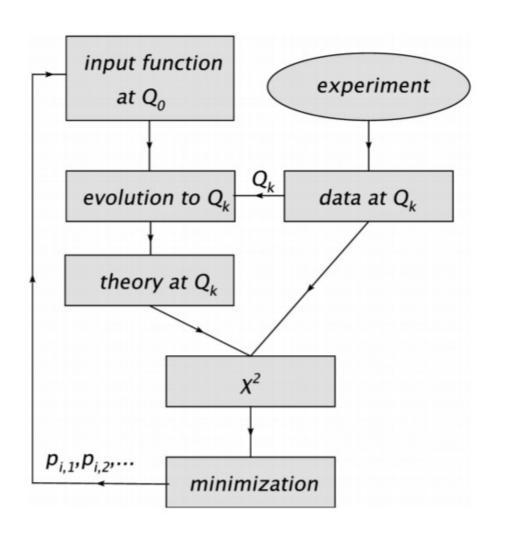
Impact of W and Z Boson Production Data and Compatibility of Neutrino DIS Data in Nuclear Parton Density Extraction

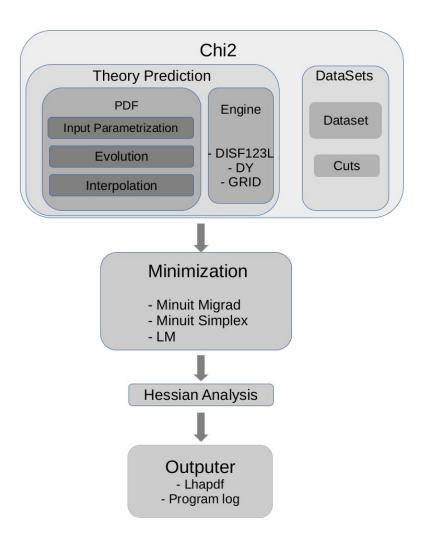
XXVIII International Workshop on Deep-Inelastic Scattering and Related Subjects 2021

Khoirul Faiq Muzakka


Institute for Theoretical Physics Westfälische Wilhelms-Universität Münster

Conspirators: D. B. Clark, P. Duwentäster, E. Godat, T.J. Hobbs, T. Ježo, J. Kent, C. Keppel, M. Klasen, K. Kovařík, A. Kusina, F. Lyonnet, J.G. Morfin, F.I. Olness, I. Schienbein, J. Y. Yu, ...




INTRODUCTION: nPDFs

$$d\sigma_{AB\to CX} = \sum_{a,b,c} f_{a/A} \otimes f_{b/B} \otimes d\hat{\sigma}_{ab\to cx} \otimes D_{c/C}$$

nPDF fitting with ncteq++

<u>nCTEQ Framework</u>

• Full nPDFs:

$$f_i^A(x) = \frac{Z}{A}f_i^{p/A} + \frac{A-Z}{A}f_i^{n/A}$$

• "Effective" Bound proton PDFs parametrization at $Q_0 = 1.3$ GeV:

$$xf_i^{p/A}(x, Q_0) = c_0 x^{c_1} (1-x)^{c_2} e^{c_3 x} (1+e^{c_4} x)^{c_5}$$

$$\frac{\bar{d}}{\bar{u}} = c_0 x^{c_1} (1-x)^{c_2} + (1+c_3 x)(1-x)^{c_4}$$

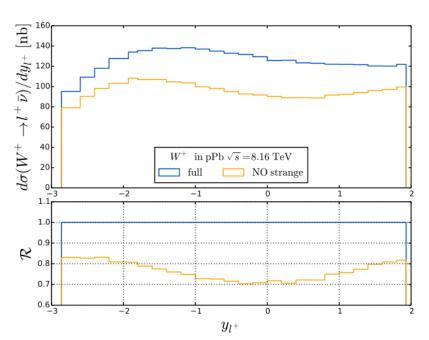
for $i = u_v, d_v, g, \bar{u} + \bar{d}, s + \bar{s}$.

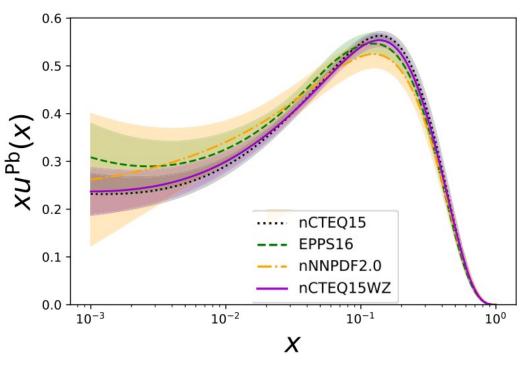
• A-dependence : $c_k(A) = p_k + a_k(1-A^{-b_k})$ Proton PDF parameters

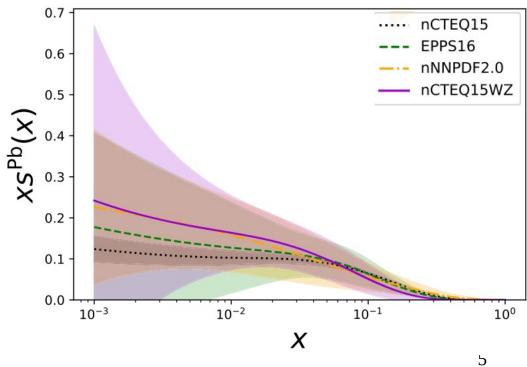
from CTEQ6M

Sum rules:

$$\int_0^1 f_{u_v}^{p/A} dx = 2, \quad \int_0^1 f_{d_v}^{p/A} dx = 1, \quad \sum_i \int_0^1 x f_i^{p/A}(x, Q_0) dx = 1$$


Strange Quark PDF


- Strange PDF has much larger uncertainty due to limited flavor separations
- Old assumption :


$$s(x) = \bar{s}(x) \sim \kappa \ \frac{\bar{u}(x) + \bar{d}(x)}{2}$$

Underestimation of uncertainty!

 The recent WZ production data can helps constrain strange PDF

nCTEQ15WZ [EPJC 77, 163]

	ATL	AS F	tun I	CM	IS Ru	ın I	CMS	Run II	AL	ICE	LHCb	DIS	DY	Pion	LHC	LHC	Total
	W^-	W^+	Z	W^-	W^+	Z	W^-	W^+	W^-	W^+	Z					Norm χ^2	
nCTEQ15	1.38	0.71	2.88	6.13	6.38	0.05	9.65	13.20	2.30	1.46	0.70	0.91	0.73	0.25	6.20	_	1.66
nCTEQ15WZ	0.54	0.15	1.59	1.08	0.85	0.01	0.66	0.72	0.81	0.11	0.62	0.90	0.78	0.25	0.71	23	0.87

- NLO fit
- Starting scale: 1.3 GeV
- Treatment of heavy quark : ACOT
- · Kinematic cuts:

$$Q > 2 \text{GeV}, W > 3.5 \text{GeV}$$

 $p_T > 1.7 \text{ GeV}$

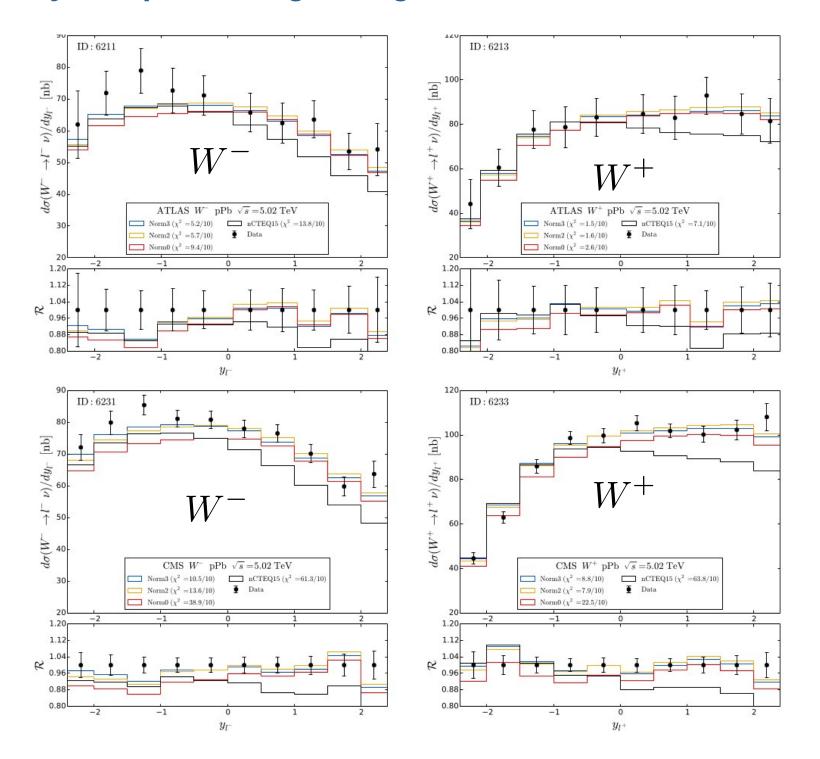
Data Sets :

DIS: 616

DY: 92

Pion : 31

WZ LHC: 120


• Number Free Parameters: 19

• Error analysis: Hessian method, with

$$\Delta \chi^2 = 35$$

			$\sqrt{s_{NN}}$ [TeV]	σ_{norm} (%)	No points
Data overvi	ew				
ATLAS	Run I	W^\pm	5.02	2.7	10+10
ATLAS	Run I	Z	5.02	2.7	14
CMS	Run I	W^\pm	5.02	3.5	10+10
CMS	Run I	Z	5.02	3.5	12
CMS	Run II	W^\pm	8.16	3.5	24+24
ALICE	Run I	W^\pm	5.02	2.0	2+2
LHCb	Run I	Z	5.02	2.0	2

Data-Theory comparison: good agreement.

nCTEQ15WZ nPDFs

0.0

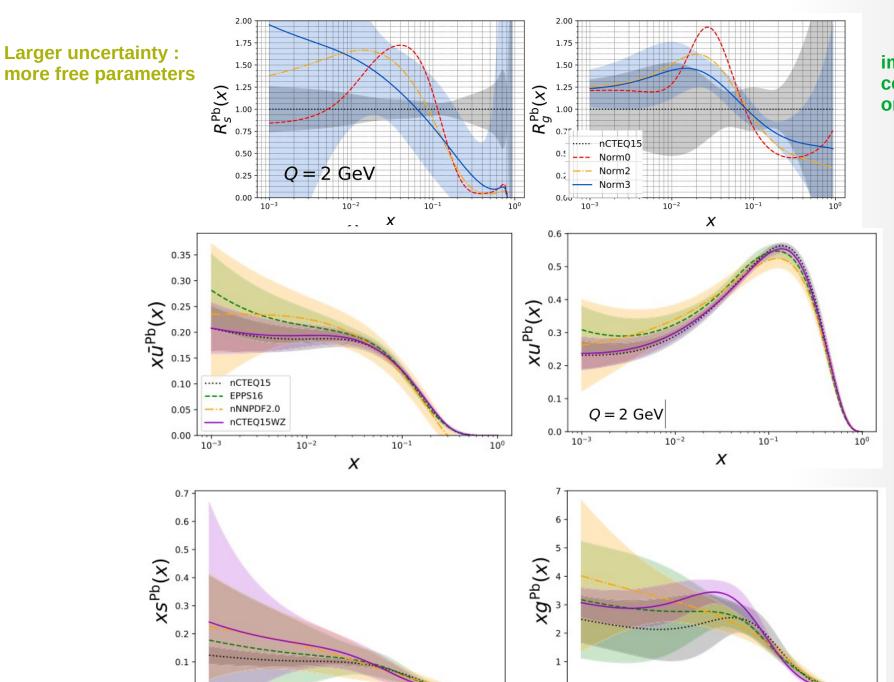
10-3

10-2

10-1

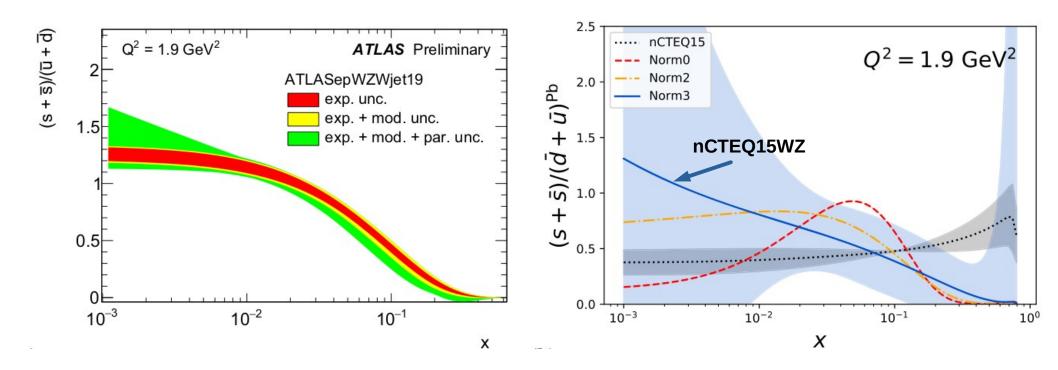
X

10-2


X

10-3

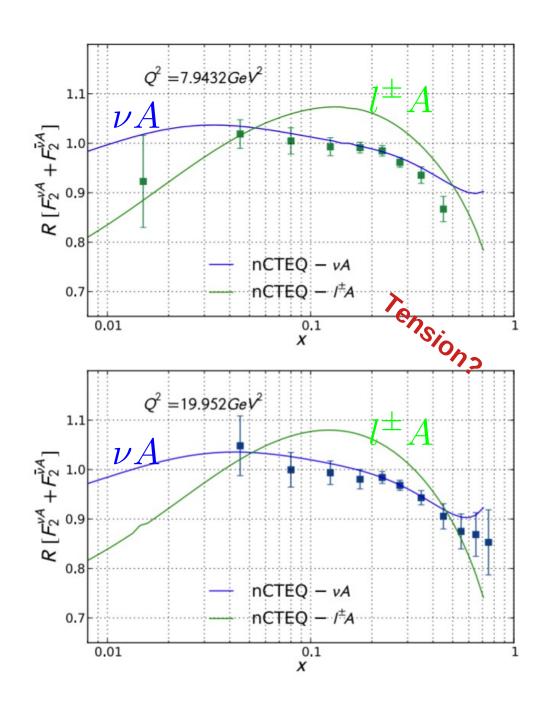
100


10-1

100

improved constraints on gluon PDF

Strange sea ratio



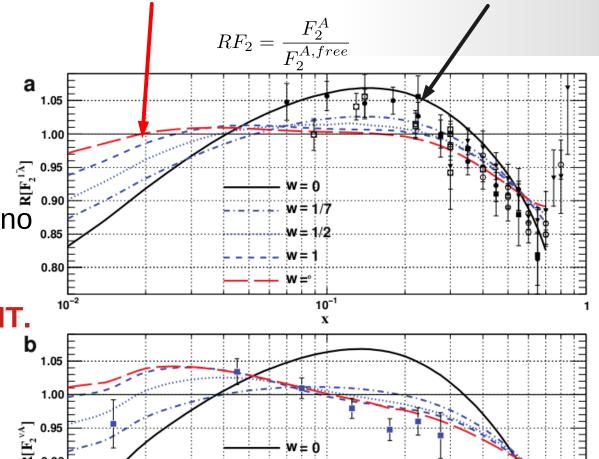
Is the elevated strange PDF what nature dictates or is it because of lacks of flavor separations?

Still open question. Need more data!

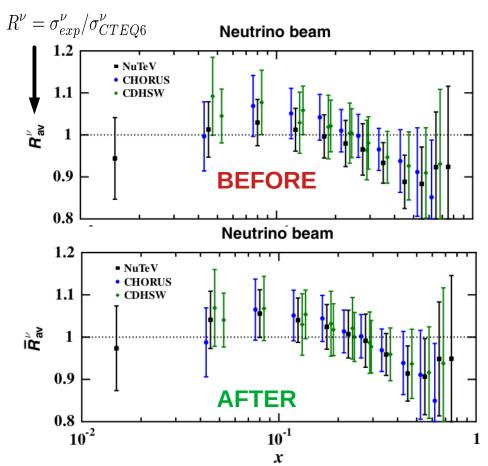
Neutrino DIS

- Important for flavor differentiation
- (More) sensitivity to strange
 PDF
- High statistics!
- Heavy target (Fe, Pb)
- Different nuclear correction?
- Problem: Tension with charge lepton DIS data?

nCTEQ Study


Dimuon + Chorus+ NuTeV vs $l^{\pm}A + DY$

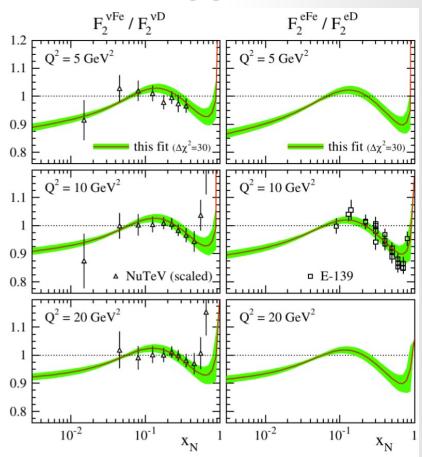
 Use NuTeV's point-by-point correlated systematic uncertainties.


 Different weights w for the neutrino DIS data.

• χ^2 - test : NO COMPROMISE FIT.

 Using NuTeV uncorrelated seems to lower the tension, but NOT ENOUGH!

EPPS



- Correlation is ignored
- Normalization procedure :

$$\bar{R}^{\nu}(x,y,E) = \frac{\sigma_{exp}^{\nu}/I_{exp}^{\nu}(E)}{\sigma_{CTEQ6}^{\nu}/I_{CTEQ6}^{\nu}(E)}$$

- NO nPDF fits, used Hessian reweighting
- With normalization procedure : OK

DSSZ

- Global nPDF fit: charge lepton DIS, DY, pion production, and F2,3 NuTeV, Chorus, CDHSW.
- MSTW2008 proton PDF as base --→ NuTeV is already included.
- Correlation is IGNORED
- NO NOTICEABLE TENSION

The ANALYSIS

BASE: nCTEQ15WZ

Data: DIS+ DY+ pion + WZ LHC

Number of data: 853 pts

- NC DIS : 616

- DY : 92

- Pion : 25

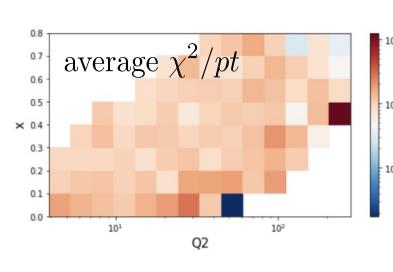
- WZ LHC: 120

DimuNeu

 Data : Dimu CCFR & NuTeV + NuTeV + CDHSW+ Chorus

• Total number of data : 4063 pts

- NuTeV : 2136 pts- Chorus : 824 pts


- CDHSW: 929 pts

Proper treatment of normalization uncertainty

 CORRELATIONs from NuTeV and Chorus are taken into account

VS

DimuNeu Fit

 χ^2 for the i-th data point :

$$\tilde{\chi}_i^2 = \frac{1}{\sigma_i^2} \left(D_i - rT_i - \sum_{\alpha} \bar{\sigma}_{i\alpha} \bar{r}_{\alpha} \right)^2 + \frac{1}{N} \sum_{\alpha} \bar{r}_{\alpha}^2$$

Tension at low x

x	NuTeV	Chorus	CDHSW	All
0.015	2.51	-	3.85	2.56
0.045	1.37	1.90	1.35	1.44
0.08	1.72	1.24	0.87	1.49
0.125	1.83	1.15	0.48	1.41
0.175	1.30	1.10	0.50	1.07
0.225	1.19	0.90	0.68	1.04
0.275	1.20	1.26	0.73	1.00
0.35	1.40	1.18	0.59	1.16
0.45	1.17	1.23	0.67	1.03
0.55	1.29	1.44	0.61	1.08
0.65	1.04	1.16	0.61	1.02
0.75	1.01	-	-	1.01

- DimuNeu: Dimuon+ CDHSW+Chorus+NuTeV
- Total χ^2/pt :

Dimuon : 1.27

NuTeV neu, antineu : **1.50** , **1.23**

Chorus neu, antineu : 1.27, 1.09

CDHSW neu, antineu : 0.60 , 0.72

ALL : 1.17

TENSION between neutrino data sets at low x!

Prediction Comparisons with nCTEQ15WZ

$$RF_2 = \frac{F_2^A}{F_2^{A,free}} \qquad f_i^{A,free} = \frac{Z}{A} f_i^p + \frac{N}{A} f_i^n$$

Tensions with nCTEQ15WZ predictions at $x \le 0.1$ and $x \sim 0.6$

Statistical Tests

BASE (S) vs Neutrino (\bar{S})

$ar{S}$	$\Delta \chi_S^2$	Percentile \bar{S} (%)	$\chi_{\bar{S}}^2/pt$	Compatible?
Chorus	17	83.8	1.18	YES
CDHSW	44	100	0.66	YES
NuTeV	92	$\boldsymbol{93.5}$	1.42	NO
DimuNeu	106	99.2	1.23	NO

Compatibility criteria:

$$\Delta \chi_S^2 \le 45$$
 and $(p_{\bar{S}} \le 90\% \text{ or } \chi_{\bar{S}}^2/pt \le 1.0)$

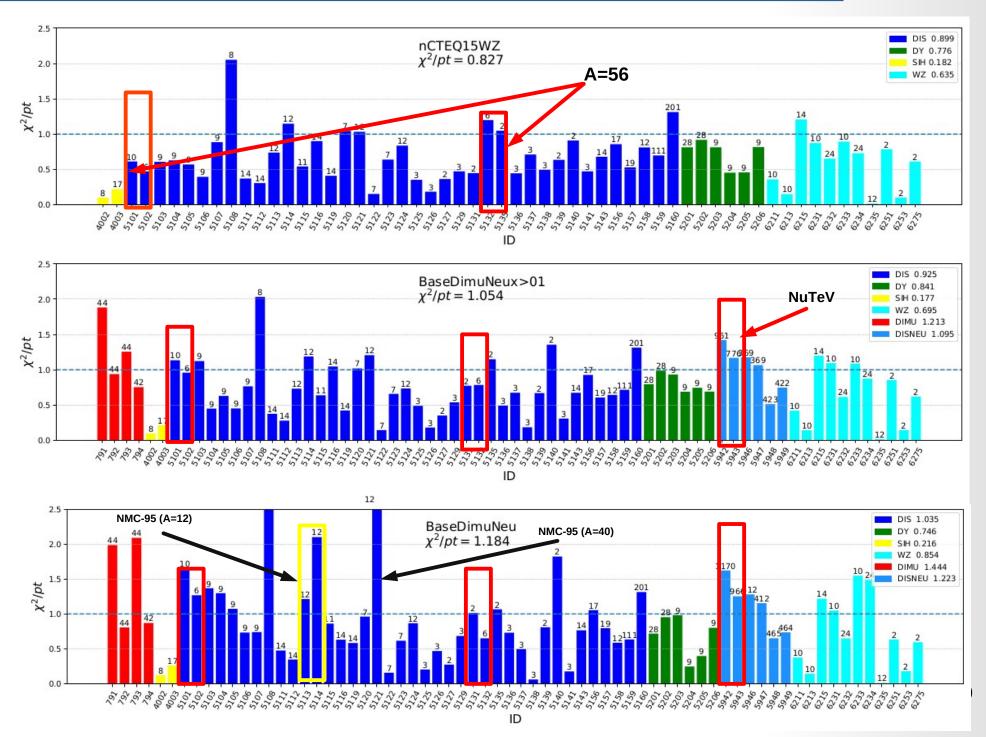
The BaseChorus & BaseCDHSW fits seems to describe both the data quite well. But still have large χ^2/pt at low x!

X	${\sf BaseNuTeV}$	${\sf BaseChorus}$	${\sf BaseCDHSW}$	All
0.015	2.50	-	5.69	3.05
0.045	1.54	1.84	1.67	1.89
0.08	1.78	1.72	0.72	1.55
0.125	1.82	1.07	0.40	1.43
0.175	1.29	1.11	0.47	1.11
0.225	1.20	1.10	0.63	1.04
0.275	1.19	0.84	0.70	0.97
0.35	1.33	1.26	0.51	1.15
0.45	1.19	1.08	0.62	1.01
0.55	1.29	1.14	0.57	1.07
0.65	0.99	1.16	0.58	1.02
0.75	1.01	_	_	1.05

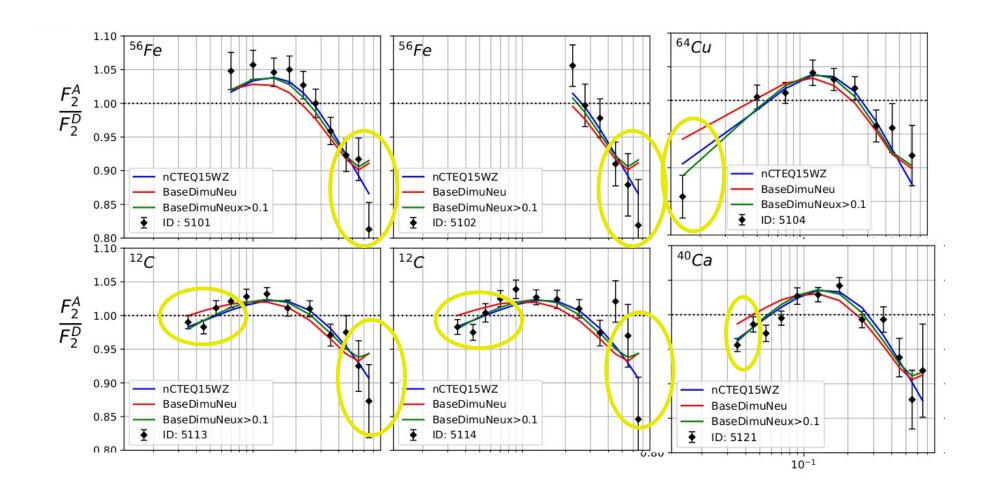
- Tension at low x between neutrino data and the Base
- Incomplete theory?
- What if we cut low x data?

Neutrino Data with $x \le 0.1$ cut (x>0.1 data points are kept)

$ar{S}$	$\Delta\chi_S^2$	Percentile \bar{S} (%)	$\chi^2_{ar{S}}/pt$	Compatible?
Chorus	9	81.7	1.09	YES
CDHSW	26	99.2	0.59	YES
NuTeV	17	74.6	1.30	YES
DimuNeu	28	66.0	1.10	YES


The tensions are now gone!

The Combined Fit: DIS + DY+ PION+ WZ+DIMU+NEUTRINO


BaseDimuNeu

- No low x cuts for the Neutrino data
- Number of data points : 4916
- Does not pass our compatibility criteria
- BaseDimuNeux>0.1:
- - x≤0.1 cuts applied for the neutrino data
 - Number of data points : 4347
 - Pass our compatibility criteria

The Combined Fit: BaseDimuNeu vs BaseDimuNeux>0.1

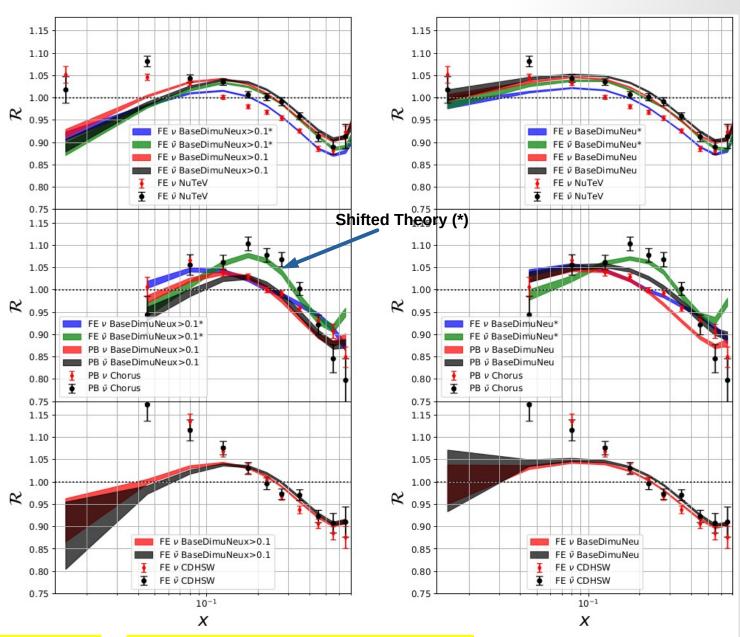
<u>Data – Theory Comparison : charge lepton DIS</u>

- Low x tensions largely disappear in BaseDimuNeux>0.1 fit.
- Tensions at x~0.6 are still there in BaseDimuNeux>0.1 fit.

<u>Data – Theory Comparison : neutrino DIS</u>

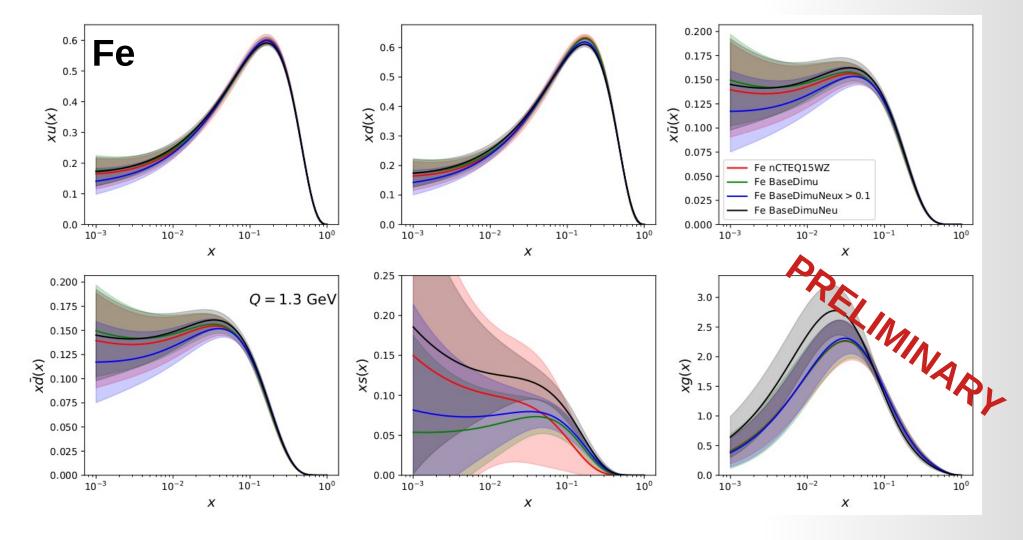
Nuclear Ratio:

$$R = \frac{\sigma(x, y, E)}{\sigma_{free}(x, y, E)}$$

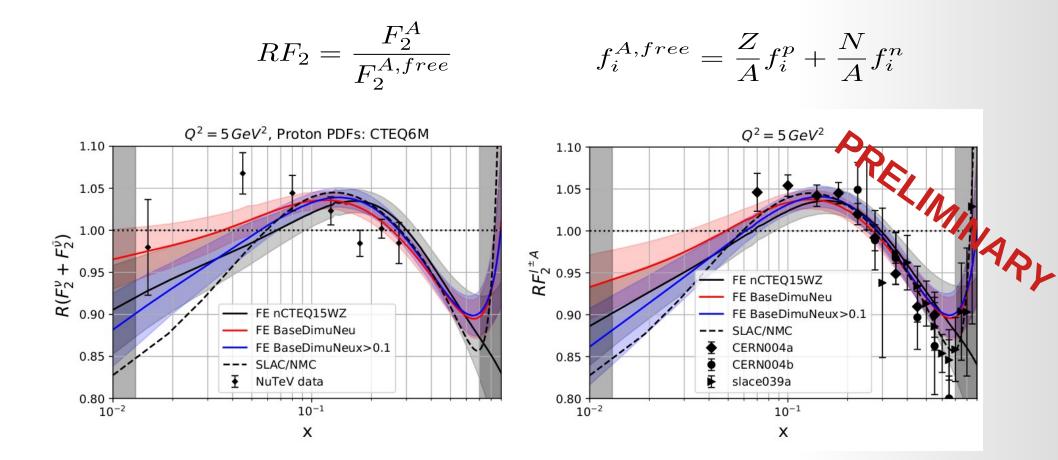

Weighted average:

$$\mathcal{R} = \sum_{i} w_{i} R_{i} \qquad \approx \frac{1.00}{0.95}$$

$$w_{i} = \left(\sum_{j} \frac{1}{\sigma_{j}^{2}}\right)^{-1} \frac{1}{\sigma_{i}^{2}} \stackrel{0.85}{\underset{0.75}{\longrightarrow}} \frac{1}{1.15}$$


Shifted theory:

$$T_i^* = T_i + \sum_{\alpha} \bar{\sigma}_{i\alpha} r_{\alpha}$$


Milder shadowng if low x neutrino data is included.

Impact on nPDFs

- Including low x neutrino data pulls the strange PDF up.
- Smaller uncertainties as we add more neutrino data.

RF₂ Predictions

BaseDimuNeu predictions agree more with NuTeV data, especially at low x.

Summary

- Still large uncertainties for strange PDF even after including W & Z data from LHC. An improved constraint for gluon PDF from WZ data.
- The nCTEQ15WZ fit prefers higher strange sea ratio
- Tensions between the predictions extracted from nCTEQ15WZ and neutrino data. The tension seems to be maximal at $x \le 0.1$ and x < 0.6.
- Applying the cut $x \le 0.1$ relaxes the tensions and makes the combined fit, BaseDimuNeux>0.1, pass our compatibility criteria.
- Tensions at x~0.6 do not disappear in BaseDimuNeux>0.1 fit. The tension is small enough such that BaseDimuNeux>0.1 pass our compatibility criteria.
- Still need to determine the sources of the tensions at low ${\bf x}$ and ${\bf x}{\sim}0.6$.

DimuNeu Fit

χ^2 for the i-th data point :

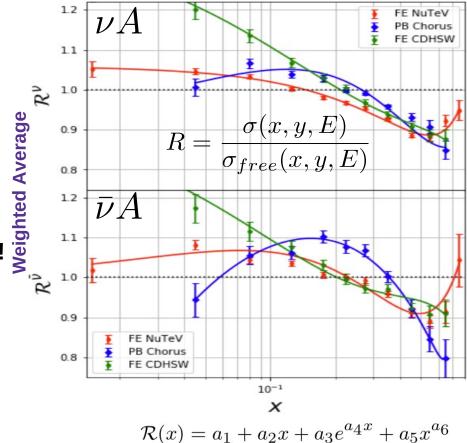
$$\tilde{\chi}_i^2 = \frac{1}{\sigma_i^2} \left(D_i - rT_i - \sum_{\alpha} \bar{\sigma}_{i\alpha} \bar{r}_{\alpha} \right)^2 + \frac{1}{N} \sum_{\alpha} \bar{r}_{\alpha}^2$$

Tension at low x

x	NuTeV	Chorus	CDHSW	All
0.015	2.51	-	3.85	2.56
0.045	1.37	1.90	1.35	1.44
0.08	1.72	1.24	0.87	1.49
0.125	1.83	1.15	0.48	1.41
0.175	1.30	1.10	0.50	1.07
0.225	1.19	0.90	0.68	1.04
0.275	1.20	1.26	0.73	1.00
0.35	1.40	1.18	0.59	1.16
0.45	1.17	1.23	0.67	1.03
0.55	1.29	1.44	0.61	1.08
0.65	1.04	1.16	0.61	1.02
0.75	1.01	-	-	1.01

- DimuNeu : Dimuon+ CDHSW+Chorus+NuTeV
- Total χ^2/pt :

Dimuon : 1.27


NuTeV neu, antineu : **1.50** , **1.23**

Chorus neu, antineu: 1.27, 1.09

CDHSW neu, antineu : 0.60 , 0.72

ALL : 1.17

• TENSION between neutrino data sets at low x!

