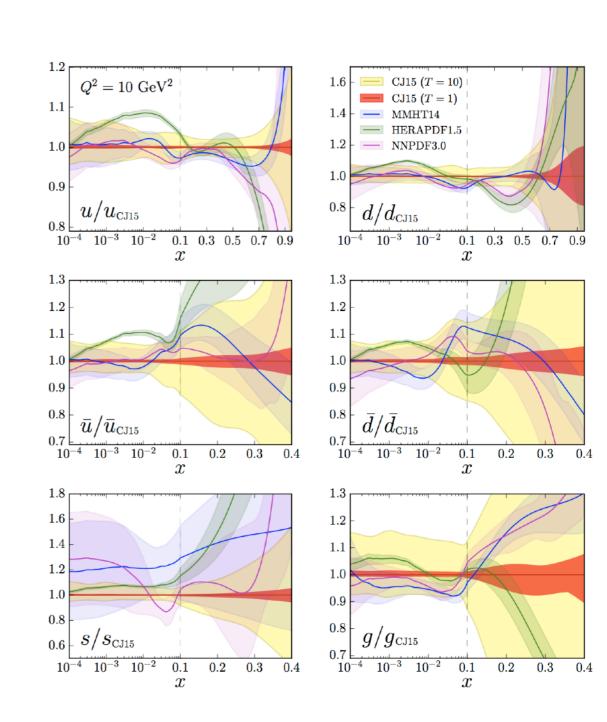


CJ15 global PDF analysis with new electroweak data


+ new Drell-Yan

Sanghwa Park for the CJ Collaboration

CTEQ-JLab Collaboration

- CTEQ-based NLO QCD analysis with focus on large-x region (https://www.jlab.org/theory/cj)
- Relaxing kinematic cuts, maximizing use of large-x DIS data
- Large-x treatment, nuclear corrections
- Latest public release: CJ15 (A. Accardi et. al, Phys. Rev. D 93 114017 (2016))
- Recent developments/Ongoing efforts:
 - Including full JLab 6GeV, LHC, RHIC, DY data
 - Nuclear corrections for deuteron target
 - F2 neutron extraction
 - EIC impact studies
 - APPLgrid implementation (J. Xiaoxian) into the CJ fit package

CJ15 datasets

Observable	Experiment	# points			χ^2	χ^2	
			LO	NLO	NLO	NLO	NLO
					(OCS)	(no nucl)	(no nucl/D0)
DIS F_2	BCDMS (p) [81]	351	426	438	436	440	427
	BCDMS (d) [81]	254	292	292	289	301	301
	SLAC (p) [82]	564	480	434	435	441	440
	SLAC (d) [82]	582	415	376	380	507	466
	NMC (p) [83]	275	416	405	404	405	403
	NMC (d/p) [84]	189	181	172	173	174	173
	HERMES (p) [86]	37	57	42	43	44	44
	HERMES (d) [86]	37	52	37	38	36	37
	Jefferson Lab (p) [87]	136	172	166	167	177	166
	Jefferson Lab (d) [87]	136	131	123	124	126	130
DIS F_2 tagged	Jefferson Lab (n/d) [21]	191	216	214	213	219	219
DIS σ	HERA (NC $e^{-}p$) [85]	159	315	241	240	247	244
	HERA (NC e^+p 1) [85]	402	952	580	579	588	585
	HERA (NC e^+p 2) [85]	75	177	94	94	94	93
	HERA (NC e^+p 3) [85]	259	311	249	249	248	248
	HERA (NC e^+p 4) [85]	209	352	228	228	228	228
	HERA (CC e^-p) [85]	42	42	48	48	45	49
	HERA (CC $e^{+}p$) [85]	39	53	50	50	51	51
Drell-Yan	E866 (pp) [29]	121	148	139	139	145	143
	E866 (pd) [29]	129	202	145	143	158	157
W/charge asymmetry	CDF (e) [88]	11	11	12	12	13	14
	DØ (μ) [17]	10	18	20	19	29	28
	DØ (e) [18]	13	49	29	29	14	14
	CDF (W) [89]	13	16	16	16	14	14
	DØ (W) [19]	14	35	14	15	82	_
Z rapidity	CDF (Z) [90]	28	108	27	27	26	26
	DØ (Z) [91]	28	26	16	16	16	16
et	CDF (run 2) [92]	72	29	15	15	23	25
	DØ (run 2) [93]	110	90	21	21	14	14
y+jet	DØ 1 [94]	16	16	7	7	7	7
,	DØ 2 [94]	16	34	16	16	17	17
	DØ 3 [94]	12	35	25	25	24	25
	DØ 4 [94]	12	79	13	13	13	13
total		4542	5935	4700	4702	4964	4817
total + norm			6058	4708	4710	4972	4826
$\chi^2/{ m datum}$			1.33	1.04	1.04	1.09	1.07

Fixed target DIS
(p, d target),
Tagged DIS

DIS (e-p collider)

Drell-Yan

W asymmetry, Z (Tevatron)

CJ15 datasets

Observable	Experiment	# points			χ^2		
			LO	NLO	NLO	NLO	NLO
					(OCS)	(no nucl)	(no nucl/D0)
DIS F_2	BCDMS (p) [81]	351	426	438	436	440	427
	BCDMS (d) [81]	254	292	292	289	301	301
	SLAC (p) [82]	564	480	434	435	441	440
	SLAC (d) [82]	582	415	376	380	507	466
	NMC (p) [83]	275	416	405	404	405	403
	NMC (d/p) [84]	189	181	172	173	174	173
	HERMES (p) [86]	37	57	42	43	44	44
	HERMES (d) [86]	37	52	37	38	36	37
	Jefferson Lab (p) [87]	136	172	166	167	177	166
	Jefferson Lab (d) [87]	136	131	123	124	126	130
DIS F_2 tagged	Jefferson Lab (n/d) [21]	191	216	214	213	219	219
DIS σ	HERA (NC e^-p) [85]	159	315	241	240	247	244
	HERA (NC e^+p 1) [85]	402	952	580	579	588	585
	HERA (NC e^+p 2) [85]	75	177	94	94	94	93
	HERA (NC e^+p 3) [85]	259	311	249	249	248	248
	HERA (NC e^+p 4) [85]	209	352	228	228	228	228
	HERA (CC e^-p) [85]	42	42	48	48	45	49
	HERA (CC $e^{+}p$) [85]	39	53	50	50	51	51
Drell-Yan	E866 (pp) [29]	121	148	139	139	145	143
	E866 (pd) [29]	129	202	145	143	158	157
W/charge asymmetry	CDF (e) [88]	11	11	12	12	13	14
	DØ (μ) [17]	10	18	20	19	29	28
	DØ (e) [18]	13	49	29	29	14	14
	CDF (W) [89]	13	16	16	16	14	14
	DØ (W) [19]	14	35	14	15	82	_
Z rapidity	CDF(Z)[90]	28	108	27	27	26	26
	DØ (Z) [91]	28	26	16	16	16	16
jet	CDF (run 2) [92]	72	29	15	15	23	25
	DØ (run 2) [93]	110	90	21	21	14	14
γ +jet	DØ 1 [94]	16	16	7	7	7	7
	DØ 2 [94]	16	34	16	16	17	17
	DØ 3 [94]	12	35	25	25	24	25
	DØ 4 [94]	12	79	13	13	13	13
total		4542	5935	4700	4702	4964	4817
total + norm			6058	4708	4710	4972	4826
$\chi^2/{ m datum}$			1.33	1.04	1.04	1.09	1.07

Fixed target DIS (p, d target),
Tagged DIS

New datasets

DIS (e-p collider)

Drell-Yan

W asymmetry, Z (Tevatron)

Full JLab 6GeV data JLab 12 GeV (Hall C F2, Marathon,..)

LHC W/Z (ATLAS, CMS, LHCb)

RHIC W/Z

Drell-Yan (SeaQuest)

Sensitive to sea quarks at intermediate to large-x region

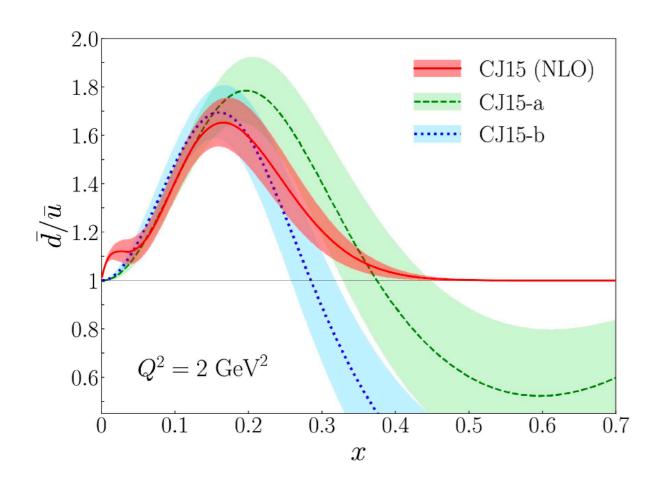
CJ15 parameterization

A. Accardi et. al, Phys. Rev. D 93 114017 (2016)

• Standard 5 parameter functional form:

$$xf(x, Q_0^2) = a_0 x^{a_1} (1 - x)^{a_2} (1 + a_3 \sqrt{x} + a_4 x)$$

applies to valence u, d, $\bar{u} + \bar{d}$ and g. (+ sum rules)


• Direct parameterization of \bar{d}/\bar{u} ratio:

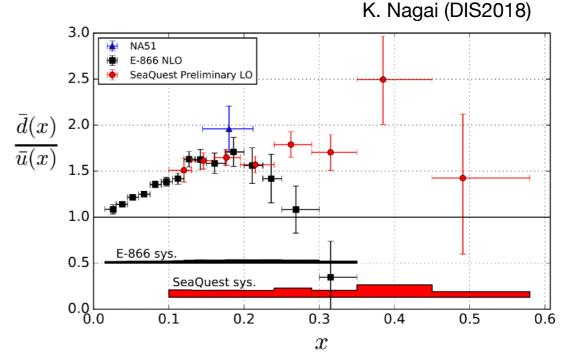
$$\frac{d}{\bar{u}} = a_0 x^{a_1} (1-x)^{a_2} + 1 + a_3 x (1-x)^{a_4}$$

and ensure $\bar{d}/\bar{u} \rightarrow 1$ at $x \rightarrow 1$

CJ15 variations

• Studied shape of $\bar{d} - \bar{u}$ using extracted neutron structure functions with different sea parameterizations and datasets A. Accardi, C. E. Keppel, S. Li, W. Melnitchouk, and J. F. Owens, PLB 801 135143 (2020)

• CJ15-a:


Using same data sets as CJ15 with more conventional parameterization for sea

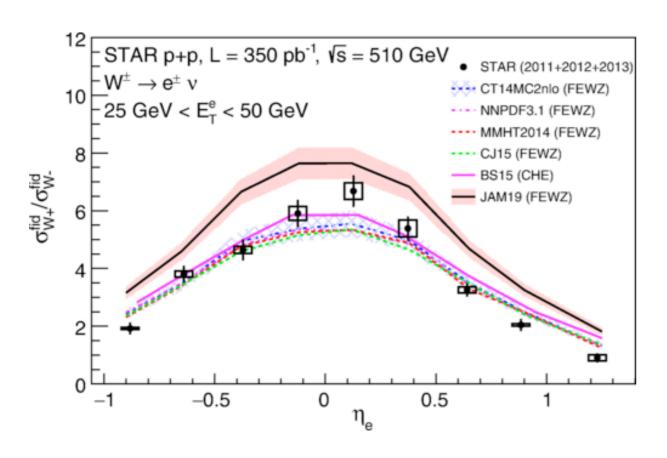
ightarrow allows \bar{d}/\bar{u} < 1 in some x region

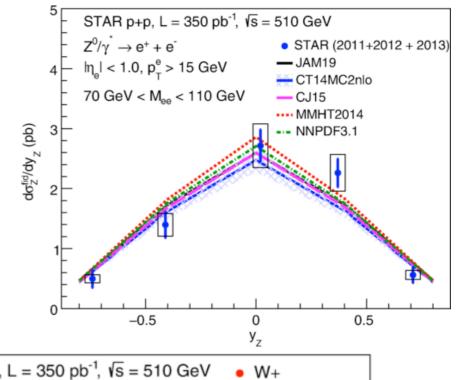
$$\bar{d} - \bar{u} = a_0 x^{a_1} (1 - x)^{a_3} (1 + a_3 \sqrt{x} + a_4 x)$$

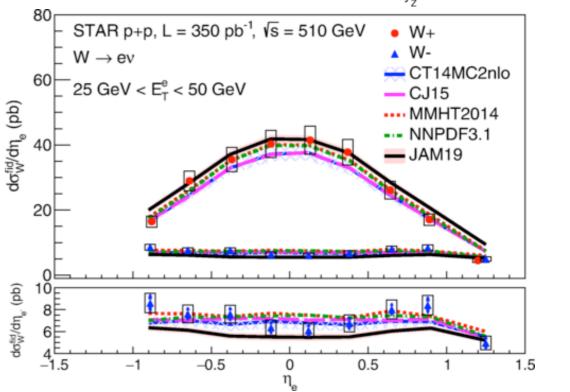
Flavor asymmetry of nucleon sea

- First hint of flavor asymmetry by NMC (1991) PRL 66 (1991) 2712
- Significant flavor asymmetry confirmed as well as xdependence by Drell-Yan data

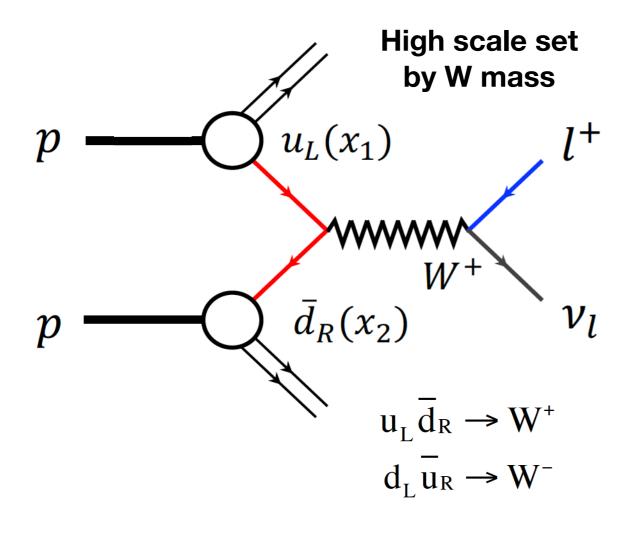
- $\bar{d} \bar{u}$ sign change at x ~ 0.3? No complete model description of the data (E866)
- E866 currently provides the strongest constraint on d/\bar{u} need more data!
 - Motivated SeaQuest experiment extending x coverage up to x ~ 0.5. Preliminary result show $\bar{d} \bar{u}$ stays positive ($\bar{d}/\bar{u} > 1$)
 - STAR W data

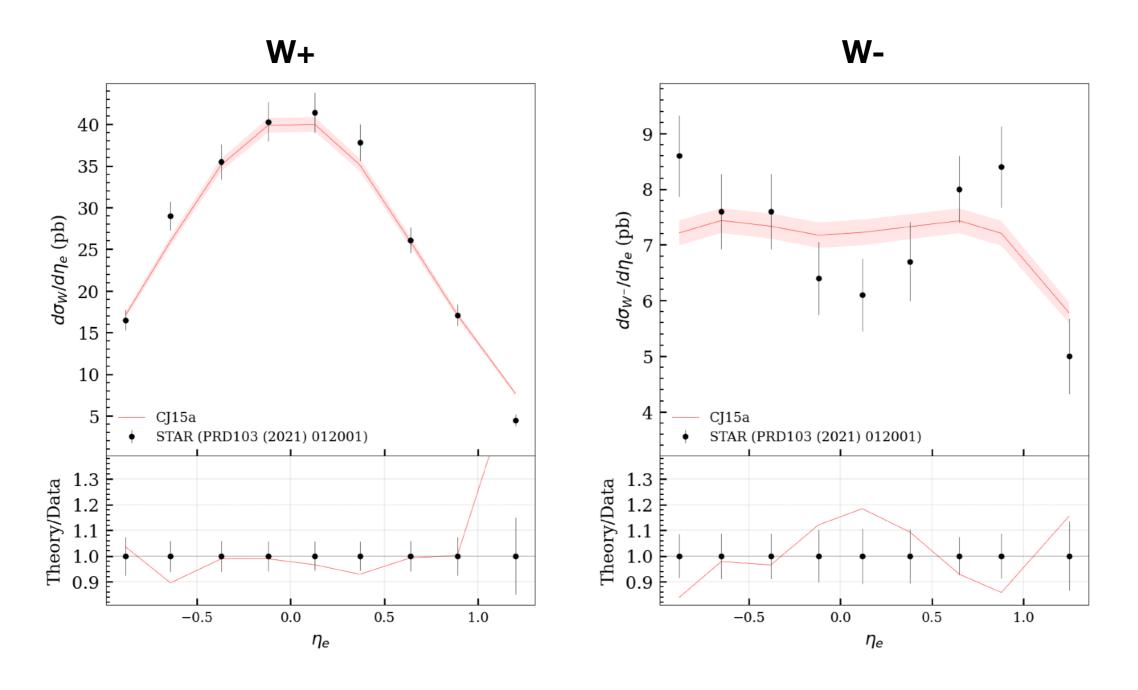

RHIC-W/Z impact in CJ15-a NLO


Phys. Rev. D 103 012001


Talk by J. Nam on Thursday

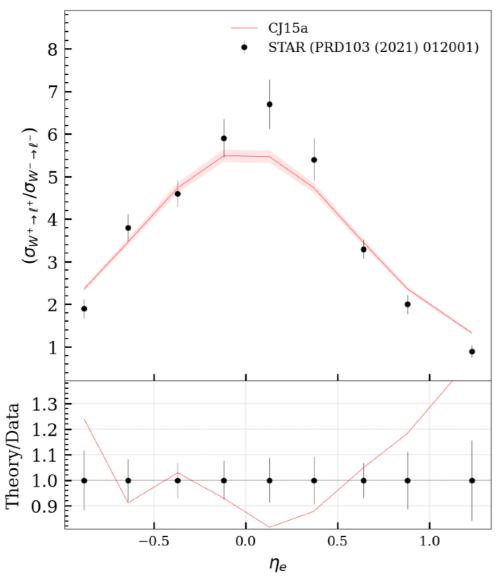
Recently published RHIC-STAR data

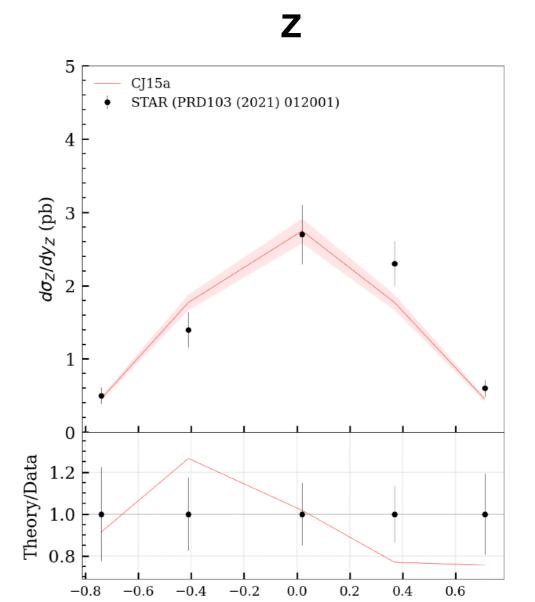

- W decay lepton ratio vs lepton psedorapidity
- W decay lepton differential cross sections
- Z cross sections
- W and Z total cross sections and W/Z ratio


W boson production in p+p collisions

$$\frac{\sigma^{W+}}{\sigma^{W-}} \approx \frac{u(x_1)\bar{d}(x_2) + u(x_2)\bar{d}(x_1)}{d(x_1)\bar{u}(x_2) + d(x_2)\bar{u}(x_1)}$$

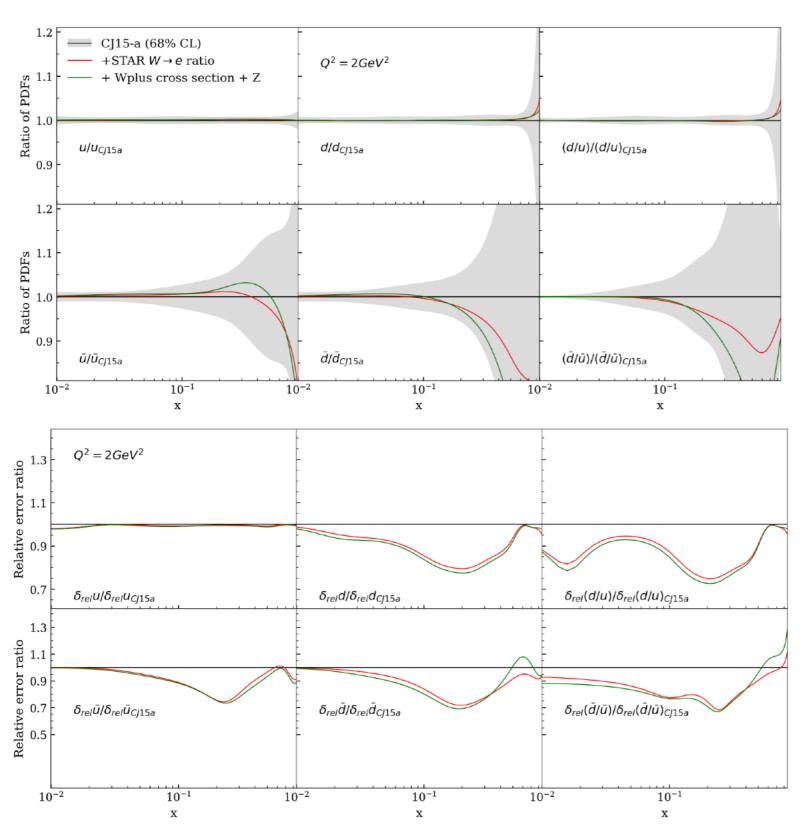
- Unique access to sea quarks, complimentary to other observables (DIS, Drell-Yan)
- W couples only to left-handed quark and right-handed antiquark
- W+/W- distinguishes between quarks and antiquarks
- No fragmentation functions needed


Data vs CJ comparisons



Reasonable agreement with W⁺ cross section, but not well describe W⁻ data

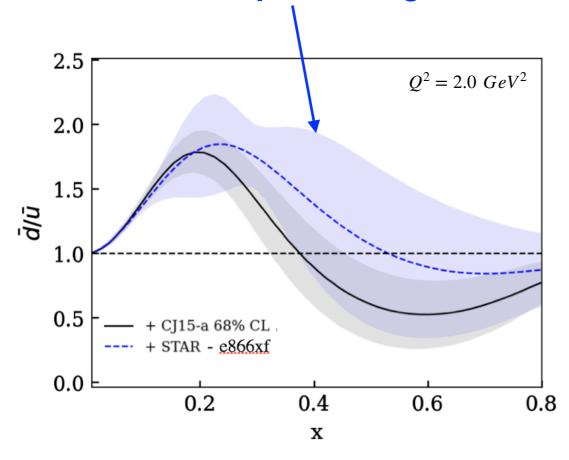
Data vs CJ comparisons



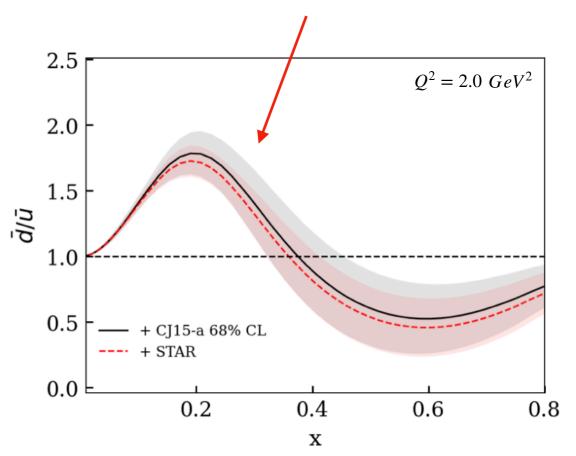
 η_e

Charge ratio and Z cross sections can be reasonably described by CJ15

Impact of STAR data in CJ15-a

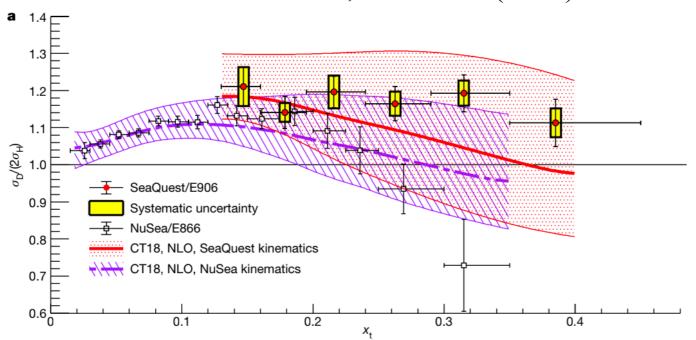


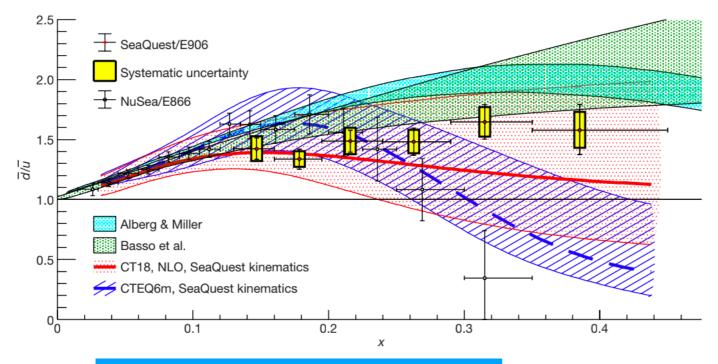
- Ratio to the baseline CJ15-a
- Lepton charge ratio has most constraining power over \bar{d}/\bar{u}
- The data covers the range of ~ 0.1< x <
 0.3 (partially overlap with E866 data at different Q²)


S. Park DIS2021 12

\bar{d}/\bar{u} ratio with STAR data

Removed E866 cross sections + Added STAR lepton charge ratio


Keeping E866 cross sections+ Added STAR lepton charge ratio



E866 data determine the shape of the ratio STAR data is compatible with CJ15-a, in agreement with E866 but no x coverage $x > \sim 0.3$

More on the flavor asymmetry

Dove et. al. Nature 590, 561 – 565 (2021)

Talk by K. Nagai on Thursday

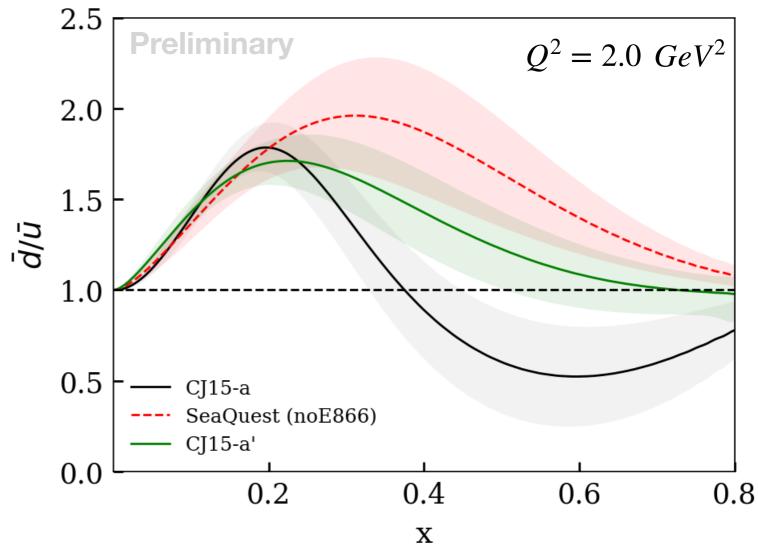
E866 (NuSea) results show show significant flavor asymmetry as well as x-dependence

Also suggested a potential sign change of $\bar{d} - \bar{u}$ at x~0.3 with large uncertainty

Needed more data with extended x coverage — SeaQuest

New SeaQuest Drell-Yan result shows the ratio stays above 1 at large-x!

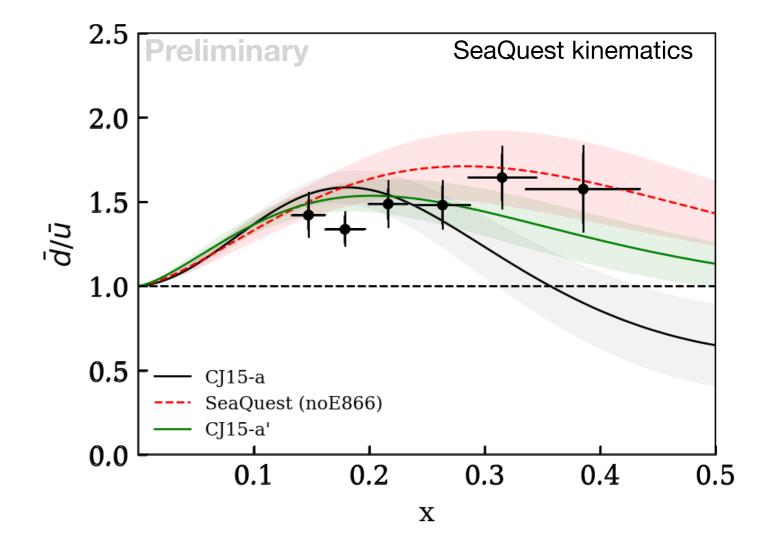
SeaQuest impact in CJ15-a


Preliminary SeaQuest fits

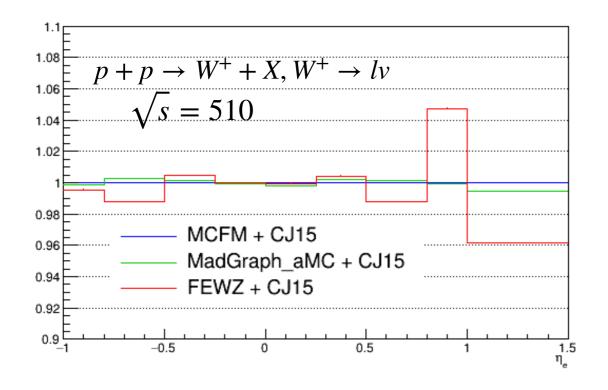
Incorporating the spectrometer acceptance corrections

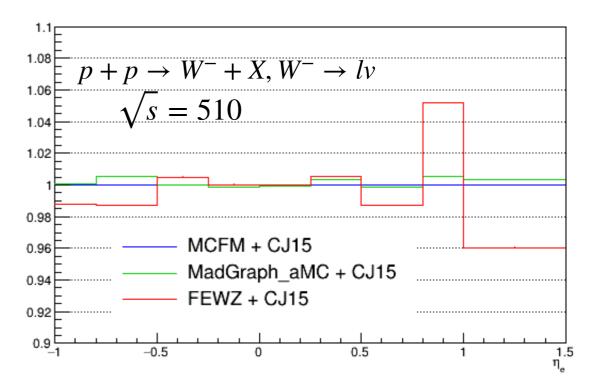
$$\left(\frac{\sigma_{\rm D}}{2\sigma_{\rm H}}\right)_i = \frac{\sum A_{ij} \,\sigma_{\rm D}^{\rm calc}(x_{\rm t}, x_{\rm b}, M)}{2\sum A_{ij} \,\sigma_{\rm H}^{\rm calc}(x_{\rm t}, x_{\rm b}, M)}$$

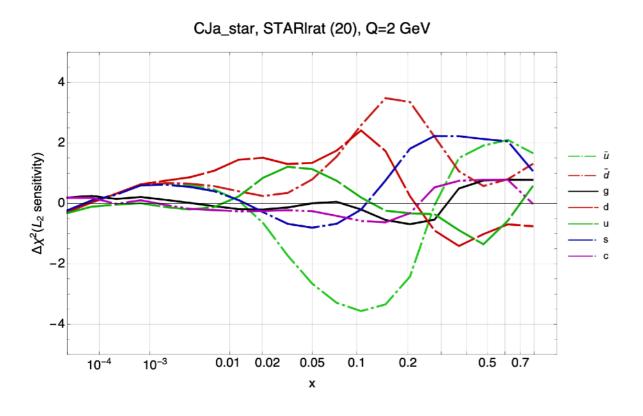
x_b	0.30-	0.35-	0.40-	0.45-	0.50-	0.55-	0.60-	0.65-	0.70-	0.75-
x_t	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80
						0.0007	0.0064	0.0175	0.0304	0.0370
0.130-						0.589	0.628	0.675	0.723	0.772
0.160						0.158	0.153	0.148	0.144	0.144
						4.54	4.60	4.68	4.77	4.92
				0.0007	0.0071	0.0188	0.0299	0.0366	0.0432	0.0471
0.160-				0.489	0.528	0.576	0.624	0.673	0.722	0.772
0.195				0.191	0.184	0.178	0.176	0.176	0.176	0.175
				4.56	4.63	4.74	4.91	5.09	5.27	5.45
		0.0001	0.0023	0.0105	0.0205	0.0298	0.0384	0.0456	0.0510	0.0557
0.195-		0.394	0.433	0.477	0.524	0.574	0.623	0.672	0.722	0.772
0.240		0.235	0.225	0.217	0.216	0.215	0.215	0.214	0.215	0.214
		4.55	4.65	4.78	4.99	5.21	5.43	5.63	5.84	6.04
		0.0015	0.0078	0.0176	0.0270	0.0364	0.0436	0.0499	0.0550	0.0591
0.240-		0.383	0.427	0.475	0.524	0.574	0.623	0.672	0.722	0.771
0.290		0.267	0.264	0.263	0.262	0.262	0.262	0.262	0.261	0.262
		4.76	4.99	5.24	5.50	5.75	6.00	6.24	6.46	6.69
	0.0002	0.0035	0.0120	0.0207	0.0298	0.0379	0.0455	0.0518	0.0544	0.0568
0.290-	0.341	0.379	0.426	0.475	0.524	0.574	0.623	0.673	0.722	0.771
0.350	0.324	0.319	0.316	0.316	0.316	0.315	0.315	0.315	0.314	0.314
	4.95	5.18	5.46	5.76	6.05	6.33	6.60	6.85	7.10	7.34
	0.0006	0.0052	0.0125	0.0203	0.0268	0.0336	0.0374	0.0405	0.0415	0.0413
0.350-	0.339	0.377	0.425	0.474	0.524	0.573	0.623	0.672	0.722	0.771
0.450	0.384	0.390	0.386	0.386	0.385	0.384	0.384	0.384	0.383	0.382
	5.38	5.72	6.04	6.38	6.69	7.00	7.29	7.58	7.85	8.11

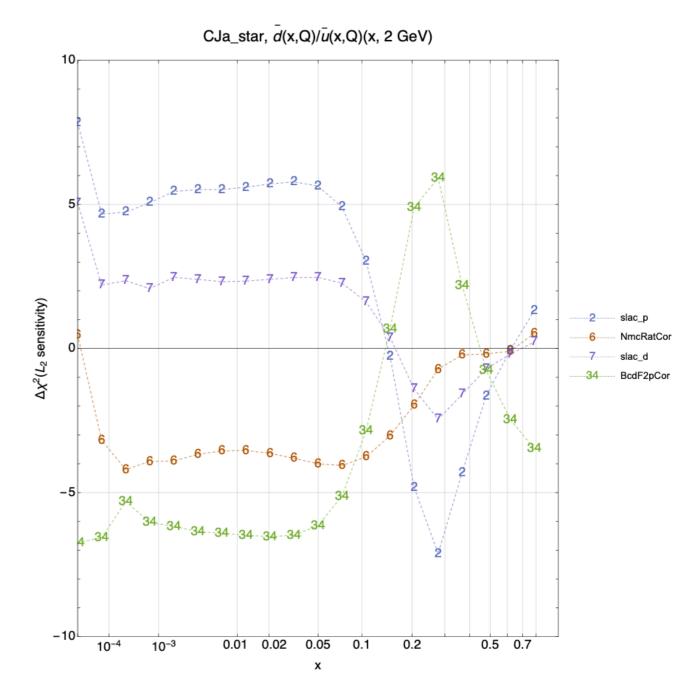

Datasets/ Fits	E866 cross sections	E866 Ratio	SeaQuest

SeaQuest impact in CJ15-a


SeaQuest data pulls the data up at large-x region even with the parameterization that allows the ratio goes to below 1 at x->1






Summary and outlook

- New data sensitive to sea quarks are studied with CJ framework
 - RHIC W data provide constraints on light quark PDFs at a moderate x region
 - In agreement with E866 within the kinematic range where the data covers
 - SeaQuest data pulls the light sea quark ratio up and the data shows that the ratio stays above 1
 - Further studies with the SeaQuest result ongoing
- Working towards to a new release with LHC, RHIC, SeaQuest data

