Development of the ATLAS Liquid Argon Calorimeter Readout Electronics for the HL-LHC

Mathis Kolb on behalf of the ATLAS LAr Collaboration

XXVIII International Workshop on Deep-Inelastic Scattering and Related Subjects Virtual Event @ Stony Brook University April 12-16, 2021

Liquid Argon Calorimeter upgrade

Calibration board

- Provides pulse of known amplitude and shape
- 2 ASICs
 - Claroc: High-frequency switch, analog, 180nm XFab
 - Ladoc: DAC, digital, 130nm TSMC
- Characteristics
 - 16 bit dynamic range
 - Linearity < 0.1%
 - Radiation hard up to 180 kRad
- 130 boards with 128 channels each
- 4 channels / ASIC

Preamplifier-Shaper

Analog signal processing

4.9 mm

- Amplification, CR-RC2 shaping, split on Hi/Low gain (overlapping), analog sums for trigger
- 16 bit dynamic range, gain ratio ~23, 130nm TSMC
- Highly configurable via I2C
- Final prototype submitted for fabrication
- ALFE: ASIC for EM and FCAL
 - Full density 4 channels
 - Pre-Amplifier + Shaper
- HPS: ASIC for HEC
 - Pre-Amplifier replaced by Pre-Shaper

4 H

ADC

4.5 mm x 464 un

Si-NIEL $[n_{eq}/\text{cm}^2]$

 $4.3 \times 10^{13}(2)$

Front-End-Board FEB2

• Analog testboard

- 2 channels
- Pre-protovpe ASICs
- Full readout chain working
- Slice testboard
 - 32 channels
 - Updated ASICs
 - Demonstrate multi-channel performance
 - Control and readout on all channels tested
- Layer Sum Board
 - Connects main readout with trigger readout
 - Summing: main readout granularity \rightarrow coarser trigger granularity

1.3(1.5)

DRE

MDA

• ADC requirements

- > 11 bit ENOB

- 40 MSPS

- 14 bit dynamic range

- Radiation hardness

TID [kGy]

- Low power < 100 mW / channel

- COLUTA ADC
 - 65nm TSMC
 - MDAC \rightarrow 12-bit SAR,

digitizes at 40 MHz with two gains

- 4 channels, 8 ADC/ASIC
- Low noise and good long-term stability
- Highly configurable via I2C

A REAL PROPERTY AND INCOME.

SEE $[h_{>20MeV}/cm^2]$

 $1.1 \times 10^{13}(3)$

WE]

LAr Signal Processor LASP LAr Ti

LAr Timing System LATS

- Data from FEB2, ~512 channels / LASP
- Digital filtering
- Provides signal energy and time
- Buffering and transmission to TDAQ
- ATCA main blade (2 FPGAs)
- RTM (controller FPGA + optical tranceivers)
- Pre-prototype production started

- Configuration, monitoring and Trigger Timing and Control (TTC) distribution for on-detector boards
- LATOURNETT: ATCA board
- Test of LATS concept with Cyclone10 devkit
 - FMC Dual SFP
 - Hardware interfaces validated

Backup

Readout scheme

