ATLAS LAr Calorimeter Commissioning for LHC Run-3

Energy computation in LATOME boards

Luka SELEM on behalf of the ATLAS LAr Calorimeter Group

XXVIII International Workshop on Deep-Inelastic Scattering and Related Subjects Virtual Event @ Stony Brook University April 12-16, 2021

LAr Phase 1 upgrade : improving the trigger

Collision Point

ATLAS Calorimeter

Divided in subsystems based on Tiles and Liquid Argon (LAr)

Each LAr subsystem divided in cells computing energy in (η,φ) coordinates and 3-4 layers in depth

Hardware trigger system (L1 accept)

40 MHz \rightarrow 100 kHz = decide in few µs based on computed energy

→ Reduced granularity to be faster : **Trigger Towers** ~ **60 cells** combined in depth and η , ϕ ($\Delta \eta \times \Delta \phi = 0.1 \times 0.1$)

Phase 1 Upgrade

Higher pile-up expected : <µ> = **80** (Run 3) to **200** (HL-LHC)

→ Increase granularity to improve discriminating power : Super Cells

- Granularity : 1 TT = 10 SC = 1+4+4+1 SC
 - → From 5248 TT to 34 048 SC
- Digitization (improved precision)
- Pile-up subtraction (baseline correction) maintained though more challenging

Electron shower (E₇=70GeV) in **LAr Trigger Tower**

From LAr pulse to Energy

Energy computation in LATOME

Energy computation, done in UserCode of LATOME board (FPGA) in LAr Digital Processing Blades, need coefficients :

- → SuperCell Specific : to be stored in correct register of correct **I ATOMF**
- → From calibration run = **condition specific** (run number, lumi block,...): stored in **Condition database** (~ database with Intervals of Validity)

OFCs, pedestals come from calibration runs as floats

- Multiplied by factors to make least significant bit of computation (DSP) output correspond to 12.5 MeV
- Converted to 13bit + 1 sign bit **integers** to be stored in registers
- Correctly implemented in LATOME ? Computation result comparable to full float precision?

ADC input to Filtering block

 $\xi(m) = \tau(m) \cdot E_{\mathrm{T}}(m) = \sum_{i} b_{i} \cdot (ADC_{m+i} - ped_{m+i})$

DSP output has 44 bits, it is truncated to 18 bits. LSB of E_T corresponds to 12.5 MeV.

Selection Block

Commissioning : validating userCode blocks

1. Create **condition database** with **calibration coefficients** converted to integers → Load it in LATOME registers

2. Check **energy** (E_T) **computation** by the LATOME is correct with a monitoring run :

- → 1000 events each with 11 ADC (1 per Bunch Crossing) sent to each channels (=SuperCell) of LATOME boards (here 2 LATOMEs = 580 channels)
- → Recompute E_T for each 8 first samples : 8x580 = 4640 E_T /event computed
- 3. Check **energy resolution:** LATOME E_T *vs* E_T computed with **full float precision**
- 4. Enable **selection block** (E_T set to 0 upon failure) and repeat step 2
 - → Check $\xi = \tau \times E_{\tau}$ computation AND selection criteria correct in LATOME

Validated for these LATOMEs !

Prospect : keep validating all blocks of UserCode on all LATOME boards (covering all SuperCells of LAr Calorimeter)

BACKUP SLIDES

Energy in ADC counts

Energy in MeV

