

XXVIII International Workshop on Deep-Inelastic Scattering and Related Subjects DIS2021 Virtual Event @ Stony Brook University, April 14th 2021

Correlations between azimuthal asymmetries and multiplicity and mean transverse momentum in small collisions systems in the CGC

Néstor Armesto IGFAE, Universidade de Santiago de Compostela

nestor.armesto@usc.es

with Tolga Altinoluk (NCBJ), Alex Kovner (UConn), Michael Lublinsky (BGU) and Vladimir Skokov (NCSU)

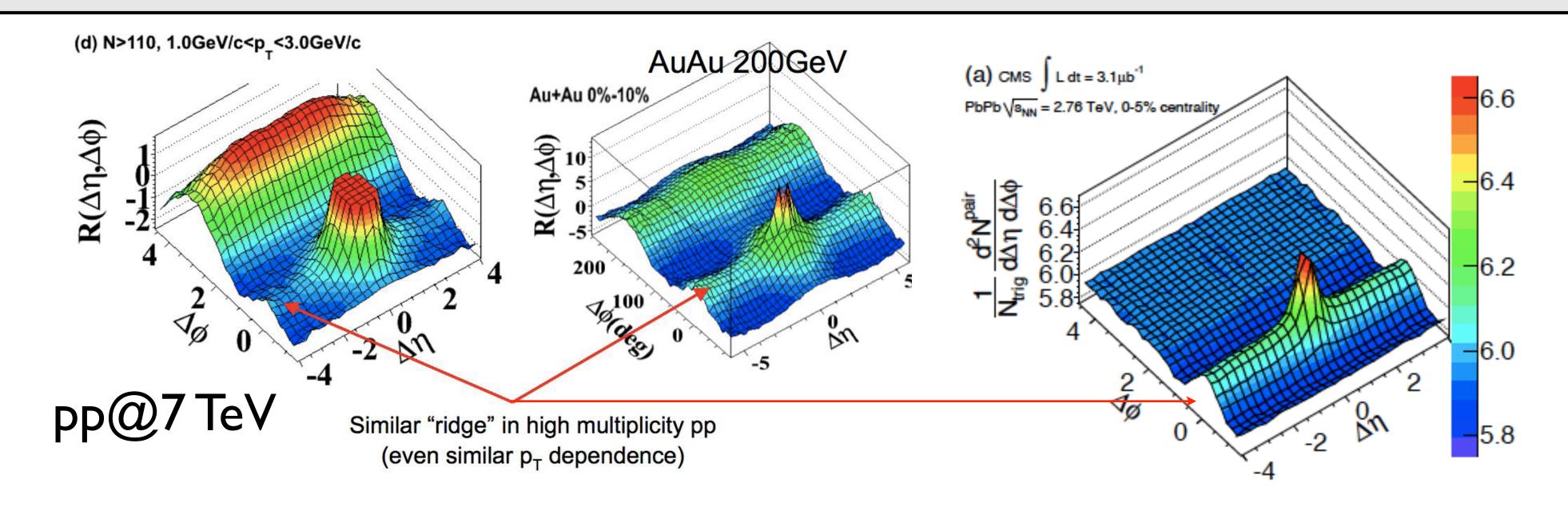
e-Print: 2012.01810 [hep-ph]

Contents:

- I. Introduction.
- 2. Correlations in the CGC.
- 3. Results:
 - \rightarrow Two particle correlations: v_2 .
 - → Three particle correlations: $v_2 \langle N \rangle$ and $v_2 \langle p_T \rangle$.
- 4. Summary.

e-Print: 2012.01810 [hep-ph]

Introduction:

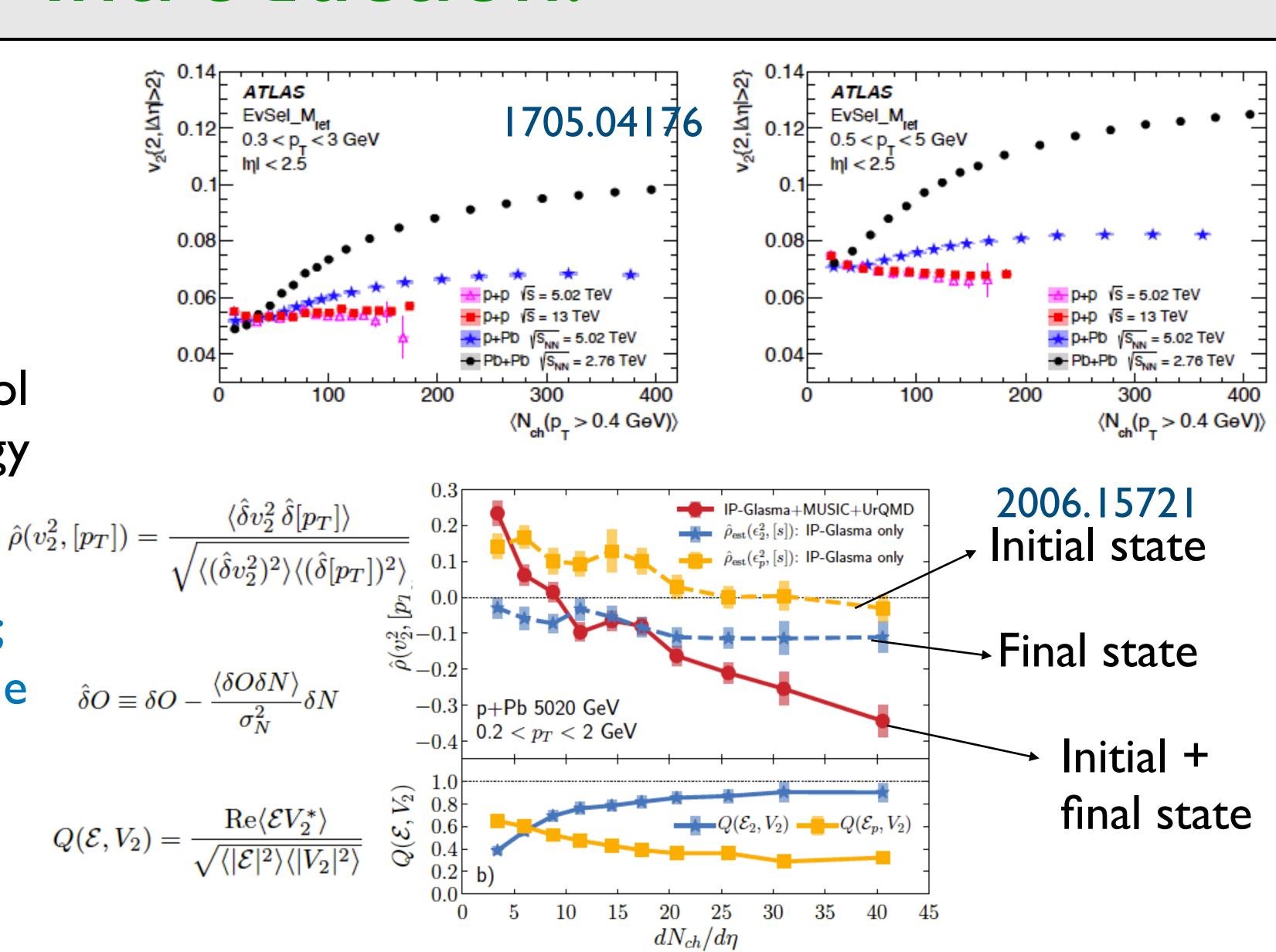


- Many QGP-like features observed in AA collisions at RHIC and the LHC are also observed in pp and pA (at large and not so large multiplicities): small system puzzle.
- **Ridge**: elongated structure in η in two particle correlations, peaked at 0 and 180 degrees.
- Long range rapidity correlations give information about initial stages of the collision, and appear in several models: old string models, CGC, ...
- Alternatives: imprint of the correlations in the wave functions of the incoming objects (initial state) versus effect of the strong final state interactions in a dense system (final state).

Introduction:

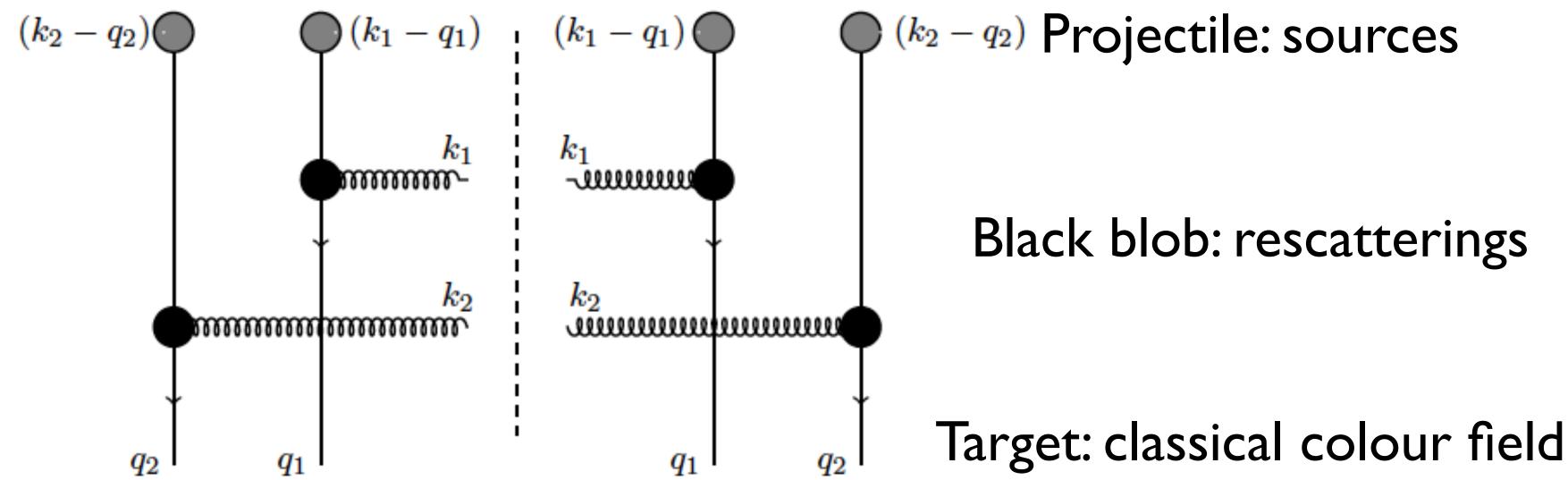
- Motivation in this work:
 - \rightarrow Understanding the (weak) dependence of v_2 with multiplicity.
 - ⇒ Examining the $v_2 \langle p_T \rangle$ correlation proposed as a tool to determine the initial energy deposition and disentangle initial from final state effects in pp/pA (Bozek, 1601.04513; ATLAS, 1907.05176; Giacalone et al., 2006.17721; Lim et al., 2103.01348).

within the CGC initial state perspective.



Correlations in the CGC:

• Two physical effects in correlations in the CGC (see TA et al., 2004.08185):

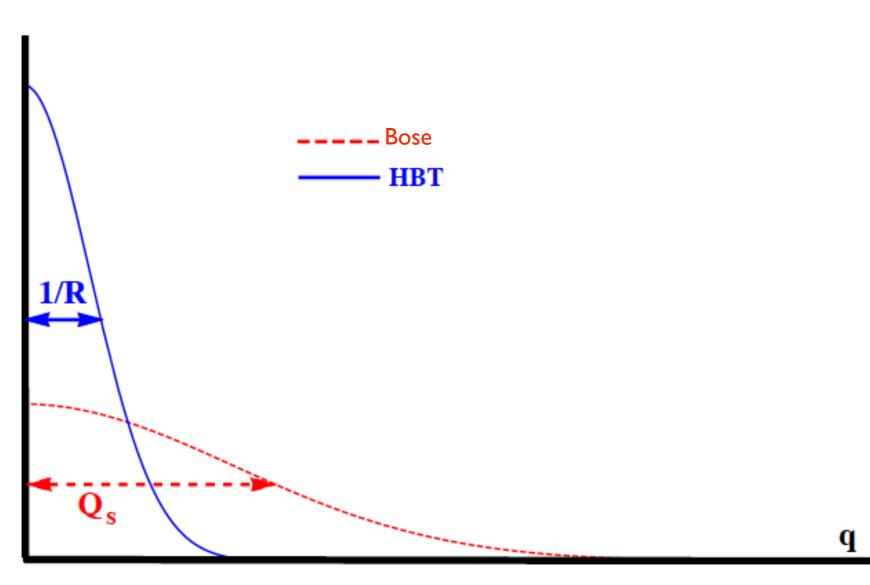


1) Bose enhancement of gluons in the projectile wave function (TA et al., 1503.07126).

$$\propto \delta^{(2)}[k_1 - q_1 - (k_2 - q_2)] + \delta^{(2)}[k_1 - q_1 + (k_2 - q_2)]$$

2) HBT of gluons separated in rapidity (TA et al., 1509.03223; Kovchegov et al., 1212.1195,1310.6701).

$$\propto \delta^{(2)}(k_1 - k_2) + \delta^{(2)}(k_1 + k_2)$$



To
$$\mathcal{O}(g\rho)$$
 (see Ming Li's flash talk):

$$\frac{dN^{(2)}}{d^{2}k_{1}d^{2}k_{2}} \propto \int_{z_{i}\bar{z}_{i}} e^{ik_{1}\cdot(z_{1}-\bar{z}_{1})+ik_{2}\cdot(z_{2}-\bar{z}_{2})} \int_{x_{i}y_{i}} A^{i}(x_{1}-z_{1})A^{i}(\bar{z}_{1}-y_{1})A^{j}(x_{2}-z_{2})A^{j}(\bar{z}_{2}-y_{2}) \\
\times \left\langle \rho^{a_{1}}(x_{1})\rho^{a_{2}}(x_{2})\rho^{b_{1}}(y_{1})\rho^{b_{2}}(y_{2})\right\rangle_{P} \\
\times \left\langle \left[U(z_{1})-U(x_{1})\right]^{a_{1}c} \left[U^{\dagger}(\bar{z}_{1})-U^{\dagger}(y_{1})\right]^{cb_{1}} \left[U(z_{2})-U(x_{2})\right]^{a_{2}d} \left[U^{\dagger}(\bar{z}_{2})-U^{\dagger}(y_{2})\right]^{db_{2}}\right\rangle_{T}$$

- $A^{i}(z) = z^{i}/z^{2}$: standard WW fields.
- Projectile averages: MV model (see Adrian Dumitru's talk):

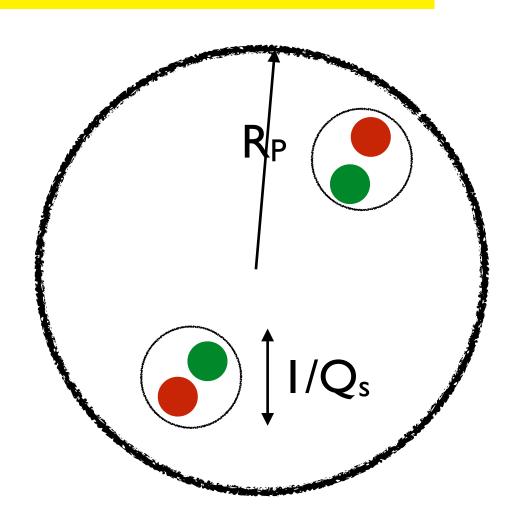
$$\langle \rho^{\mathbf{a}_1} \rho^{\mathbf{a}_2} \rho^{b_1} \rho^{b_2} \rangle = \langle \rho^{\mathbf{a}_1} \rho^{b_1} \rangle \langle \rho^{\mathbf{a}_2} \rho^{b_2} \rangle + \langle \rho^{\mathbf{a}_1} \rho^{\mathbf{a}_2} \rangle \langle \rho^{b_1} \rho^{b_2} \rangle + \langle \rho^{\mathbf{a}_1} \rho^{b_2} \rangle \langle \rho^{\mathbf{a}_2} \rho^{b_1} \rangle$$

$$\langle \rho^{a}(x)\rho^{b}(y)\rangle = \delta^{ab}\mu^{2}(x,y)$$

• Target averages: leading contributions in R_pQ_s to the transverse integrals (TA et al., 1805.07739; see Pedro Agostini's talk):

$$\langle Q(x,y,z,v)\rangle_T \longrightarrow d(x,y)d(z,v) + d(x,v)d(z,y) + \frac{1}{N_c^2 - 1}d(x,z)d(y,v),$$

$$\langle D(x,y)D(z,v)\rangle_T \longrightarrow d(x,y)d(z,v) + \frac{1}{(N_c^2-1)^2} \left[d(x,v)d(y,z) + d(x,z)d(v,y)\right]$$



Assuming translational invariance and keeping the leading terms that produce correlations:

$$\frac{dN^{(2)}}{d^2k_1d^2k_2} = \frac{dN^{(2)}}{d^2k_1d^2k_2} \bigg|_{dd} + \frac{dN^{(2)}}{d^2k_1d^2k_2} \bigg|_{Q}$$

$$\frac{dN^{(2)}}{d^2k_1d^2k_2}\bigg|_{Q} \propto \int_{q_1q_2} d(q_1)d(q_2)\bigg[I_{Q,1}+I_{Q,2}\bigg]$$

$$I_{Q,1} = \mu^{2}(k_{1} - q_{1}, q_{2} - k_{2}) \mu^{2}(k_{2} - q_{2}, q_{1} - k_{1}) L^{i}(k_{1}, q_{1}) L^{i}(k_{1}, q_{1}) L^{j}(k_{2}, q_{2}) L^{j}(k_{2}, q_{2}) + (k_{2} \rightarrow -k_{2})$$

$$I_{Q,2} = \mu^{2}(k_{1} - q_{1}, q_{1} - k_{2}) \mu^{2}(k_{2} - q_{2}, q_{2} - k_{1}) L^{i}(k_{1}, q_{1}) L^{i}(k_{1}, q_{2}) L^{j}(k_{2}, q_{1}) L^{j}(k_{2}, q_{2}) + (k_{2} \rightarrow -k_{2})$$

$$L^{i}(k,q) = \left[\frac{(k-q)^{i}}{(k-q)^{2}} - \frac{k^{i}}{k^{2}}\right]$$
: Lipatov vertex

- To go ahead:
 - → MV model: $\mu^2(k,q) = (2\pi)^2 \delta^{(2)}(k+q)$, and GBW model: $d(q) = \frac{4\pi}{Q_s^2} e^{-q^2/Q_s^2}$.
 - \rightarrow We assume $k_2^2, k_3^2 \gg Q_s^2$ and neglect exponentially suppressed terms.
 - \rightarrow We take only leading N_c terms.

Both HBT and Bose enhancement terms:

$$Q_{2} = \alpha_{s}^{2} (4\pi)^{2} (N_{c}^{2} - 1) \ \mu^{4} S_{\perp} (2\pi)^{2} \left[\delta^{(2)} (k_{2} + k_{3}) + \delta^{(2)} (k_{2} - k_{3}) \right] \frac{1}{2} \frac{Q_{s}^{4}}{k_{2}^{8}}$$

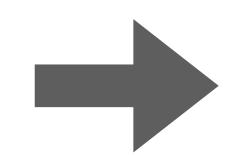
$$Q_{1} = \alpha_{s}^{2} (4\pi)^{2} (N_{c}^{2} - 1) \ \mu^{4} S_{\perp} \frac{1}{\pi Q_{s}^{2}} e^{-(k_{2} - k_{3})^{2}/2Q_{s}^{2}} \left\{ \left[\frac{1}{2} + \frac{2^{2} Q_{s}^{2}}{(k_{2} + k_{3})^{2}} + \frac{2^{4} Q_{s}^{4}}{(k_{2} + k_{3})^{4}} \right] \frac{1}{k_{2}^{2} k_{3}^{2}} \frac{(k_{2} - k_{3})^{4}}{(k_{2} + k_{3})^{4}} + Q_{s}^{4} \frac{2^{6}}{(k_{2} + k_{3})^{8}} \left[1 + (k_{2}^{i} - k_{3}^{i}) \left(\frac{k_{2}^{i}}{k_{2}^{2}} - \frac{k_{3}^{i}}{k_{3}^{2}} \right) \right] \right\} + (k_{3} \rightarrow -k_{3}).$$

$$v_2^2(k,k',\Delta) = \frac{\int_{k-\Delta/2}^{k+\Delta/2} k_2 dk_2 \int_{k'-\Delta/2}^{k'+\Delta/2} k_3 dk_3 \int d\phi_2 d\phi_3 e^{i2(\phi_2-\phi_3)} \frac{d^2N^{(2)}}{d^2k_2 d^2k_3}}{\int_{k-\Delta/2}^{k+\Delta/2} k_2 dk_2 \int_{k'-\Delta/2}^{k'+\Delta/2} k_3 dk_3 \int d\phi_2 d\phi_3 \frac{d^2N^{(2)}}{d^2k_2 d^2k_3}}$$

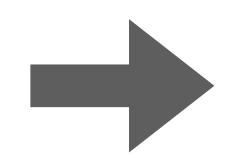
- We keep only the correlated part in numerator and everything in the denominator.
- S_{\perp} : transverse area of the projectile; $\lambda \sim [S_{\perp}Q_s^2]^{-1}$ IR cutoff.
- ullet We integrate over transverse momentum bins: $k,k'\gg \Delta\sim Q_s$.
- For pA: $Q_s \simeq 1 \text{ GeV}$, $S_{\perp} \simeq 1/\Lambda_{QCD}^2 \Rightarrow \lambda \simeq 25$; v_2^2 scaled by $(N_c^2 1)S_{\perp}Q_s^2 \simeq 200$.

• Transverse momentum width of Bose enhancement $\sim Q_{\rm S} \gg$ width of HBT:

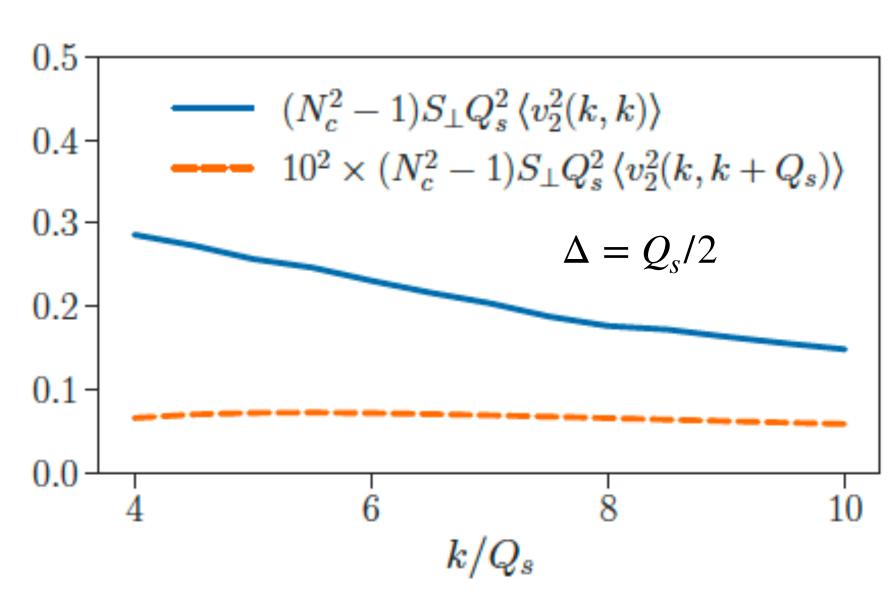
non-overlapping bins
$$\Delta < |k - k'|$$
 only BE contribution

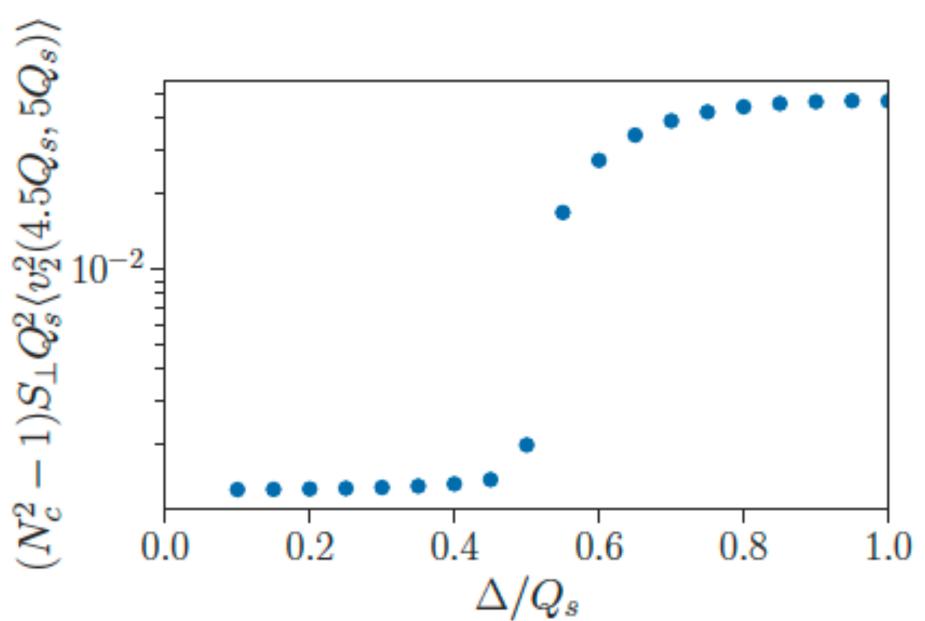


 $\Delta \approx |k - k'|$ HBT starts to contribute



overlapping bins $\Delta > |k - k'|$ BE+HBT contribution





- ullet BE dominated regime: weak k dependence (very similar for BE and single inclusive squared).
- BE+HBT: HBT largely dominates, steeper k dependence.
- Transition from BE to BE+HBT controlled by the bin width.

- In the CGC, the multiplicity dependence of any observable demands a projector of projectile
- & target averages on multiplicity (Dumitru et al., 1704.05917, 1802.06111): not yet available.

$$\mathcal{O}_{N,v_2} = \frac{\int d\phi_2 d\phi_3 \ e^{i2(\phi_2 - \phi_3)} \int d^2k_1 \frac{dN^{(3)}}{d^2k_1 d^2k_2 d^2k_3} \Big|_{X}}{\int d\phi_2 d\phi_3 \ e^{i2(\phi_2 - \phi_3)} \frac{dN^{(2)}}{d^2k_2 d^2k_3} \Big|_{Q} \int d^2k_1 \frac{dN^{(1)}}{d^2k_1}}$$

$$\frac{dN^{(3)}}{d^2k_1d^2k_2d^2k_3} = \frac{dN^{(3)}}{d^2k_1d^2k_2d^2k_3}\bigg|_{ddd} + \frac{dN^{(3)}}{d^2k_1d^2k_2d^2k_3}\bigg|_{dQ} + \frac{dN^{(3)}}{d^2k_1d^2k_2d^2k_3}\bigg|_{X} + \frac{dN^{($$

ddd: 3 gluons uncorrelated X: 3 gluons correlated

Single inclusive:

$$\frac{dN^{(1)}}{d^2k_1} \propto \int_{q_1} d(q_1) \, \mu^2(k_1 - q_1, q_1 - k_1) \, L^i(k_1, q_1) L^i(k_1, q_1)$$

$$\frac{dN^{(1)}}{d^2k_1} = \alpha_s(4\pi)(N_c^2 - 1)\mu^2 S_{\perp} e^{-k_1^2/Q_s^2} \left\{ \frac{2}{k_1^2} - \frac{1}{k_1^2} e^{k_1^2/Q_s^2} + \frac{1}{Q_s^2} \left[\text{Ei}\left(\frac{k_1^2}{Q_s^2}\right) - \text{Ei}\left(\frac{k_1^2\lambda}{Q_s^2}\right) \right] \right\}$$

• Weak dependence on IR regulator λ .

$$\frac{dN^{(3)}}{d^2k_1d^2k_2d^2k_3}\bigg|_X \propto \int_{q_1q_2q_3} d(q_1)d(q_2)d(q_3)\bigg[I_{X,1} + I_{X,2} + I_{X,3} + I_{X,4} + I_{X,5}\bigg]$$

- $I_{X,i}$: 3 μ^2 functions and 6 Lipatov vertices, 8 terms each.
- X_1 , X_3 , X_4 are BEtype contributions:

$$\begin{split} X_1 &= \frac{1}{2} \, \alpha_s^3 (4\pi)^6 (N_c^2 - 1) \, \mu^6 \, S_\perp \, e^{-(k_2 - k_3)^2 / 2 Q_s^2} \, \frac{1}{k_2^4} \\ &\times \, \left\{ \left(\frac{1}{2} + Q_s^2 \left[\frac{1}{k_2^2} + \frac{2^2}{(k_2 + k_3)^2} \right] + Q_s^4 \left[\frac{3}{k_2^4} + \frac{2!}{k_2^2} \frac{2^2}{(k_2 + k_3)^2} + \frac{2^4}{(k_2 + k_3)^4} \right] \right) \frac{1}{k_2^2 k_3^2} \frac{(k_2 - k_3)^4}{(k_2 + k_3)^4} \\ &\quad + Q_s^4 \frac{2^6}{(k_2 + k_3)^8} \left[1 + (k_2^i - k_3^i) \left(\frac{k_2^i}{k_2^2} - \frac{k_3^i}{k_3^2} \right) \right] \right\}. \end{split}$$

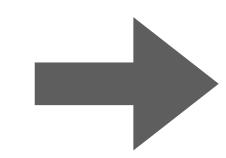
• X_2 , X_5 are HBT-type contributions:

$$X_2 = \alpha_s^3 \frac{1}{2} (4\pi)^7 (N_c^2 - 1) \mu^6 S_{\perp} \left[\delta^{(2)}(k_2 + k_3) + \delta^{(2)}(k_2 - k_3) \right] \frac{1}{4} \frac{Q_s^6}{k_2^{12}}$$

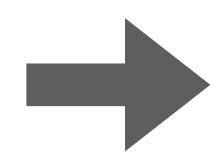
•Again we integrate over transverse momentum bins:

$$\left. \frac{dN^{(3)}}{d^2k_1d^2k_2d^2k_3} \right|_X \to \int_{k-\Delta/2}^{k+\Delta/2} k_2dk_2 \int_{k'-\Delta/2}^{k'+\Delta/2} k_3dk_3 \frac{dN^{(3)}}{d^2k_1d^2k_2d^2k_3} \right|_X$$

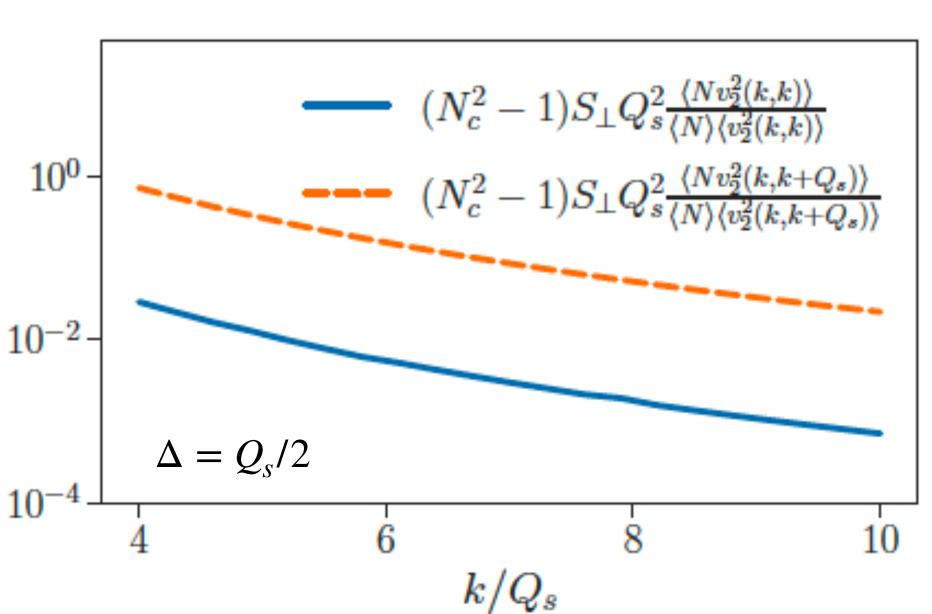
non-overlapping bins $\Delta < |k - k'|$ only BE contribution

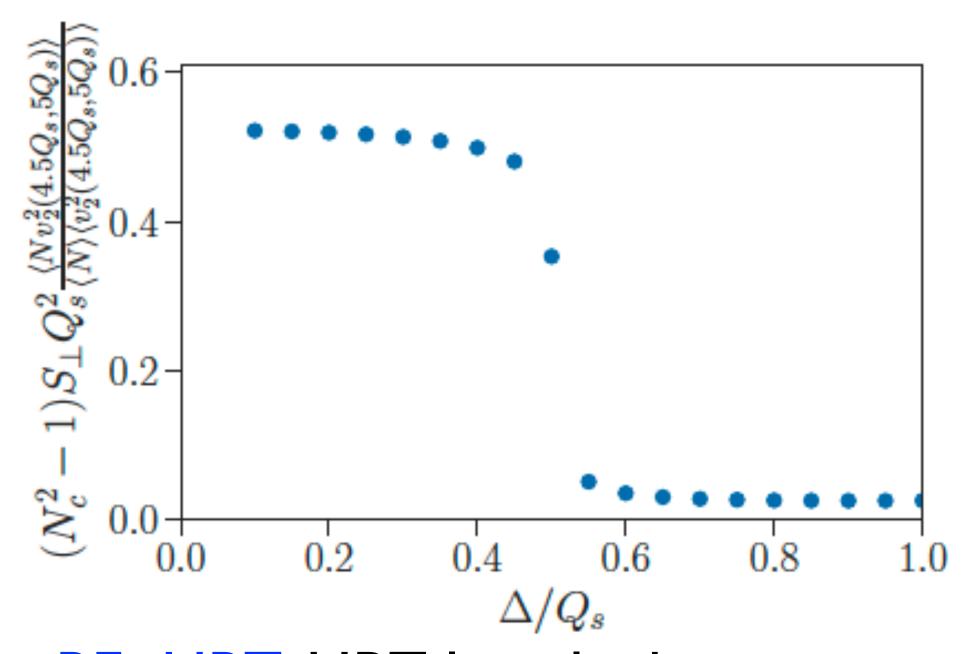


 $\Delta \approx |k - k'|$ HBT starts to contribute



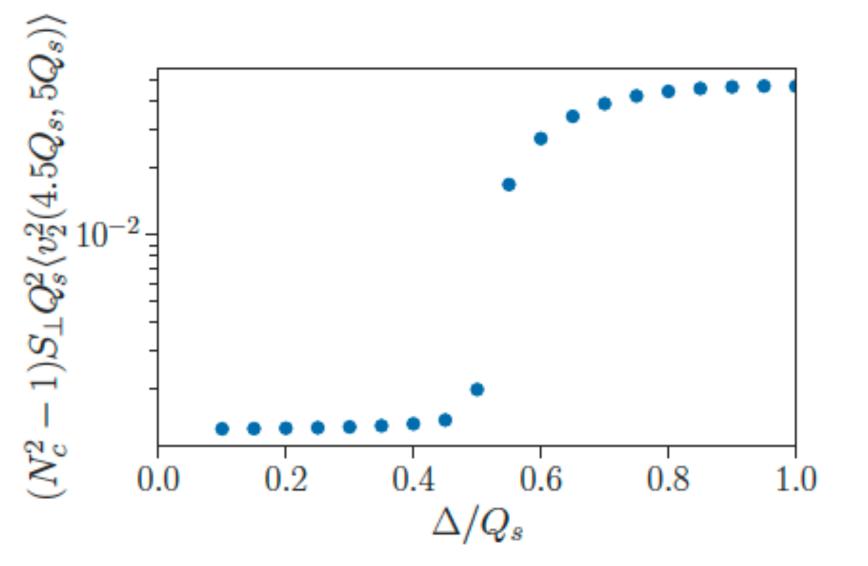
overlapping bins $\Delta > |k - k'|$ $\mathsf{BE+HBT} \ \mathsf{contribution}$

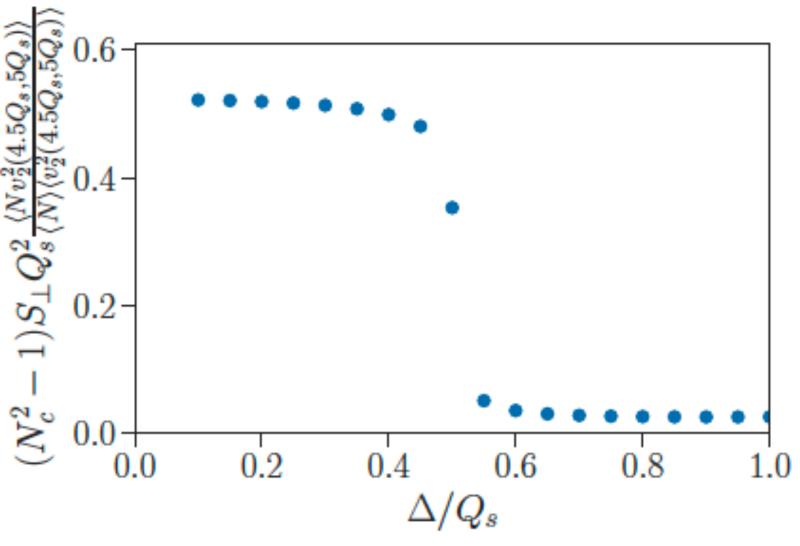




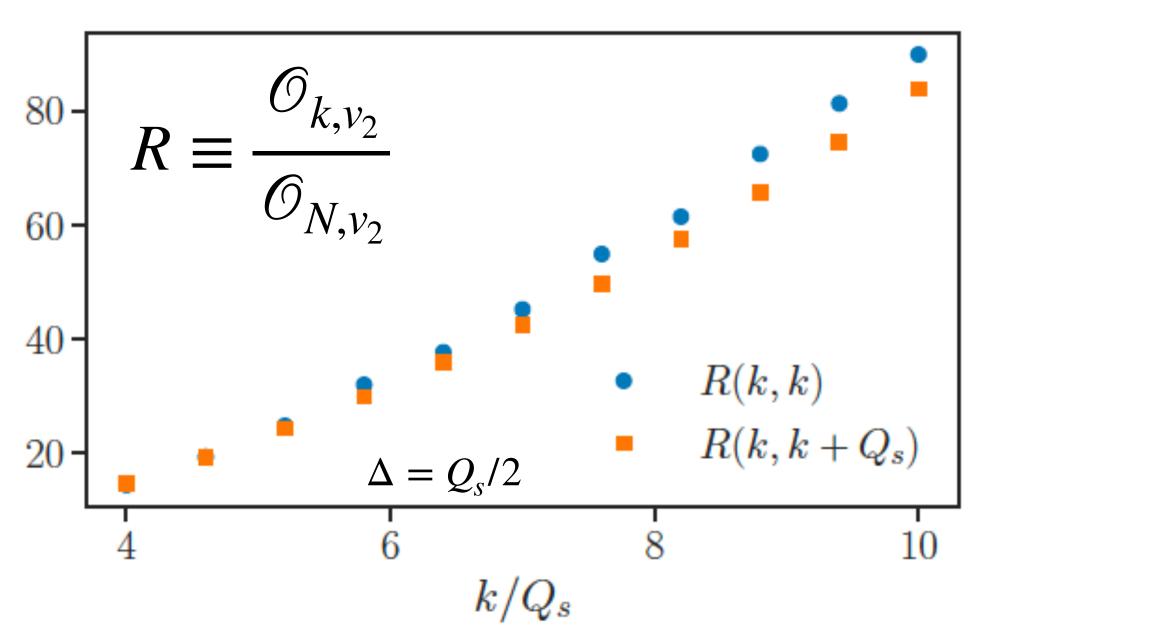
- BE dominated regime: no HBT contribution to v_2 ; BE+HBT: HBT largely dominates v_2 .
- \mathcal{O}_{N,ν_2} decreasing function of k (multiplicity dominated by soft gluons).
- \mathcal{O}_{N,v_2} correlations goes from sizeable to negligible when going from the BE to the BE+HBT regime: opposite transition to that in v_2 .

- BE dominated regime $(\Delta < 0.5Q_s)$: v_2 small and
- sizeable $v_2 \langle N \rangle$ correlations.
- BE+HBT ($\Delta > 0.5Q_s$): v_2 large and negligible $v_2 \langle N \rangle$ correlations.
- Drop in $v_2 \langle N \rangle$ driven by the sharp increase in v_2 .





• \mathcal{O}_{N,ν_2} and \mathcal{O}_{k,ν_2} show similar behaviours but \mathcal{O}_{k,ν_2} falls slower with k.



Conclusions:

- We have computed v_2 and its correlations with average multiplicity and transverse momentum in pA (dilute-dense) collisions in the CGC.
- We assume translational invariance and consider leading terms in density and in area, the lowest order in N_c and large transverse momentum $k \gg Q_s$; we do not attempt to describe data but to see the effects of quantum statistics, both in the wave functions of the colliding hadrons and in the production process, on correlations.
- v_2 correlations with average multiplicity and transverse momentum are very small and show similar behaviours.
- Due to the onset of the HBT contribution, $v_2 \langle N \rangle$ and $v_2 \langle p_T \rangle$ correlations show a characteristic pattern with the transverse momentum bin width opposite to that found in v_2 .
- We are examining the size and influence of subleading terms in N_c (corrections to BE of the projectile and BE of the target).

Correlations between azimuthal asymmetries and $\langle N \rangle$ and $\langle p_T \rangle$ in small collisions systems in the CGC.

Conclusions:

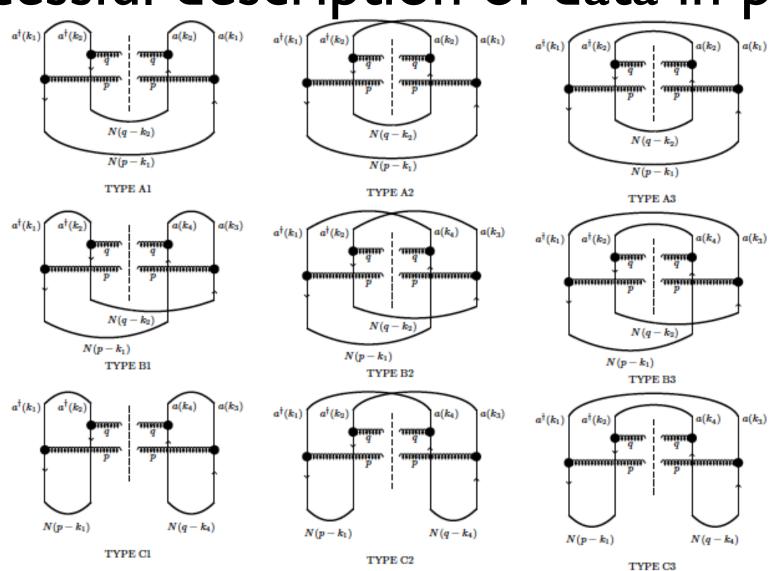
Thank you very much for your attention!!!

Contents:

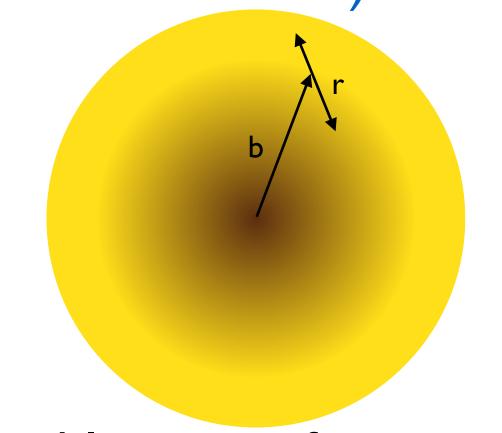
Backup

Correlations in the CGC:

- Several explanations in the CGC, that use/assume that:
 - → the final state carries the imprint of initial-state correlations,
 - \rightarrow the CGC wave function is rapidity invariant over $Y \propto 1/\alpha_{s}$,
 - the projectile is a dilute object (proton).
- Local anisotropy of target fields (Kovner-Lublinsky, Dumitru-McLerran-Skokov).
- "Glasma graphs" (Dusling-Gelis-Jalilian-Marian-Lappi-McLerran-Venugopalan, Kovchegov-Werpteny): successful description of data in pp, pPb.



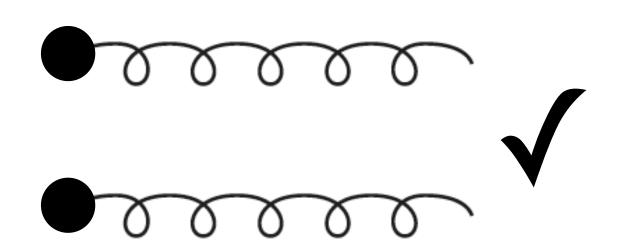
• Spatial variation of partonic density (Levin-Rezaeian-lancu).

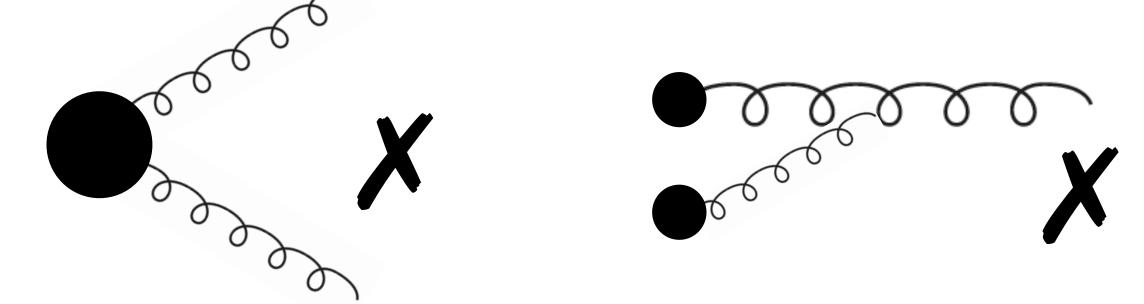


Also interference
 (Blok-Jakel-Strikman-Wiedemann).

Correlations in the CGC:

• CGC calculations for the central rapidity region resum terms in which each source emits one gluon, $\mathcal{O}(g\rho)$.





- \rightarrow Odd harmonics require additional terms $\mathcal{O}(g^2\rho)$ (Skokov et al., 1611.09870, 1612.07790, 1802.08166, see Ming Li's flash talk for effects on single inclusive particle production).
- Glasma graph calculations are valid for a dilute target (pp) and usually performed for two particles (up to 4 in Ozonder, 1409.6347, 1712.05571):
 - → Extension to dilute-dense (pA) numerically (Lappi et al., 1509.03499; Mace et al., 1705.00745, 1706.06260) or analytically (TA et al., 1804.02910, 1808.04896).
 - → Many gluons in pA (see Pedro Agostini's talk).
- ullet Correlations are subleading in N_c in the MV model: new ones including anisotropies (Dumitru-Skokov; see Adrian Dumitru's talk).