Finite Nc Corrections

in the NLO BK Equation

Lappi, Mäntysaari, A. R
[Phys. Rev. D 102 074027] (2020)

DIS 2021 (Online)

Poster session flash talk

Andrecia Ramnath
12-16 April 2021

$$
\begin{gathered}
\text { University of Jyväskylä } \\
\text { (Māris Grunskis Photography) }
\end{gathered}
$$

Wilson Line Correlators

- Colour Glass Condensate effective field theory: small/moderate virtuality Q^{2}, small x_{Bj}
- Wilson lines are basic building blocks

$$
U_{\boldsymbol{x}}^{\dagger}:=P \exp \left\{i g \int_{x^{+}} \alpha_{\boldsymbol{x}}^{a}\left(x^{+}\right) t^{a}\right\} \sim
$$

- Enter cross sections explicitly within correlators $\langle\ldots\rangle$
- Evolution in rapidity of correlators governed by Balitsky Hierarchy \Longleftrightarrow JIMWLK equation
- Infinite set of open equations $-\mathcal{O}(n)$ equation needs input from $\mathcal{O}(n+1)$
- First equation leads to BK equation for dipole

$$
S_{\boldsymbol{x}, \boldsymbol{y}}^{(2)}:=\operatorname{tr}\left\{U_{\boldsymbol{x}} U_{\boldsymbol{y}}^{\dagger}\right\} / N_{\mathrm{c}} \sim
$$

- Can use large- N_{C} limit where expectation values factorise $\langle\operatorname{tr}\} \operatorname{tr}\}\rangle \rightarrow\langle\operatorname{tr}\}\rangle\langle\operatorname{tr}\}\rangle$, but we go beyond this

Next-to-leading Order Balitsky-Kovchegov Equation

$$
\partial_{Y}\left\langle S_{\boldsymbol{x}, \boldsymbol{y}}^{(2)}\right\rangle=\frac{\alpha_{\mathrm{s}} N_{\mathrm{c}}}{2 \pi^{2}} \int_{\boldsymbol{z}} K_{1}^{\mathrm{BC}}\left\langle D_{1}\right\rangle+\frac{\alpha_{\mathrm{s}}^{2} N_{\mathrm{c}}^{2}}{16 \pi^{4}} \int_{\boldsymbol{z}, \boldsymbol{z}^{\prime}}\left(K_{2,1}\left\langle D_{2,1}\right\rangle+K_{2,2}\left\langle D_{2,2}\right\rangle\right)+\mathcal{O}\left(n_{f}\right)
$$

$$
\left\langle D_{1}\right\rangle=\left\langle S_{\boldsymbol{x}, \boldsymbol{z}}^{(2)} S_{\boldsymbol{z}, \boldsymbol{y}}^{(2)}\right\rangle-\left\langle S_{\boldsymbol{x}, \boldsymbol{y}}^{(2)}\right\rangle
$$

$$
\begin{gathered}
\left\langle D_{2,2}\right\rangle=\left\langle S_{\boldsymbol{x}, \boldsymbol{z}}^{(2)} S_{\boldsymbol{z}, \boldsymbol{z}^{\prime}}^{(2)} S_{\boldsymbol{z}^{\prime}, \boldsymbol{y}}^{(2)}\right\rangle-\left(z^{\prime} \rightarrow z\right) \\
\left\langle D_{2,1}\right\rangle=\left\langle S_{\boldsymbol{x}, \boldsymbol{z}}^{(2)} S_{\boldsymbol{z}, \boldsymbol{z}^{\prime}}^{(2)} S_{\boldsymbol{z}^{\prime}, \boldsymbol{y}}^{(2)}\right\rangle-\frac{1}{N_{\mathrm{c}}^{2}}\left\langle S_{\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{z}^{\prime}, \boldsymbol{y}, \boldsymbol{z}, \boldsymbol{z}^{\prime}}^{(6)}\right\rangle
\end{gathered}
$$

Gaussian Approximation

- Go beyond large- N_{C} limit. Truncate infinite hierarchy of evolution equations
- Parametrise correlators according to

$$
\partial_{Y}\langle\hat{\mathcal{O}}\rangle:=-\frac{1}{2} \int_{\boldsymbol{u v}} G_{\boldsymbol{u v}}(Y) L_{\boldsymbol{u}}^{a} L_{\boldsymbol{v}}^{a} \hat{\mathcal{O}}
$$

Iancu, Leonidov, McLerran [Nucl.Phys. A692 (2001) 583-645] Fujii [Nucl.Phys. A709 (2002) 236-250]
Dumitru, Dusling, Gelis, JalilianMarian, Lappi, Venugopalan [Phys.Lett. B697 (2011) 21-25] Dusling, Mace, Venugopalan [Phys.Rev. D97 (2018) no.1, 016014]

- Operate on \mathcal{O} with Lie derivatives $L_{\boldsymbol{u}}^{a} L_{\boldsymbol{v}}^{a} \sim$ add gluon emission/absorption vertices
- We have found a non-trivial basis such that transition matrix block diagonalises

Numerical Results $\mathbf{1 / 2}$

Numerical Results 2/2

Conclusion: Naive expectation a priori is finite- N_{C} corrections at NLO are $1 / N_{\mathrm{c}}{ }^{2} \sim \mathcal{O}(10 \%)$.

Numerics show much smaller correction $\sim \mathcal{O}(1 \%)$!

Thank you for watching!

