Finite Nc Corrections in the NLO BK Equation

Lappi, Mäntysaari, A. R. [Phys. Rev. D 102 074027] (2020)

DIS 2021 (Online)

Poster session flash talk

Andrecia Ramnath

12 - 16 April 2021

University of Jyväskylä (Māris Grunskis Photography)

Wilson Line Correlators

- Colour Glass Condensate effective field theory: small/moderate virtuality Q^2 , small x_{Bi}
- Wilson lines are basic building blocks

- Enter cross sections explicitly within correlators $\langle \cdots \rangle$
- Evolution in rapidity of correlators governed by Balitsky Hierarchy \iff JIMWLK equation
- Infinite set of open equations $\mathcal{O}(n)$ equation needs input from $\mathcal{O}(n+1)$
- First equation leads to BK equation for dipole

$$S_{\boldsymbol{x},\boldsymbol{y}}^{(2)} := \operatorname{tr}\left\{U_{\boldsymbol{x}}U_{\boldsymbol{y}}^{\dagger}\right\} / N_{\mathrm{c}} \sim \bigcirc$$

• Can use large- N_c limit where expectation values factorise $\langle \operatorname{tr} \{\} \operatorname{tr} \{\} \rangle \rightarrow \langle \operatorname{tr} \{\} \rangle \langle \operatorname{tr} \{\} \rangle$, but we go beyond this

Finite $N_{\rm C}$ Corrections in NLO BK

Next-to-leading Order Balitsky–Kovchegov Equation

$$\partial_Y \left\langle S_{\boldsymbol{x},\boldsymbol{y}}^{(2)} \right\rangle = \frac{\alpha_{\rm s} N_{\rm c}}{2\pi^2} \int_{\boldsymbol{z}} K_1^{\rm BC} \left\langle D_1 \right\rangle + \frac{\alpha_{\rm s}^2 N_{\rm c}}{16\pi^2} \left\langle D_1$$

$$\langle D_1 \rangle = \left\langle S_{\boldsymbol{x},\boldsymbol{z}}^{(2)} S_{\boldsymbol{z},\boldsymbol{y}}^{(2)} \right\rangle - \left\langle S_{\boldsymbol{x},\boldsymbol{y}}^{(2)} \right\rangle$$

Balitsky, Chirilli [Nucl. Phys. B822:45-87 (2009)]

 $\frac{2N_{c}^{2}}{6\pi^{4}}\int_{\boldsymbol{z},\boldsymbol{z}'}\left(K_{2,1}\langle \boldsymbol{D}_{2,1}\rangle + K_{2,2}\langle \boldsymbol{D}_{2,2}\rangle\right) + \mathcal{O}(n_{f})$

 $\langle D_{2,2} \rangle = \langle S_{\boldsymbol{x},\boldsymbol{z}}^{(2)} S_{\boldsymbol{z},\boldsymbol{z}'}^{(2)} S_{\boldsymbol{z}',\boldsymbol{u}}^{(2)} \rangle - (z' \to z)$

Finite $N_{\rm C}$ Corrections in NLO BK

Gaussian Approximation

- Go beyond large- N_c limit. Truncate infinite hierarchy of evolution equations
- Parametrise correlators according to

$$\partial_Y \left\langle \hat{\mathcal{O}} \right\rangle := -\frac{1}{2} \int_{\boldsymbol{u}\boldsymbol{v}} G_{\boldsymbol{u}\boldsymbol{v}}(Y) L^a_{\boldsymbol{u}} L^a_{\boldsymbol{v}} \hat{\mathcal{O}}$$

- Operate on \mathcal{O} with Lie derivatives $L^a_u L^a_v \sim add$ gluon emission/absorption vertices
- We have found a non-trivial basis such that transition matrix block diagonalises

$$\lim_{\substack{\boldsymbol{u}\to\boldsymbol{z}\\\boldsymbol{v}\to\boldsymbol{z}'}}\mathcal{M}(Y) = \begin{pmatrix} \mathcal{M}_1^{(3\times3)}(Y) \\ 0 \\ 0 \end{pmatrix}$$

Iancu, Leonidov, McLerran [Nucl.Phys. A692 (2001) 583-645] Fujii [Nucl.Phys. A709 (2002) 236-250] Dumitru, Dusling, Gelis, Jalilian-Marian, Lappi, Venugopalan [Phys.Lett. B697 (2011) 21-25] Dusling, Mace, Venugopalan [Phys.Rev. D97 (2018) no.1, 016014]

6-point correlators 4-point correlator 2-point correlator

Numerical Results 1/2

A. Ramnath

Finite $N_{\rm C}$ Corrections in NLO BK

Numerical Results 2/2

Conclusion: Naive expectation a priori is finite- N_c corrections at NLO are $1/N_c^2 \sim \mathcal{O}(10\%)$.

Numerics show much smaller correction $\sim \mathcal{O}(1\%)!$

Thank you for watching!

