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p (pa) + p (pb) → p (p1) + f1 (k) + p (p2)

Introduction

In this talk we will be concerned with central exclusive production (CEP) 
of f1(1285) meson in proton-proton collisions

At high energies this should be mainly                     
due to double pomeron (IP) exchange.

We treat our reaction in the tensor-pomeron approach
[Ewerz, Maniatis, Nachtmann, Ann. Phys. 342 (2014) 31]
● The (soft) pomeron and the charge conjugation C=+1 reggeons are described as 

effective rank 2 symmetric tensor exchanges
● The odderon and the C= -1 reggeons are described as effective vector exchanges

This approach has a good basis from nonperturbative QCD considerations.             
The IP exch. can be understood as a coherent sum of exchanges of spin 2+4+6+ ...
[Nachtmann, Ann. Phys. 209 (1991) 436]

A tensor character of the pomeron is also preferred in holographic QCD, see e.g.,
● Brower, Polchinski, Strassler, Tan, JHEP 12 (2007) 005
● Domokos, Harvey, Mann, PRD 80 (2009) 126015
● Iatrakis, Ramamurti, Shuryak, PRD 94 (2016) 045005

C=+1

C=+1
JPC = 1++

IG = 0+
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                      X:  η,  η’,  f0              Ann. Phys. 344 (2014) 301                          
                            ρ0                    PRD91 (2015) 074023                                 
                            π+ π-,  f0,  f2                       PRD93 (2016) 054015                                 
                            π+ π- π+ π- ,  ρ0ρ0 PRD94 (2016) 034017                                 
                            ρ0  with proton diss.    PRD95 (2017) 034036                                  
                            pp PRD97 (2018) 094027                                 
                            K+ K-                        PRD98 (2018) 014001                                 
                            φφ, K+ K- K+ K-,  PRD99 (2019) 094034                                 
                            f2(1270) → π+ π-             PRD101 (2020) 034008                                
                            φ → K+ K-, μ+ μ-              PRD101 (2020) 094012                               
                            f1(1285), f1(1420)       PRD102 (2020) 114003                                
                            K*0 K*0, f2(1950)         PRD103 (2021) 054039

CEP reactions,  p p → p p X,                                  P.L., Nachtmann, Szczurek:     

Photoproduction and low x DIS                                                                                                    
           Britzger, Ewerz, Glazov, Nachtmann, Schmitt, PRD100 (2019) 114007

Ewerz, P.L., Nachtmann, Szczurek, PLB 763 (2016) 382
Helicity in proton-proton elastic scattering and the spin structure of the pomeron

Studying the ratio r5 of single-helicity-flip to non-flip amplitudes we found that the STAR data 
[Adamczyk et al., PLB 719 (2013) 62] are consistent with the tensor pomeron model while 
they clearly exclude a scalar pomeron. Vector pomeron is in contradiction to the rules of QFT.

  Applications of tensor-pomeron model to diffractive processes

γ p → π+ π- p   Bolz, Ewerz, Maniatis, Nachtmann, Sauter, Schöning, JHEP 01 (2015) 151
There will be interference between γp → (ρ0→π+ π-)p (pomeron exchange) 
and γp → (f2(1270)→π+ π-)p (odderon exchange) processes 
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odderon exchange:

odderon exchange:

odderon exchange:
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The relevant kinematic quantities:
Matrix element

                                       is the transverse momentum carried around the loop

Absorption effects:

The Born-level amplitude:

with the effective pomeron propagator and the pomeron-proton vertex

In practice we work with the amplitudes in the high-energy approximation.
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The IP IP f1 coupling

4

“bare” vertex function 

vertex function supplemented by suitable form factor

coupling Lagrangian 

CEP reaction 

We use two types of form factor:

●

●
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We follow two strategies for constructing coupling Lagrangian               :

(1) Phenomenological approach. First we consider a fictitious process:                   
the fusion of two “real spin 2 pomerons” (or tensor glueballs) of mass                   

      giving an f1 meson of JPC = 1++

We work in the rest system of the f1 meson:       

The spin 2 of these “real pomerons” can be combined to a total spin S (0 ≤ S ≤ 4)      
and this must be combined with the orbital angular momentum ℓ to give JPC = 1++.      
There are exactly two possibilities: (ℓ,S) = (2,2) and (4,4).                                      

Corresponding couplings are:
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(2) Holographic QCD approach using the Sakai-Sugimoto model.                                  
There, the IP IP f1 coupling can be derived from the bulk Chern-Simons (CS) term 
requiring consistency of supergravity and the gravitational anomaly.

Sakai, Sugimoto, Prog. Theor. Phys. 113 (2005) 843; 114 (2005) 1083,            
Leutgeb, Rebhan, PRD 101 (2020) 114015

For our fictitious reaction with real pomerons there is strict equivalence

if the couplings satisfy:

where k2 is invariant mass squared of the resonance f1.

For the CEP reaction the pomerons have invariant mass squared t1, t2 < 0         
instead of m2 and,  in general, t1       t2. Replacing above 2m2 → t1+ t2                           
we expect for small |t1| and |t2| still approximate equivalence to hold.                            
This is confirmed by explicit numerical studies. 6
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(ℓ,S) = (2,2) term only

(ℓ,S) = (4,4) term only

Comparison with experimental results from WA102@CERN
D. Barberis et al. (WA102 Collaboration), PLB 440 (1998) 225                   

We get a reasonable description 
of WA102 data with

Absorption effects included,
<S2> = σabs/σσBorn ≈ 0.5-0.7
depending on the kinematics
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Comparison with data from: A. Kirk (WA102 Collaboration), Nucl. Phys. A 663 (2000) 608

● An almost ‘flat’ distribution at large values of |t1 – t2| can be observed                  
→ absorption effects play a significant role there,
    large damping of contribution in the region 

● It seems that the (ℓ,S) = (4,4) term best reproduces the shape of the WA102 data

The theoretical results have been normalized to the mean value of the number of events
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● (left panel)   Fit to WA102 data using the Chern-Simons coupling.                                          
       The relation between the (ℓ,S) and CS  forms of the couplings:                                  
       with                                                            and setting                                                      
 we get:                                                     .   
       This CS coupling corresponds practically to a pure (ℓ,S) = (4,4) coupling.

● (right panel)  The prediction for            obtained in the Sakai-Sugimoto model is 

Usually MKK (Kaluza-Klein mass scale) is fixed by matching the mass of the lowest 
vector meson to that of the physical ρ meson, leading to MKK = 949 MeV. 
However, this choice leads to a tensor glueball mass which is too low, MT  ≈ 1.5 GeV.   

 The standard pomeron trajectory corresponds to MT  ≈ 1.9 GeV, 
whereas lattice gauge theory indicates MT  ≈ 2.4 GeV.
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Predictions for the LHC experiments

● The contribution with                                 gives a significantly different shape
● The absorption effects are included, <S2> ≈ 0.35. They decrease the distributions 

mostly at higher values of φpp and at smaller values of pt,M (and also |t|).
This could be tested in experiments at the LHC (ATLAS-ALFA, CMS-TOTEM)       
when both protons are measured.        

● The GenEx MC event generator could be used in this context:
[Kycia, Chwastowski, Staszewski, Turnau, Commun.Comput.Phys. 24 (2018) 860]
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[CEP of f2(1270): PRD93 (2016) 054015, PRD101 (2020) 034008]

[R. Sikora, CERN-THESIS-2020-235]

● One of the most prominent decay modes of the f1(1285) is  
● There f1(1285) and f2(1270) are close in mass.

We obtain for                      and                 : 

As the f1(1285) has a much narrower width than the f2(1270) it would be seen         
in the M(4π) distribution as a sharp peak on top of f2(1270) and of the continuum

● f1(1285) is seen in the preliminary ATLAS-ALFA results for pp → pp                            
at                      and for

● Theoretical studies of the reaction pp → pp 4π including both the resonances and 
continuum contributions in the tensor-pomeron approach →  in progress

11[PRD94 (2016) 034017;  PRD95 (2017) 094020]
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Conclusions

● We have discussed in detail CEP of f1(1285) meson in pp collisions   
in the tensor-pomeron approach

● Different forms of the IP IP f1 coupling are possible

● We obtain a good description of the WA102 data for the pp → pp f1(1285) reaction 
assuming that the reaction is dominated by IP exchange already at      

● We have given predictions for experiments at the LHC

✔  total cross sections of σ = 6 – 41 μb (depending on the assumed cuts)             
 and differential distributions

✔  in all cases we have included - very important - absorptive corrections 

● Detailed tests of the Sakai-Sugimoto model are possible

● Experimental studies of single meson CEP reactions will give many IP IP M 
coupling parameters. Their theoretical calculation is a challenging problem          
of nonperturbative QCD

Thank you for your attention
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