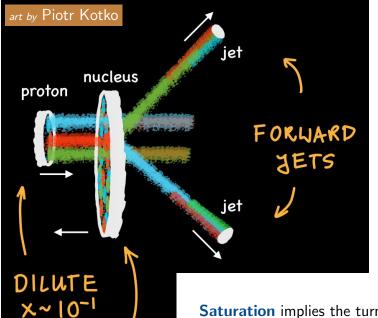
Forward trijet production and saturation

Andreas van Hameren

presented at DIS 2021, Stony Brook, NY 13-04-2021

QCD evolution, dilute vs. dense, forward jets



DENSE

A dilute system carries a few high-x partons contributing to the hard scattering.

A dense system carries many low-x partons.

At high density, gluons are imagined to undergo recombination, and to saturate.

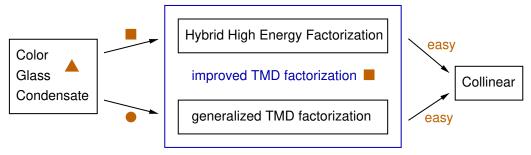
This is modeled with non-linear evolution equations, involving explicit non-vanishing k_{T} .

Saturation implies the turnover of the gluon density, stopping it from growing indefinitely for small x.

Forward jets have large rapidities, and trigger events in which partons from the nucleus have small x.

ITMD Factorization

For forward dijet production in dilute-dense hadronic collisions



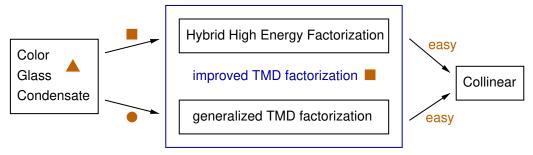
- 🛕 McLerran, Venugopalan 1994, lancu, Venugopalan 2003
- Kotko, Kutak, Marquet, Petreska, Sapeta, AvH 2015, Altinoluk, Boussarie, Kotko 2019
- Dominguez, Marquet, Xiao, Yuan 2011

Model interpolating between hybrid High Energy Factorization and Generalized TMD factorization and valid for kinematical regions with hard scale $\gtrsim k_T \gtrsim$ saturation scale. Partonic cross section $d\hat{\sigma}_{gb}^{(i)}$ depends on color-structure i, and is calculated with space-like initial-state gluons.

$$d\sigma_{AB\to X} = \int dk_T^2 \int dx_A \sum_i \int dx_B \sum_y \varphi_{gy}^{(i)}(x_A, k_T, \mu) f_y(x_B, \mu) d\hat{\sigma}_{gy\to X}^{(i)}(x_A, x_B, k_T, \mu)$$

ITMD Factorization

For forward dijet production in dilute-dense hadronic collisions



- 🛕 McLerran, Venugopalan 1994, lancu, Venugopalan 2003
- Kotko, Kutak, Marquet, Petreska, Sapeta, AvH 2015, Altinoluk, Boussarie, Kotko 2019
- Dominguez, Marquet, Xiao, Yuan 2011

Model interpolating between hybrid High Energy Factorization and Generalized TMD factorization and valid for kinematical regions with hard scale $\gtrsim k_T \gtrsim$ saturation scale.

ITMD formalism is fully obtained from the CGC formalism, by neglecting certain twist corrections. Antinoluk, Boussarie, Kotko 2019

$$d\sigma_{AB\to X} = \int dk_T^2 \int dx_A \sum_i \int dx_B \sum_y \varphi_{gy}^{(i)}(x_A, k_T, \mu) f_y(x_B, \mu) d\hat{\sigma}_{gy\to X}^{(i)}(x_A, x_B, k_T, \mu)$$

We want to establish a similar factorization for more than 2 jets.

However, the ITMD formalism does not account for linearly polarized gluons in unpolarized target.

Such a contribution is absent for massless 2-particle production in CGC theory, but does appear in heavy quark production (Marquet, Roiesnes, Taels 2018, Altinoluk, Marquet, Taels 2021), in the correlation limit for 3-parton final-states (Altinoluk, Boussarie, Marquet, Taels 2020), and can be concluded to be present from 3-jet formulae in CGC (lancu, Mulian 2019).

This contribution cannot staightforwardly be formulated in terms of gauge-invariant offshell hard scattering amplitudes

$$\sum_{i,j} \mathcal{M}_i^* \left(\frac{k_T^{(i)} k_T^{(j)}}{2|\vec{k}_T|^2} (\mathfrak{F} + \mathfrak{H}) + \frac{q_T^{(i)} q_T^{(j)}}{2|\vec{q}_T|^2} (\mathfrak{F} - \mathfrak{H}) \right) \mathcal{M}_j \quad , \quad \vec{q}_T \cdot \vec{k}_T = 0$$

 $\textstyle \sum_i \mathcal{M}_i k_T^{(i)} \text{ is gauge invariant while } \textstyle \sum_i \mathcal{M}_i q_T^{(i)} \text{ is not. For dijets, it happens that } \mathcal{F} = \mathcal{H}.$

In the following only the manifestly gauge-invariant contribution is included, hence the designation ITMD^* .

We want to establish a similar factorization for more than 2 jets.

Howe

Using the axial gauge with gluon propagator

$$\frac{-i}{K^2} \left(g^{\mu\nu} - \frac{P^\mu K^\nu + K^\mu P^\nu}{P \cdot K} \right) \quad P^\mu \text{ hadron momentum}$$

the amplitude \mathcal{M} for a process involving an off-shell gluon with momentum $\chi P^{\mu} + k_{T}^{\mu}$ can be written as

$$\mathcal{M} = k_\mathsf{T}^\mu \mathcal{M}_\mu = -\sum_{i=1}^2 k_\mathsf{T}^{(i)} \mathcal{M}_i$$

where \mathcal{M}_{μ} is obtained from the usual Feynman graphs indeed with one gluon simply left "off-shell". The role of "polarization vector" is played by k_{T}^{μ} .

designation ITMD*.

ian 2019).

¬ ıpolarized

but does

uet. Taels

uet, Taels

ariant off-

 $\mathcal{F} = \mathcal{H}$

nence the

target

Such

appea 2021)

2020)

This (

shell I

 $\sum_{i} \mathcal{M}$

In th€

We want to establish a similar factorization for more than 2 jets.

However, the ITMD formalism does not account for linearly polarized gluons in unpolarized target.

Such a contribution is absent for massless 2-particle production in CGC theory, but does appear in heavy quark production (Marquet, Roiesnes, Taels 2018, Altinoluk, Marquet, Taels 2021), in the correlation limit for 3-parton final-states (Altinoluk, Boussarie, Marquet, Taels 2020), and can be concluded to be present from 3-jet formulae in CGC (lancu, Mulian 2019).

This contribution cannot staightforwardly be formulated in terms of gauge-invariant offshell hard scattering amplitudes

$$\sum_{i,j} \mathcal{M}_{i}^{*} \left(\frac{k_{T}^{(i)} k_{T}^{(j)}}{2|\vec{k}_{T}|^{2}} (\mathcal{F} + \mathcal{H}) + \frac{q_{T}^{(i)} q_{T}^{(j)}}{2|\vec{q}_{T}|^{2}} (\mathcal{F} - \mathcal{H}) \right) \mathcal{M}_{j} \quad , \quad \vec{q}_{T} \cdot \vec{k}_{T} = 0$$

 $\sum_i \mathcal{M}_i k_T^{(i)}$ is gauge invariant while $\sum_i \mathcal{M}_i q_T^{(i)}$ is not. For dijets, it happens that $\mathcal{F} = \mathcal{H}$.

In the following only the manifestly gauge-invariant contribution is included, hence the designation ITMD^* .

Schematic hybrid (non-ITMD) factorization fomula

$$d\sigma = \sum_{y=g,u,d,...} \int dx_1 d^2k_T \, \int dx_2 \, \, d\Phi_{g^*y\to n} \, \, \frac{1}{\text{flux}_{gy}} \, \, \mathfrak{F}_g(x_1,k_T,\mu) \, \, f_y(x_2,\mu) \, \, \sum_{\text{color}} \left| \mathcal{M}_{g^*y\to n}^{(\text{color})} \right|^2$$

$$\mathcal{F}_{g} \sum_{\text{color}} \left| \mathcal{M}^{(\text{color})} \right|^{2} = \mathcal{F}_{g} \sum_{\substack{i_{1}, i_{2}, \dots, i_{n+2} \ j_{1}, j_{2}, \dots, j_{n+2}}} \sum_{\left(\tilde{\mathcal{M}}^{i_{1}i_{2}\dots i_{n+2}}_{j_{1}j_{2}\dots j_{n+2}}\right)^{*} \left(\tilde{\mathcal{M}}^{i_{1}i_{2}\dots i_{n+2}}_{j_{1}j_{2}\dots j_{n+2}}\right)^{*}$$

Schematic hybrid (non-ITMD) factorization fomula

$$d\sigma = \sum_{y=g,u,d,...} \int dx_1 d^2k_T \, \int dx_2 \, d\Phi_{g^*y\to n} \, \frac{1}{\text{flux}_{gy}} \, \mathfrak{F}_g(x_1,k_T,\mu) \, f_y(x_2,\mu) \, \sum_{\text{color}} \left| \mathfrak{M}_{g^*y\to n}^{(\text{color})} \right|^2$$

ITMD* formula: replace

$$\mathcal{F}_{g} \sum_{\text{color}} \left| \mathcal{M}^{(\text{color})} \right|^{2} = \mathcal{F}_{g} \sum_{\substack{i_1,i_2,\dots i_{n+2} \\ j_1j_2,\dots j_{n+2}}} \sum_{\substack{i_1,i_2,\dots i_{n+2} \\ j_1j_2,\dots j_{n+2}}} \left(\tilde{\mathcal{M}}^{i_1i_2,\dots i_{n+2}}_{j_1j_2,\dots j_{n+2}} \right)^{*} \left(\tilde{\mathcal{M}}^{i_1i_2,\dots i_{n+2}}_{j_1j_2,\dots j_{n+2}} \right)$$

with (Bomhof, Mulders, Pijlman 2006; Bury, Kotko, Kutak 2018)

$$\begin{split} (N_c^2 - 1) \sum_{i_1, \dots, i_n} \sum_{j_1, \dots, j_{n+2}} \sum_{\bar{\imath}_1, \dots, \bar{\imath}_{n+2}} \sum_{\bar{\jmath}_1, \dots, \bar{\jmath}_{n+2}} \left(\tilde{\mathcal{M}}_{j_1 j_2 \cdots j_{n+2}}^{i_1 i_2 \cdots i_{n+2}} \right)^* \left(\tilde{\mathcal{M}}_{\bar{\jmath}_1 \bar{\jmath}_2 \cdots \bar{\jmath}_{n+2}}^{\bar{\imath}_1 \bar{\imath}_2 \cdots \bar{\imath}_{n+2}} \right) \\ \times 2 \int \frac{d^4 \xi}{(2\pi)^3 P^+} \delta(\xi_+) \, e^{ik \cdot \xi} \left\langle P \bigg| \left(\hat{F}^+(\xi) \right)_{i_1}^{j_1} \left(\hat{F}^+(0) \right)_{\bar{\imath}_1}^{\bar{\jmath}_1} \left(\mathcal{U}^{[\lambda_2]} \right)_{i_2 \bar{\imath}_2} \left(\mathcal{U}^{[\lambda_2] \dagger} \right)^{j_2 \bar{\jmath}_2} \cdots \\ \cdots \left(\mathcal{U}^{[\lambda_{n+2}]} \right)_{i_{n+2} \bar{\imath}_{n+2}} \left(\mathcal{U}^{[\lambda_{n+2}] \dagger} \right)^{j_{n+2} \bar{\jmath}_{n+2}} \bigg| P \right\rangle \end{split}$$

where P is the light-like momentum of the hadron (with $P^-=0$), and $k^\mu=\chi P^\mu+k_T^\mu$, where \hat{F} is the field strenght,

and \mathcal{U}^{\pm} is a Wilson line from 0 to ξ via a "staple-like detour" to $\pm \infty$ depending on the type and state (initial/final) of parton.

Schematic hybrid (non-ITMD) factorization fomula

$$d\sigma = \sum_{y=g,u,d,\dots} \int dx_1 d^2k_T \int dx_2 \ d\Phi_{g^*y\to n} \ \frac{1}{\mathsf{flux}_{gy}} \ \mathcal{F}_g(x_1,k_T,\mu) \ f_y(x_2,\mu) \ \sum_{\mathsf{color}} \left| \mathcal{M}_{g^*y\to n}^{(\mathsf{color})} \right|^2$$

ITMD* formula: replace

$$\mathcal{F}_{g} \sum_{\mathsf{color}} \left| \mathcal{M}^{(\mathsf{color})} \right|^{2} = \mathcal{F}_{g} \sum_{\substack{i_{1},i_{2},...,i_{n+2}\\j_{1}j_{2},...,j_{n+2}\\j_{1}j_{2},...,j_{n+2}}} \sum_{\left(\tilde{\mathcal{M}}^{i_{1}i_{2},...i_{n+2}}_{j_{1}j_{2},...j_{n+2}} \right)^{*} \left(\tilde{\mathcal{M}}^{i_{1}i_{2},...i_{n+2}}_{j_{1}j_{2},...j_{n+2}} \right)$$

with (Bomhof, Mulders, Pijlman 2006; Bury, Kotko, Kutak 2018)

$$\begin{split} &(N_c^2-1) \sum_{i_1,\dots,i_n} \sum_{j_1,\dots,j_{n+2}} \sum_{\bar{\imath}_1,\dots,\bar{\imath}_{n+2}} \sum_{\bar{\jmath}_1,\dots,\bar{\jmath}_{n+2}} \left(\tilde{\mathcal{M}}_{j_1 j_2 \cdots j_{n+2}}^{i_1 i_2 \cdots i_{n+2}} \right)^* \left(\tilde{\mathcal{M}}_{\bar{\jmath}_1 \bar{\jmath}_2 \cdots \bar{\jmath}_{n+2}}^{i_1 \bar{\imath}_2 \cdots \bar{\imath}_{n+2}} \right) \\ &\times 2 \int \frac{d^4 \xi}{(2\pi)^3 P^+} \delta(\xi_+) \, e^{ik \cdot \xi} \, \left\langle P \bigg| \left(\hat{F}^+(\xi) \right)_{i_1}^{j_1} \left(\hat{F}^+(0) \right)_{\bar{\imath}_1}^{\bar{\jmath}_1} \left(\mathcal{U}^{[\lambda_2]} \right)_{i_2 \bar{\imath}_2} \left(\mathcal{U}^{[\lambda_2] \dagger} \right)^{j_2 \bar{\jmath}_2} \cdots \\ & \cdots \left(\mathcal{U}^{[\lambda_{n+2}]} \right)_{i_{n+2} \bar{\imath}_{n+2}} \left(\mathcal{U}^{[\lambda_{n+2}] \dagger} \right)^{j_{n+2} \bar{\jmath}_{n+2}} \bigg| P \right\rangle \end{split}$$

where \hat{F} is and \mathcal{U}^{\pm} is a type and st

where P is

$$\tilde{\mathcal{M}}_{j_1j_2...j_{n+2}}^{i_1i_2...i_{n+2}} = \sum_{\sigma \in S_{n+2}} \delta_{j_{\sigma(1)}}^{i_1} \delta_{j_{\sigma(2)}}^{i_2} \cdots \delta_{j_{\sigma(n+2)}}^{i_{n+2}} \mathcal{A}_{\sigma}$$
Kanaki, Papadopoulos 2000; Maltoni, Paul, Stelzer, Willenbrock 2003

10

 $P^{\mu} + k_{\tau}^{\mu}$

ling on the

Schematic hybrid (non-ITMD) factorization fomula

$$d\sigma = \sum_{y=g,u,d,\dots} \int dx_1 d^2k_T \int dx_2 \ d\Phi_{g^*y\to n} \ \frac{1}{\mathsf{flux}_{gy}} \ \mathfrak{F}_g(x_1,k_T,\mu) \ f_y(x_2,\mu) \ \sum_{\mathsf{color}} \left| \mathfrak{M}_{g^*y\to n}^{(\mathsf{color})} \right|^2$$

ITMD* formula: replace

$$\mathcal{F}_g \sum_{\text{color}} \left| \mathcal{M}^{(\text{color})} \right|^2 = \mathcal{F}_g \sum_{\sigma \in S_{n+2}} \sum_{\tau \in S_{n+2}} \mathcal{A}_{\sigma}^* \, \mathcal{C}_{\sigma \tau} \, \mathcal{A}_{\tau} \qquad , \quad \mathcal{C}_{\sigma \tau} = N_c^{\lambda(\sigma, \tau)}$$

with "TMD-valued color matrix"

$$(N_c^2-1)\sum_{\sigma\in S_{n+2}}\sum_{\tau\in S_{n+2}}\mathcal{A}_\sigma^*\,\tilde{\mathfrak{C}}_{\sigma\tau}(x,|k_T|)\,\mathcal{A}_\tau\quad,\quad \tilde{\mathfrak{C}}_{\sigma\tau}(x,|k_T|)=N_c^{\bar{\lambda}(\sigma,\tau)}\tilde{\mathfrak{F}}_{\sigma\tau}(x,|k_T|)$$

where each function $\tilde{\mathcal{F}}_{\sigma\tau}$ is one of 10 functions

$$\mathcal{F}_{qg}^{(1)} \quad , \quad \mathcal{F}_{qg}^{(2)} \quad , \quad \mathcal{F}_{qg}^{(3)}$$

$$\mathcal{F}_{gg}^{(1)} \quad , \quad \mathcal{F}_{gg}^{(2)} \quad , \quad \mathcal{F}_{gg}^{(3)} \quad , \quad \mathcal{F}_{gg}^{(4)} \quad , \quad \mathcal{F}_{gg}^{(5)} \quad , \quad \mathcal{F}_{gg}^{(6)} \quad , \quad \mathcal{F}_{gg}^{(7)}$$

$$\begin{split} \mathcal{F}_{qg}^{(1)}\left(x,k_{T}\right) &= \left\langle \operatorname{Tr}\left[\hat{F}^{i+}\left(\xi\right)\mathcal{U}^{[-]\dagger}\hat{F}^{i+}\left(0\right)\mathcal{U}^{[+]}\right]\right\rangle \quad, \quad \left\langle \cdots \right\rangle = 2\int \frac{d^{4}\xi\,\delta(\xi_{+})}{(2\pi)^{3}P^{+}}\,e^{ik\cdot\xi} \left\langle P\right|\cdots\left|P\right\rangle \\ \mathcal{F}_{qg}^{(2)}\left(x,k_{T}\right) &= \left\langle \frac{\operatorname{Tr}\left[\mathcal{U}^{[\Box]}\right]}{N_{c}}\operatorname{Tr}\left[\hat{F}^{i+}\left(\xi\right)\mathcal{U}^{[+]\dagger}\hat{F}^{i+}\left(0\right)\mathcal{U}^{[+]}\right]\right\rangle \\ \mathcal{F}_{qg}^{(3)}\left(x,k_{T}\right) &= \left\langle \operatorname{Tr}\left[\hat{F}^{i+}\left(\xi\right)\mathcal{U}^{[+]\dagger}\hat{F}^{i+}\left(0\right)\mathcal{U}^{[\Box]}\mathcal{U}^{[+]}\right]\right\rangle \\ \mathcal{F}_{gg}^{(1)}\left(x,k_{T}\right) &= \left\langle \frac{\operatorname{Tr}\left[\mathcal{U}^{[\Box]\dagger}\right]}{N_{c}}\operatorname{Tr}\left[\hat{F}^{i+}\left(\xi\right)\mathcal{U}^{[-]\dagger}\hat{F}^{i+}\left(0\right)\mathcal{U}^{[+]}\right]\right\rangle \\ \mathcal{F}_{gg}^{(2)}\left(x,k_{T}\right) &= \left\langle \operatorname{Tr}\left[\hat{F}^{i+}\left(\xi\right)\mathcal{U}^{[-]\dagger}\hat{F}^{i+}\left(0\right)\mathcal{U}^{[-]}\right]\right\rangle \\ \mathcal{F}_{gg}^{(3)}\left(x,k_{T}\right) &= \left\langle \operatorname{Tr}\left[\hat{F}^{i+}\left(\xi\right)\mathcal{U}^{[-]\dagger}\hat{F}^{i+}\left(0\right)\mathcal{U}^{[-]}\right]\right\rangle \\ \mathcal{F}_{gg}^{(4)}\left(x,k_{T}\right) &= \left\langle \operatorname{Tr}\left[\hat{F}^{i+}\left(\xi\right)\mathcal{U}^{[-]\dagger}\hat{F}^{i+}\left(0\right)\mathcal{U}^{[-]}\right]\right\rangle \\ \mathcal{F}_{gg}^{(5)}\left(x,k_{T}\right) &= \left\langle \operatorname{Tr}\left[\hat{F}^{i+}\left(\xi\right)\mathcal{U}^{[\Box]\dagger}\mathcal{T}^{i+}\hat{F}^{i+}\left(0\right)\mathcal{U}^{[-]\dagger}\right]\right\rangle \\ \mathcal{F}_{gg}^{(6)}\left(x,k_{T}\right) &= \left\langle \operatorname{Tr}\left[\mathcal{U}^{[\Box]}\right]\operatorname{Tr}\left[\mathcal{U}^{[\Box]\dagger}\right]\operatorname{Tr}\left[\hat{F}^{i+}\left(\xi\right)\mathcal{U}^{[-]\dagger}\hat{F}^{i+}\left(0\right)\mathcal{U}^{[+]}\right]\right\rangle \\ \mathcal{F}_{gg}^{(7)}\left(x,k_{T}\right) &= \left\langle \operatorname{Tr}\left[\mathcal{U}^{[\Box]}\right]\operatorname{Tr}\left[\hat{F}^{i+}\left(\xi\right)\mathcal{U}^{[\Box]\dagger}\mathcal{U}^{[+]\dagger}\hat{F}^{i+}\left(0\right)\mathcal{U}^{[+]}\right]\right\rangle \\ \mathcal{F}_{gg}^{(7)}\left(x,k_{T}\right) &= \left\langle \operatorname{Tr}\left[\mathcal{U}^{[\Box]}\right]\operatorname{Tr}\left[\hat{F}^{i+}\left(\xi\right)\mathcal{U}^{[\Box]\dagger}\mathcal{U}^{[-]\dagger}\hat{F}^{i+}\left(\xi\right)\mathcal{U}^{[-]\dagger}\hat{F}^{i+}\left(\xi\right)\mathcal{U}^{[-]\dagger}\hat{F}^{i+}\left(\xi\right)\mathcal{U}^{[-]\dagger}\hat{F}^{i+}\left(\xi\right)\mathcal{U}^{[-]\dagger}\hat{F}^{i+}\left(\xi\right)\mathcal{U}^{[-]\dagger}\hat{F}^{i+}\left(\xi\right)\mathcal{U}^{[-]\dagger}\hat{F}^{i+}\left(\xi\right)\mathcal{U}^{[-]}\hat{F}^{i+}\left(\xi\right)\mathcal{U}^{[-]}\hat{F}^{i+}\left(\xi\right)\mathcal{U}^{[-]}\hat{F}^{i+}\left(\xi\right)\mathcal{U}^{[-]}\hat{F}^{i+}\left(\xi\right)\mathcal$$

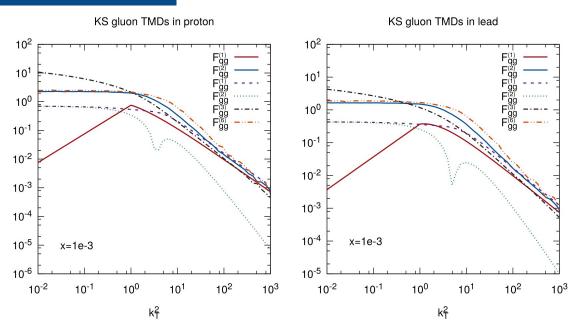
ITMD gluons

Start with dipole distribution $\mathcal{F}_{qg}^{(1)}\left(x,k_{T}\right)=\left\langle \mathrm{Tr}\left[\hat{F}^{i+}\left(\xi\right)\mathcal{U}^{\left[-\right]\dagger}\hat{F}^{i+}\left(0\right)\mathcal{U}^{\left[+\right]}\right]\right\rangle$ evolved via the BK equation formulated in momentum space supplemented with subleading corrections and fitted to F_{2} data (Kutak, Sapeta 2012)

All other distribution appearing in dijet production, $\mathcal{F}_{qg}^{(2)}, \mathcal{F}_{gg}^{(1)}, \mathcal{F}_{gg}^{(6)}, \mathcal{F}_{gg}^{(6)}$, in the mean-field approximation (AvH, Marquet, Kotko, Kutak, Sapeta, Petreska 2016).

This is, at leading order in $1/N_{\rm c}$. In this approximation, the same distributions suffice for trijets.

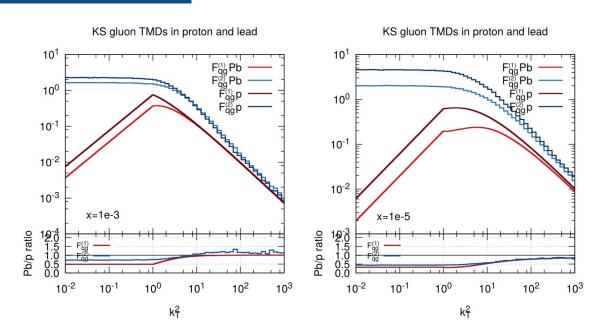
ITMD gluons



Dependence of $\mathcal{F}_{qg}^{(1)}$ on k_T below 1GeV approximated by power-like fall-off. For higher values of $|k_T|$ it is a solution to the BK equation.

TMDs decrease as $1/|k_T|$ for increasing $|k_T|$, except $\mathcal{F}_{gg}^{(2)}$, which decreases faster (even becomes negative, absolute value shown here).

ITMD gluons



Ratio Pb/p is smaller than 1 for small x, but can become larger than 1 for moderate x and large $|k_T|$.

Set up

We consider p-p and p-Pb collisions at 5.02TeV producing at least 3 jets with forward rapidities $3.2 < |y_1^*, y_2^*, y_3^*| < 4.9$ in the CM frame.

Jet definition: $\Delta R > 0.5$, $p_T > 20 \text{GeV}$

renormalization/factorization scale: $(p_{T1} + p_{T2} + p_{T3})/3$

Collinear PDFs: CTEQ10NLO from LHAPDF6

Include all partonic processes with 5 light flavors with an (off-shell) gluon and a quark or gluon in the initial state.

observables:

 $\Delta \phi_{12}$ (angle between 2 hardest jets),

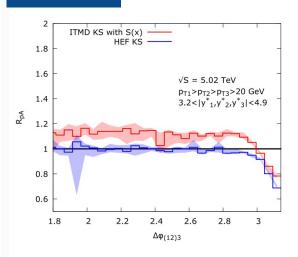
 $\Delta \phi_{13}$ (angle between hardest jet and 3rd hardest jet),

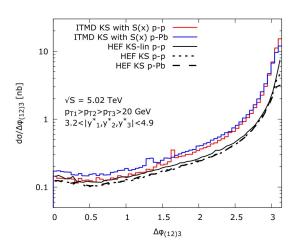
 $\Delta\varphi_{(12)3}$ (angle between the sum of the two hardest and the 3^{rd} hardest jet. Is sensitive to momentum inbalance)

Nuclear modification ratio $R_{pA}=\frac{1}{A}\frac{d\sigma^{pPb}/d\Theta}{d\sigma^{pp}/d\Theta}$ where A is the number of nucleons

Calculations performed independently with LxJet (Kotko) and KaTie (AvH 2018)

Results





S(x) refers to the x-dependent treatment of the nuclear target area, guaranteeing unitarity.

Saturation effect for $\Delta\varphi_{(12)3}\approx\pi$, enhancement of pPb result for $\Delta\varphi_{(12)3}<\pi$ due to broadening of the TMD distributions.

ITMD* normalization significantly larger than HEF, due to different shape and normalization of the extra TMDs present in ITMD* but not in HEF.

Summary

- small-x Improved TMD factorization allows to consistently include saturation effects in calculations for forward dijets
- we extended ITMD factorization to ITMD* for more than 2 jets, and performed explicit calculations for 3 jets
- we observe significant saturation effects in the nuclear modification factor for momentum inbalance-sensitive observable
- ullet we observe significant differences between results from ITMD* and $k_T/\mbox{high-energy}$ factorization, implying strong discriminating potential

Thank you for your attention.