Probing gluon density fluctuations at large momentum transfer $\left| t \right|$

Arjun Kumar, Tobias Toll

<□▶ <□▶ <□▶ < ≧▶ < ≧▶ = うへで 1/14

 $\mathcal{A}_{T,L}^{\gamma^* p \to Vp}(x, Q^2, \Delta) \simeq \int d^2 \mathbf{r} \int d^2 \mathbf{b} \int dz \times (\Psi^* \Psi_V)_{T,L}(Q^2, \mathbf{r}, z) \times e^{-i\mathbf{b}.\Delta} \times \mathcal{N}(\mathbf{b}, \mathbf{r}, x)$

- in pQCD (2 gluon exchange) : $\frac{d\sigma^{\gamma^*A \to VA}}{dt} \sim [xg(x, Q^2)]^2$
- N(b, r, x) is usually model dependent and there are basically two approaches
 eikonalized dipole amplitude with DGLAP evolution
 - BK equation evolved dipole amplitude
- Impact parameter is fourier conjugate to the net momentum transfer
- Exclusive events probes the average profile of target while the incoherent events (target breaks) are sensitive to the fluctuations in nucleon wavefunction

• the bSat dipole model : Golec-Biernat, Wusthoff 1999, Kowalski, Teaney 2000

$$N(\mathbf{b},\mathbf{r},x) = 2\left[1 - \exp\left(-\frac{\pi^2}{2N_C}\mathbf{r}^2\alpha_s(\mu^2)xg(x,\mu^2)T_{\rho}(\mathbf{b})\right)\right]$$

• the bNonSat dipole model :

$$N(\mathbf{b},\mathbf{r},\mathbf{x}) = \frac{\pi^2}{N_C} \mathbf{r}^2 \alpha_s(\mu^2) \mathbf{x} \mathbf{g}(\mathbf{x},\mu^2) T_p(\mathbf{b}); \quad T_p(\mathbf{b}) = \frac{1}{2\pi B_G} exp \left[-\frac{\mathbf{b}^2}{2B_G} \right]$$

where $xg(x, \mu_0^2) = A_g x^{-\lambda_g} (1-x)^{5.6}$ and $\mu^2 = \mu_0^2 + \frac{C}{r^2}$

• Coherent cross-section : $\gamma^* + {\bf p} \rightarrow {\bf J}/\psi + {\bf p}$

probes the average **b** dependence $\langle N(\mathbf{b}, \mathbf{r}, x) \rangle_{\Omega}$ of dipole amplitude which provides the information about target geometry

$$\frac{d\sigma_{T,L}^{\gamma^* p \to V p}}{dt} = \frac{1}{16\pi} \Big| < \mathcal{A}_{T,L}^{\gamma^* p \to V p} >_{\Omega} \Big|^2$$

• Incoherent cross-section : γ^* + p \rightarrow J/ ψ + X

the target dissociates (f \neq i) $_{Good, \, Walker \, 1960, \, Miettinen, \, Pumplin \, 1978}$

$$\begin{split} \sigma_{\text{incoherent}} &\sim \sum_{f \neq i} | < f | \mathcal{A} | i > |^{2} \\ &= \sum_{f} < i | \mathcal{A}^{\dagger} | f > < f | \mathcal{A} | i > - < i | \mathcal{A} | i >^{\dagger} < i | \mathcal{A} | i > \\ &= \left\langle \left| \mathcal{A} \right|^{2} \right\rangle_{\Omega} - \left| \left\langle \mathcal{A} \right\rangle_{\Omega} \right|^{2} \\ & \boxed{\frac{d\sigma_{\text{total}}}{dt} = \frac{1}{16\pi} \left\langle \left| \mathcal{A} \right|^{2} \right\rangle_{\Omega}} \qquad \boxed{\frac{d\sigma_{\text{coherent}}}{dt} = \frac{1}{16\pi} \left| \left\langle \mathcal{A} \right\rangle_{\Omega} \right|^{2}} \end{split}$$

• Incoherent cross-section is the variance of amplitude which controls the amount of event-by-event fluctuations in target configurations

Large event-by-event fluctuations are needed to explain the HERA Data

Mantysaari, Schenke 2016

In bSat model : $\langle N \rangle_{\Omega} \sim \langle T_P(b) \rangle_{\Omega}$; coherent & incoherent data underestimated

• A new profile function : $T_{\rho}(\mathbf{b}) = \frac{1}{2\pi B_{\rho}} \frac{1}{\left(exp\left[-\frac{\mathbf{b}^{2}}{2B_{\rho}}\right] - S_{g}\right)}$ • Introduce fluctuations i.e $T_{\rho}(\mathbf{b}) \rightarrow \sum_{i=1}^{N_{q}} T_{q}(\mathbf{b} \cdot \mathbf{b}_{i})$ • Explains the differential data in 0 < |t| < 2.5 region only

2 slopes → photon probes 2 different length scales

• We extend the hotspot model to consist of further smaller hotspots, where the original three hotspots, each have a substructure of even smaller spatial regions of gluon density fluctuations

• The new profile function :

 $T_{p}(\mathbf{b}) \rightarrow \frac{1}{N_{q}} \sum_{i=1}^{N_{q}} T_{q}(\mathbf{b} \cdot \mathbf{b}_{i})$ three large hotspots based on constituent quark picture $T_{q}(\mathbf{b}) \rightarrow \frac{1}{N_{tr}} \sum_{i=1}^{N_{hs}} T_{hs}(\mathbf{b} \cdot \mathbf{b}_{i}); \qquad T_{hs}(\mathbf{b}) = \frac{1}{2\pi B_{tr}} \exp\left[-\frac{\mathbf{b}^{2}}{2B_{tr}}\right]$

where $\mathbf{b}_i \& \mathbf{b}_j$ determine the transverse positions of large & small hotspots and fluctuates event-by-event, B_{hs} is the width of smaller-hotspots

Implementation :

– Sample \mathbf{b}_i 's & \mathbf{b}_j 's from gaussian widths B_{qc} and

 B_q respectively

– B_{qc} and B_q are constrained by coherent and incoherent HERA data at low $|{\bf t}|$

– N_{hs} and B_{hs} controls the amount of fluctuations at large $|\mathbf{t}|$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

- Large |t| : Probe fluctuations at very small length scales
- $\bullet\,$ Small |t| : Probe fluctuations at large length scales e.g proton size, saturation scale fluctuations

- The refined hotspot model explains the coherent data well.
- Also explains the incoherent data in whole |t| spectrum

The structure of these spatial geometrical gluon fuctuations exhibit self-similarities.

$$T_{P}(\mathbf{b}) = \frac{1}{2\pi N_{1} N_{2} .. N_{n} B_{hs}} \sum_{i_{1}}^{N_{1}} \sum_{i_{2}}^{N_{2}} .. \sum_{i_{n}}^{N_{n}} \exp\left[-\frac{(\mathbf{b} - \mathbf{b}_{i_{1}} - \mathbf{b}_{i_{2}} ... - \mathbf{b}_{i_{n}})^{2}}{2B_{hs}}\right]$$

further update : talk by T.Toll in Small-x... WG on April 15

・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 三 ・ うへへ 12/14

- Coherent and Incoherent events are sensitive to average size and fluctuations in the target geometry
- The modelling of gluon density fluctuations at smaller length scales lead to description of differential data in whole |t| spectrum.
- Both the saturated and non-saturated models are in good-agreement with the available data
- The transverse profile of proton shows a self-similar property (scaling) i.e smaller hotspots exists within bigger hotspots of gluon density

◆□▶ < @ ▶ < E ▶ < E ▶ ○ E • の Q @ 13/14</p>

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ - 圖 - 釣�� 14/14