CJ impact results: a first look & discussion

Alberto Accardi, <u>Xiaoxian Jing</u>, <u>Shujie Li</u>

IR4YR meeting October 6th, 2020

Overview

A look at the pseudodata

- First CJ impact results
 - Impact summary: u, d, g, sea quarks
 - Charged Currents role (and neutron tagging)
 - Energy scan and binning
- Interim conclusions, thoughts, questions

	NC		CC		and also
	Pessim	Optim	Pessim	Optim	Super Optimistic:
# points	303	497	89	89	
Target	p,d		р	р	
Lumi	100/fb (top √s)		10/fb		
Stat %	0.007-0.5	0.007-0.6	2-20	2-20	Use 100/fb also for CC
Syst %	2.3	1.5	2	2	
Norm %	4.3	2.5	5.8	2.3	Half NC syst %

Note: <u>electron only so far</u> – we'll need to check the positron, too

accardi@jlab.org

IR4YR - 6 Oct 2020

accardi@jlab.org

IR4YR - 6 Oct 2020

Impact - u,d,g summary

- Deuteron essential for d-quark gains
- **CC negligible** (see later)

Impact - sea quarks summary

8

CC vs. Deuteron NC

x

- too large syst & stat errors
- Fit too constrained? (s-quark not fitted in CJ15, yet)
- Confirms Temple projections (next slide):
 - Need e+, or super-low CC syst
 - and/or p-tagged F2n

CC: compare to Temple's projections

- Much better *d*-quark separation if:
 - Including positrons (100/fb), or
 - Low CC systematics (1% everywhere)
- It may be worthwhile pushing the detector envelope

x

Neutron tagging (Temple projections)

Big improvement on *d* quark

Need to interface with SIDIS group

- Ask for projections
- CJ ready to fit F2n(tag)

Energy scan

Small impact on gluons

Are the chosen Vs too far apart?

Include also a few intermediate values to improve the "L/T" scan ?

Or should we optimize the binning

For example, y and x instead of x, Q² ?

Interim conclusions and thoughts

- Smaller impact on PDFs than in previous projections
 - b/c less bins in xB, larger uncorr syst
 - Substantial gains in gluons require "Super" scenario
 - or, possibly, <u>higher xB resolution</u> \rightarrow <u>more xB bins</u>
- **CC(e-)** irrelevant for d-quark separation
 - Unless super-low syst can be reached...
 - Can we push the detector envelope?
 - …or we also use e+
 - Need positron projections
 - Alternative: Proton tagging in NC F2(D)
 - Need to ask SIDIS group for projections (CJ is ready to fit these)
- Is the energy scan optimized for gluon fitting?
 - More \sqrt{s} choices, or (x, y) binning ??
- **Future**: s-quarks with APV
 - Where can we find APV projection tables?

Overall normalizations and PDF uncertainties

15

Overall normalizations and PDF uncertainties

