

REGIONS IN SIDIS

Alexei Prokudin

In collaboration with: M. Boglione, M. Diefenthaler, S. Dolan,
L. Gamberg, S. Gordon, W. Melnitchouk, D. Pitonyak,
T. Rogers, N. Sato

SEMI INCLUSIVE DEEP INELASTIC SCATTERING

Consider electron - hadron collisions in DIS regime

Detect a pion in the final state

SEMI INCLUSIVE DEEP INELASTIC SCATTERING

Consider electron - hadron collisions in DIS regime

Detect a pion in the final state

SPACE-TIME PICTURE OF THE COLLISION

QCD FACTORIZATION IS THE KEY!

Factorization Probe

CURRENT REGION FACTORIZATION

$$
\sigma \sim \sigma_{0} f_{q / N}\left(x_{B j}\right) \otimes D_{q / h}\left(z_{h}\right)
$$

Boglione et al, 1611.10329

> Libby-Sterman analysis (Collins 2011 Ch.5) suggests that classical trajectories dominate

- Produced hadrons are close in rapidity to the fragmenting quark

Example of pinch-singular surfaces for e+e-

CURRENT REGION FACTORIZATION

$\sigma \sim \sigma_{0} f_{q / N}\left(x_{B j}\right) \otimes D_{q / h}\left(z_{h}\right) \quad$ Rapidity of the hadron is important

$$
y=\frac{1}{2} \ln \left|\frac{V^{+}}{V^{-}}\right|, V=\left[\frac{M_{T}}{\sqrt{2}} e^{y}, \frac{M_{T}}{\sqrt{2}} e^{-y}, \mathbf{V}_{T}\right], M_{T}=\sqrt{\left|M^{2}+\mathbf{V}_{T}^{2}\right|}
$$

Current fragmentation region

REFERENCE FRAMES

(a)

Photon Breit frame

$$
\begin{aligned}
q_{\mathrm{b}} & =\left(-\frac{Q}{\sqrt{2}}, \frac{Q}{\sqrt{2}}, \mathbf{0}_{\mathrm{T}}\right), \\
P_{\mathrm{b}} & =\left(\frac{Q}{x_{\mathrm{N}} \sqrt{2}}, \frac{x_{\mathrm{N}} M^{2}}{\sqrt{2} Q}, \mathbf{0}_{\mathrm{T}}\right)=\left(\frac{M}{\sqrt{2}} e^{y_{P, \mathrm{~b}}}, \frac{M}{\sqrt{2}} e^{-y_{P, \mathrm{~b}}}, \mathbf{0}_{\mathrm{T}}\right) . \\
P_{\mathrm{B}, \mathrm{~b}} & =\left(\frac{M_{\mathrm{B}, \mathrm{~T}}^{2}}{2 P_{\mathrm{B}, \mathrm{~b}}^{-}}, P_{\mathrm{B}, \mathrm{~b}}^{-}, \mathbf{P}_{\mathrm{B}, \mathrm{~b}, \mathrm{~T}}\right)=\left(\frac{M_{\mathrm{B}, \mathrm{~T}}}{\sqrt{2}} e^{\left.y_{\mathrm{B}, \mathrm{~b}}, \frac{M_{\mathrm{B}, \mathrm{~T}}}{\sqrt{2}} e^{-y_{\mathrm{B}, \mathrm{~b}}, \mathbf{P}_{\mathrm{B}, \mathrm{~b}, \mathrm{~T}}}\right)}\right. \\
P_{\mathrm{B}, \mathrm{~b}} & =\left(\frac{M_{\mathrm{B}}^{2}+z_{\mathrm{N}}^{2} \mathbf{q}_{\mathrm{T}}^{2}}{\sqrt{2} z_{\mathrm{N}} Q}, \frac{z_{\mathrm{N}} Q}{\sqrt{2}},-z_{\mathrm{N}} \mathbf{q}_{\mathrm{T}}\right)
\end{aligned}
$$

Rapidity interval boost invariant

(b)

Hadron frame

$$
\begin{aligned}
q_{\mathrm{H}} & =\left(q_{\mathrm{H}}^{+}, q_{\mathrm{H}}^{-}, \mathbf{q}_{\mathrm{H}, \mathrm{~T}}\right), \\
P_{\mathrm{H}} & =\left(P_{\mathrm{H}}^{+}, \frac{M^{2}}{2 P_{\mathrm{H}}^{+}}, \mathbf{0}_{\mathrm{T}}\right), \\
P_{\mathrm{B}, \mathrm{H}} & =\left(\frac{M_{\mathrm{B}}^{2}}{2 P_{\mathrm{B}, \mathrm{H}}^{-}}, P_{\mathrm{B}, \mathrm{H}}^{-}, \mathbf{0}_{\mathrm{T}}\right) .
\end{aligned}
$$

Useful for factorization

REFERENCE FRAMES

(a)

Photon Breit frame

$\mathbf{q}_{\mathrm{H}, \mathrm{T}} \approx-\frac{\mathbf{P}_{\mathrm{B}, \mathrm{b}, \mathrm{T}}}{z_{\mathrm{h}}} \approx \mathbf{q}_{\mathrm{T}}$,
up to

$$
\mathcal{O}\left(\frac{M}{Q}\right)
$$

(b)

Hadron frame

$$
\begin{aligned}
q_{\mathrm{H}} & =\left(q_{\mathrm{H}}^{+}, q_{\mathrm{H}}^{-}, \mathbf{q}_{\mathrm{H}, \mathrm{~T}}\right), \\
P_{\mathrm{H}} & =\left(P_{\mathrm{H}}^{+}, \frac{M^{2}}{2 P_{\mathrm{H}}^{+}}, \mathbf{0}_{\mathrm{T}}\right), \\
P_{\mathrm{B}, \mathrm{H}} & =\left(\frac{M_{\mathrm{B}}^{2}}{2 P_{\mathrm{B}, \mathrm{H}}^{-}}, P_{\mathrm{B}, \mathrm{H}}^{-}, \mathbf{0}_{\mathrm{T}}\right) .
\end{aligned}
$$

Useful for factorization

CURRENT REGION FACTORIZATION

Fresh look:
Define ratios of kinematical variables and identify regions

Current

Struck quark

Target

Nucleon

> E665 data rapidity distribution - From S. Joosten Ph.D. thesis

Figure 8.1: Normalized CM-rapidity distribution of positive hadrons in three bins of W from $\mu \mathrm{Xe}$-scattering at E665. The different markers refer to variants of the PID procedure not relevant to the current discussion. The target jet (negative rapidity) and current jet (positive rapidity) are hard to distinguish from each other due large amount of additional hadrons filling the gap between both jets. The situation becomes slightly better at higher values of W. See also Fig. 8.2. Figure from [139].

REGIONS IN SIDIS AND RATIOS

REGIONS IN SIDIS AND RATIOS

- Define ratios
> Identify regions
- General Hardness Ratio $=R_{0} \equiv \max \left(\left|\frac{k_{\mathrm{i}}^{2}}{Q^{2}}\right|,\left|\frac{k_{\mathrm{f}}^{2}}{Q^{2}}\right|,\left|\frac{\delta k_{\mathrm{T}}^{2}}{Q^{2}}\right|\right)$.

Should be small for partonic description to hold, high off-shelness $=$ short distance
\square Collinearity $=R_{1} \equiv \frac{P_{\mathrm{B}} \cdot k_{\mathrm{f}}}{P_{\mathrm{B}} \cdot k_{\mathrm{i}}}$,
Should be small for current region, large for target region
\square Transverse Hardness Ratio $=R_{2} \equiv \frac{\left|k^{2}\right|}{Q^{2}}$.

$$
k \equiv k_{\mathrm{f}}-q
$$

Should be small for $2->1$ process

- Spectator Virtuality Ratio $=R_{3} \equiv \frac{\left|k_{\mathrm{X}}^{2}\right|}{Q^{2}}$.

Small for lowest order QCD to be applicable

REGIONS IN SIDIS AND RATIOS

> Define ratios
> Identify regions

	R_{0}	R_{1}	R_{2}	R_{3}
TMD Current region	small	small	small	X
Hard region	small	small	large	small (low order pQCD)
	small	small	large	large (high order pQCD)
Target region	small	large	X	X
Soft region	small	large	small	X

Table 1: Examples for sizes of ratios corresponding to particular regions of SIDIS. The "X" means "irrelevant or ill-defined." This ranking should be viewed as schematic since "small" and "large" need to be defined quantitatively and can in general be scale-dependent.

REGIONS IN SIDIS AND RATIOS

> Define ratiosRatios depend on unknown parton momenta. Ho can we define and use them?

Where does this bin belong?

> Use a Monte Carlo* with parton momenta
> Sample experimental bins for ratios

Ro

REGIONS IN SIDIS AND RATIOS

> Use a Monte Carlo* with parton momenta
> Sample experimental bins for ratios

[^0]
AFFINITY

> Use a Monte Carlo* with parton momenta
> Sample experimental bins for ratios
> Affinity = \#times in/(\#times in + \#times out)

R_{2}

Box that defines

- appropriate values

Affinity is from 0\% to 100% indicates affinity of a bin to a particular region

[^1]
AFFINITY

Boglione et al, 1904.12882

- What about size of the box?

If rigorous expansion of the theory in terms of Rs is performed, than the size is \sim to the relative error of factorization.

In our case it is only an estimate.

The tool is to guide our intuition.

R_{2}

Box that defines

- appropriate values

MONTE CARLO

$$
y_{\mathrm{i}}^{\mathrm{b}}=\frac{1}{2} \ln \left(\left|\frac{Q^{2}}{\hat{x}_{\mathrm{N}}^{2}\left(k_{\mathrm{i}}^{2}+\mathbf{k}_{\mathrm{i}, \mathrm{~T}}^{2}\right)}\right|\right), \quad y_{\mathrm{f}}^{\mathrm{b}}=\frac{1}{2} \ln \left(\left|\frac{\hat{z}_{\mathrm{N}}^{2} q_{\mathrm{T}}^{2}+\delta k_{\mathrm{T}}^{2}-2 \hat{z}_{\mathrm{N}} \mathbf{q}_{\mathrm{T}} \cdot \delta \mathbf{k}_{\mathrm{T}}+k_{\mathrm{f}}^{2}}{\hat{z}_{\mathrm{N}}^{2} Q^{2}}\right|\right) .
$$

$$
R_{1}=\frac{M_{\mathrm{B}, \mathrm{~T}} M_{\mathrm{f}, \mathrm{~b}, \mathrm{~T}}\left(e^{y_{\mathrm{B}, \mathrm{~b}}-y_{\mathrm{f}}^{\mathrm{b}}}+e^{y_{\mathrm{f}}^{\mathrm{b}}-y_{\mathrm{B}, \mathrm{~b}}}\right)-2 z_{\mathrm{N}} \hat{z}_{\mathrm{N}} q_{\mathrm{T}}^{2}+2 z_{\mathrm{N}} \mathbf{q}_{\mathrm{T}} \cdot \delta \mathbf{k}_{\mathrm{T}}}{M_{\mathrm{B}, \mathrm{~T}} M_{\mathrm{i}, \mathrm{~b}, \mathrm{~T}}\left(e^{y_{\mathrm{i}}^{\mathrm{b}}-y_{\mathrm{B}, \mathrm{~b}}}-e^{y_{\mathrm{B}, \mathrm{~b}}-y_{\mathrm{i}}^{\mathrm{b}}}\right)+2 z_{\mathrm{N}} \mathbf{q} \mathrm{~T}_{\mathrm{T}} \cdot \mathbf{k}_{\mathrm{i}, \mathrm{~T}}}
$$

where $M_{\mathrm{i}, \mathrm{b}, \mathrm{T}}=\sqrt{\left|k_{\mathrm{i}}^{2}+\mathbf{k}_{\mathrm{i}, \mathrm{T}}^{2}\right|}$ and $M_{\mathrm{f}, \mathrm{b}, \mathrm{T}}=\sqrt{k_{\mathrm{f}}^{2}+\mathbf{k}_{\mathrm{f}, \mathrm{T}}^{2}}$.
Parton kinematics is sampled in a particular region $[0,0.8] \mathrm{GeV}$

JEFFERSON LAB 12 AND EIC

EIC: CURRENT REGION

Relatively large $\mathrm{x}_{\mathrm{Bj}}, \mathrm{Z}_{\mathrm{h}}, \mathrm{Q}$

EIC: CURRENT REGION

Relatively large $\mathrm{x}_{\mathrm{Bj}}, \mathrm{Z}_{\mathrm{h}}, \mathrm{Q}$

EIC: TARGET REGION

Current study

Large X_{Bj} and $\mathrm{small}_{\mathrm{z}} \mathrm{n}, \mathrm{Q}$

THEORETICAL AND PHENOMENOLOGICAL DEVELOPMENT

- We have studies regions in SIDIS and identified TMD, Target, Soft and Hard regions
- New tool to guide our intuition is provided
- Further phenomenological and theoretical studies to follow

[^0]: * by saying Monte Carlo we do not intend Pythia!

[^1]: * by saying Monte Carlo we do not intend Pythia!

