Status update: impact studies for EIC unpolarized TMDs and Sivers function

A.Vladimirov

1/13

October 12, 2020

TMD.SIDIS

For details of derivation see previous meetings today I will show only the final plots with minimal comments

Plan of the talk

- ▶ Part 1: TMD evolution
- ▶ Part 2: Unpolarized distributions
- ▶ Part 3: Sivers function

Unpolarized case

Repository: https://github.com/VladimirovAlexey/EIC_YR_TMD Data by Ralf: /Data4_cut_HB_opt5

- Energies: $(5 \times 41)\&(5 \times 100)\&(18 \times 100)\&(18 \times 285)$
- ▶ Usual TMD cut: $p_T < 0.25zQ$, Q > 2 (and z > 0.05 for technical reasons)
- \blacktriangleright I took only π^+
- ▶ To speed-up computation +uncertainty $< 10\% \Rightarrow 3408$ points

Uncertainty estimation procedure:

- ▶ Reweighing not possible (too small errors) ⇒ fit together with global data (reduced set ATLAS(very slow) + E228 + HERMES)
- ▶ Estimation of errors by hesse (fastest)
- ▶ No PDF uncertainties (extremely time-consuming)

Input model = SV19:

- ▶ NNLO+N³LL
- ▶ No flavor separation

イロト イヨト イヨト イヨト

Universität Regensburg

TMD evolution
$$\mathcal{D}(b,\mu) = \mathcal{D}_{\text{resum}}(b,\mu) + c_0 b b^* = -K/2$$

TMD.SIDIS

October 12, 2020 4 / 13

TMD evolution
$$\mathcal{D}(b,\mu) = \mathcal{D}_{\text{resum}}(b,\mu) + c_0 b b^* = -K/2$$

EIC will make enormous impact on CS-kernel

unpolarized TMDPDF

Expected precision is better then our best fits

Universität Regensburg 네마가 세량가 세클가 세클가 클 가 있 (* October 12, 2020 6/13

unpolarized TMDPDF

unpolarized TMDFF

Example for structure function

- ▶ red current theory prediction
- ▶ blue theory prediction after EIC

TMD.SIDIS

October 12, 2020 9/13

Sivers asymmetry

Repository: https://github.com/VladimirovAlexey/EIC_YR_TMD Data by Ralf: /Data1_cut_HB_opt5

- ▶ Energies: $(5 \times 41)\&(18 \times 285)$ (to speed up)
- ▶ Usual TMD cut: $p_T < 0.25zQ$, Q > 2 (and z > 0.05 for technical reasons)
- ▶ I took only π^+
- \blacktriangleright \Rightarrow 2232 points

Uncertainty estimation procedure:

- \blacktriangleright Pseudodata is astonishingly precise \Rightarrow Ignoring global data
- ▶ Reweighing not possible (too small errors)
- ▶ 100 replicas
- ▶ No unpolarized TMD uncertainties

Input model = SV19(unpol.) + BPV20:

- \triangleright N³LL
- ▶ For details see talk on previous meeting

Universität Regensburg

イロト イヨト イヨト イヨト

Sivers function

Impact it so large that it is complicate to compare

Sivers function

Universität Regensburg

- E

October 12, 2020 12 / 13

・ロト ・四ト ・ヨト ・ヨト

Sivers function

13 / 13

October 12, 2020