Vector mesons and detector complementarity

Spencer Klein, LBNL

EIC Complementarity WG meeting, Oct. 28th 2020

- Rapidity distributions for exclusive vector mesons
- Detector requirements for pseudorapidity coverage
- Ideas about a complementary detector?

Work done in collaboration with Sam Heppelman

Vector meson rapidity

- One key goal of the EIC is to probe parton distributions down to the lowest reachable Bjorken-x.
- Vector meson photo/electroproduction is a key channel for probing gluons at low x.
 - Q^2 (parton) = Q^2 (photon) + $(M_V/2)^2$
 - Low Q² requires light mesons.
 - At too low Q², pQCD fails, but it is still important to make the measurement.
 - The EIC White Paper highlighted the ϕ
- Bjorken-x maps directly into vector meson rapidity
 - For photoproduction, $y = ln(2\gamma x M_p/M_V)$
 - Lowest Bjorken-x -> smallest y
 - Kinematic cutoff in y is at 2γxM_pk=M_V²
 - N. b. x>1 production in heavy targets extends to larger y

The extremes are most important: very low x, and near threshold

Rapidity ranges for ep and eA

eA has lower per-nucleon energy

- Lower energy/nucleon –> shifted scale wrt Bjorken-x
- + Lower $\sqrt{s_{eN}}$ -> Narrower rapidity range

From VM rapidity to $\pi/K/e/\mu$ pseudorapidity

- The relationship between VM rapidity and daughter pseudorapidity depends on the angular distribution of the decay in the VM rest frame.
 - Clebsch-Gordon coefficients for J=1 decays to two J=1/2 particles are different from decays to two J=0 particles

Pseudorapidity & Bjorken-x

- VM daughter particles usually have pseudorapidity within ± 1 of the parent rapidity.
 - Coverage for -4< |y| < 4 vector mesons requires -5 < $|\eta|$ <5
- Rates for light mesons are high, so could push this a little.

Is the full (pseudo) rapidity range really needed?

- At positive rapidities:
 - Jlab covered the light meson (ρ ,...J/ ψ) threshold region
 - But EIC can reach higher Q²
 - Is overlap needed? How much?
 - For nuclei, the region x>1 is interesting, increasing the relevant rapidity range
- At negative rapidities:
 - HERA already covered the highest energy photons for ep
 - EIC will have higher statistics
 - For eA, there is no alternative.
 - + eA has a slightly narrower rapidity range than ep -> less difficult
- Good pseudorapidity acceptance needed for polarization measurements (longitudinal vs. transverse polarization)

$\boldsymbol{\varphi}$ detection efficiency

- All Q², but dominated by low Q²
- Acceptance hole at mid-rapidity (for low Q²)
 - No acceptance for p_T =135 MeV kaons at η =0.
- φ->K_SK_L seems tough, and φ-=> ee, μμ have very small (3*10⁻⁴) branching ratios

A complementary detector

- Vector mesons are an important probe of gluon distributions
 - Rapidity maps into Bjorken-x values
 - Wide acceptance is needed to cover the full Bjorken-x range
- Full ρ^0 reconstruction requires -5 < $|\eta|$ < 5
- This is impossible with the reference IR and detector design
 - Coverage over roughly $-3.5 < |\eta| < 3.5$
- One could imagine a detector with designed for forward/backward coverage.
 - Like two copies of LHCb (or just 1)?
 - Dipole magnets?
 - Very different IR design
 - Cover the region that is missed by the reference design

