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1.Introduction: suggestion of  BES, critical event-by-event fluctuations 
2.The main idea:  preclusters may have size comparable to corr.length 
3.Nucleon clustering, importance of 4 N systems , kurtosis and viral 
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4. Paradox: attractive binary forces near CP get huge O(N^2) 
5. Repulsive manybody forces near CP, estimates in Landau model 
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• Watch for non-monotonous signals
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I. INTRODUCTION

The original work [1] proposed a search for the (hypothetical) QCD critical point (CP), by
measurements of the event-by-event fluctuations with the Beam Energy Scan (BES), currently
adopted as a major program of the BNL RHIC facility. Only part of it, called BES-I, is by now
completed, with BES-II plans involving even lower collision energies, combining collider and fixed
target modes of RHIC operations.

Before we go into any details, let us qualitatively discuss the main ideas of the present paper.
Suppose the CP indeed exists, and is located in the part of the phase diagram near the freezeout
line of BES program collisions. Furthermore, while scanning this line, for some specific beam
energy one happens to be in a state in which the correlation length reaches a value ⇠max ⇠ 2 fm.
What observables are sensitive to such scale of ⇠?

One possibility, actively discussed, is to look at sounds with the wavelength comparable to ⇠. One
expects changes in its absorption near CP due to critical opalescence. For example, those sounds
can be propagating along the fireball surface in azimuthal direction, and induced correlation in
� of the secondaries. The minimal harmonic number corresponding to such maximal correlation
length ⇠max ⇠ 2 fm would be

mmin =
2⇡R

⇠max
⇠ 20 (1)

Unfortunately, it is well above the maximal harmonic number observable in collisions, currently
mmax = 9. (The dependence of harmonic probability on m due to the so called “acoustic damping”
[2, 3] is P (m) ⇠ exp(�m2const) with the constant proportional to matter viscosity.)

Another suggestion [4, 5] is to use few-nucleon preclusters which naturally have such a scale.
Their binding and probability – and therefore moments of the proton multiplcity distribution and
yields of light nuclei (e.g. d, t, 3He) – would be di↵erent, far from CP with the usual short range
(⇠ 0.5 fm) of nuclear forces (Fig. 1 left) and near CP where correlation length is at its maximum
(Fig. 1 right). In the former case the potential range is several times smaller than nucleon
separations, making nuclear forces weak. In the later case fluctuations of the order parameter may
have an e↵ect on several nucleons coherently, thus generating stronger interactions between them.
As we will show below, evaluating the magnitude and even the sign of the e↵ects is not a simple
task.

Whether the nucleon clustering may be a↵ected by CP, can be experimentally observed in two
ways:
(i) by observing non-monotonous changes in light nuclei yields;
(ii) and by observing non-monotonous changes changes in the kurtosis (the 4th moment) of nucleon
multiplicity distributions.

Now, with the main idea already spelled out, let us introduce the subject more systematically.
While the shape and amplitude of fluctuations in the vicinity of CP are rather intricate, we know
that it should belong to the 3D Ising universality class, which has been studied analytically and
numerically for decades.

One way to characterize fluctuations of the critical mode � near the CP is via the cumulants of
the critical field

2 = h�2i, 3 = h�3i, 4 = h�4i � 3h�2i2 (2)

Stephanov [6] pointed out that such cumulants can be related to certain diagrams, containing cer-
tain powers of the correlation length ⇠ and coupling constants, from the e↵ective action describing
the fluctuations.

Unfortunately, we do not have any means to directly access fluctuations of �. In [1, 6] it was
proposed to use the nucleons for this purpose. Indeed, nonlinear couplings of � near CP should
produce novel many-body forces among the nucleons. Specifically, nonlinear terms in the e↵ective

Are sensitive to  
higher powers of the correlation length 
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Yet one cannot directly measure moments of phi… 
they are related to moments of nucleon multiplicity distribution, but not trivially
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FIG. 1. Preclusters of four nucleons, shown by blue circles. Six lines connecting them indicate binary
potentials. The gray area indicates the range of forces between them, for standard nuclear forces (left) and
near the critical point (right). In the latter case the interaction is not only binary but many-body ones
also appear.

action ⌦(�) generate novel many-body interactions between nucleons: its perturbative e↵ect can
be accounted for by the lowest-order diagrams shown in Fig. 2. Note that two of them – (a) and
(d)– lead to attraction, and the other two – (b) and (c)– to repulsion. It is the interplay between
them we will study in this paper.

In Refs [1, 6] the nucleons were assumed to be uncorrelated by any interaction other than
those induced by the critical field fluctuations. This crucial assumption allowed for the relation of
moments of the � distribution to moments of the produced nucleons. Indeed, if locations of nucleons
are unrestricted and can just be integrated out, each external line of these diagram becomes simply
a propagator integrated over all space,

Z
d3r

exp(�r/⇠)

4⇡r
= ⇠2

.
Unfortunately, this simplifying assumption of uncorrelated nucleons is not really correct. Con-

ventional nuclear forces do create significant correlations between them, even at the freezeout stage
of heavy ion collisions, with temperature T ⇠ 100 MeV . In Refs. [4, 5] the phenomenon of nucleon
preclustering was introduced, and studied using classical molecular dynamics, semiclassical “fluc-
ton” method at finite T, and quantum hyperspherical approximation. It has been shown that while
nucleon pairs and triplets have only weakly coupled single states, starting from four nucleons the
clustering becomes robust. The preclusters decay into multiple bound and resonance states known
for 4He and then feed-down into light nuclei production.

In our previous paper on the subject [7] we address these phenomena using the (first principle)
path-integral Monte Carlo (PIMC) simulations at appropriate temperatures. We calculated the
9-dimensional e↵ective volume of the precluster, entering the 4th-order virial coe�cient. We have
shown that while precluster phenomenon only contribute to multiplicity at a small –percent –
level, its positive contribution to kurtosis of the proton multiplicity distribution becomes of order
one for collisions energy below

p
s = 7.7 GeV, as it is indeed observed by STAR and HADES

collaborations. The direct consequence of preclustering is the so called ”feed-down” to light nuclei
(d, t,3 He,4 He) yields. We also evaluated the 4th-order virial coe�cient of the partition function
and compared it to proton kurtosis measured by STAR and HADES.

In all these papers [4, 5, 7] estimates of only binary nuclear forces were done. It was assumed
there that forces are modified by existence of exchanges of longer-range critical mode. Since the
e↵ect of that was persistently found to be unrealistically large, it was concluded that nothing like

Pre-clustering  of nucleons create 
objects of the right scale ! 

Their  energy — and therefore production yield 
— is very sensitive to correlation length

As we will show, the interplay of attractive binary 
And repulsive manybody forces  

Will lead to non-monotonous signal
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The classical flucton path is therefore given by

xfluc(⌧) = x0

cosh(⌧ � �/2)

cosh(�/2)
(8)

and both at ⌧ = 0 and ⌧ = � it returns to the desired
point x0. Now, substituting it to the action one finds
that

S[xfluc(⌧)] = x2

0
tanh

✓
�

2

◆
(9)

and the density matrix is therefore Gaussian at any tem-
perature

P (x0) ⇠ e�x2
0 tanh( �

2 ) . (10)

This reproduces the result obtained by Feynman [12] via
explicit calculation of Gaussian path integral. As it hap-
pens for any Gaussian path integral, this semiclassical
formulae is in fact exact.

III. SEMICLASSICAL THEORY AT FINITE
TEMPERATURE

A. Fluctons for anharmonic oscillator at T 6= 0

Let us now proceed to the first non-trivial problem, an
anharmonic oscillator, defined by

SE =

I
d⌧

✓
ẋ2

2
+

x2

2
+

g

2
x4

◆
. (11)

The tactics used in the previous example is not easy
to implement: in particularly, the period condition (4)
defining the energy E needs to be solved numerically for
each value of the x0. Furthermore, using energy conser-
vation leads naturally to ⌧(x) representation of the path,
rather than conventional x(⌧).

After trying a number of strategies, we concluded that
the simplest way to solve the problem is:

(i) solve numerically the second order EOM, starting
not from the observation point x0 but from the
turning point xturn. It is easier because here the ve-
locity vanish ẋ = 0 and numerical solver can readily
be used;

(ii) follow the solution for half period �/2 and thus find
the location of x0 = x(⌧ = �/2);

(iii) calculate the corresponding action and double it,
to account for the other half period.

The details of this procedure and its comparison with
the numerical results based on the definition Eq.(1) for
the anharmonic oscillator we include in a separate me-
thodical paper [? ]: here we only present one plot
Fig. 3 comparing the summation over 60 wave functions,
squared and Boltzmann weighted (line), with the result

of the flucton method (points). For additional compari-
son we also present the numerical results of a path inte-
gral Monte Carlo calculation with the same parameters
which simulates quantum paths of one particle in the an-
harmonic oscillator potential. The method is inspired by
the nice review [? ].

FIG. 3: Top panel: Density matrix P (x0) vs x0 for anhar-
monic oscillator with the coupling g = 1, at temperature
T = 1, calculated via the definition (1) (line) and the fluc-
ton method (points). The line is based on 60 lowest state
wave functions found numerically. Bottom panel: Compari-
son of the logarithmic derivative of the density matrix of the
upper panel.

As a semiclassical approach one expects that the fluc-
ton solution works better when the action is large, i.e.
for large values of x0. However, one observes that the
flucton systematically overestimates the solution based
on the Schroedinger solution. Part of the discrepancy
might come from normalization issues as described in [10]
so it is more sensible a comparison of the logarithmic
derivative to remove those. In the bottom panel of Fig. 3
we show the logarithmic derivative of the density matrix
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explicit calculation of Gaussian path integral. As it hap-
pens for any Gaussian path integral, this semiclassical
formulae is in fact exact.

III. SEMICLASSICAL THEORY AT FINITE
TEMPERATURE

A. Fluctons for anharmonic oscillator at T 6= 0

Let us now proceed to the first non-trivial problem, an
anharmonic oscillator, defined by
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◆
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The tactics used in the previous example is not easy
to implement: in particularly, the period condition (4)
defining the energy E needs to be solved numerically for
each value of the x0. Furthermore, using energy conser-
vation leads naturally to ⌧(x) representation of the path,
rather than conventional x(⌧).

After trying a number of strategies, we concluded that
the simplest way to solve the problem is:

(i) solve numerically the second order EOM, starting
not from the observation point x0 but from the
turning point xturn. It is easier because here the ve-
locity vanish ẋ = 0 and numerical solver can readily
be used;

(ii) follow the solution for half period �/2 and thus find
the location of x0 = x(⌧ = �/2);

(iii) calculate the corresponding action and double it,
to account for the other half period.

The details of this procedure and its comparison with
the numerical results based on the definition Eq.(1) for
the anharmonic oscillator we include in a separate me-
thodical paper [? ]: here we only present one plot
Fig. 3 comparing the summation over 60 wave functions,
squared and Boltzmann weighted (line), with the result

of the flucton method (points). For additional compari-
son we also present the numerical results of a path inte-
gral Monte Carlo calculation with the same parameters
which simulates quantum paths of one particle in the an-
harmonic oscillator potential. The method is inspired by
the nice review [? ].
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FIG. 3: Top panel: Density matrix P (x0) vs x0 for anhar-
monic oscillator with the coupling g = 1, at temperature
T = 1, calculated via the definition (1) (line) and the fluc-
ton method (points). The line is based on 60 lowest state
wave functions found numerically. Bottom panel: Compari-
son of the logarithmic derivative of the density matrix of the
upper panel.

As a semiclassical approach one expects that the fluc-
ton solution works better when the action is large, i.e.
for large values of x0. However, one observes that the
flucton systematically overestimates the solution based
on the Schroedinger solution. Part of the discrepancy
might come from normalization issues as described in [10]
so it is more sensible a comparison of the logarithmic
derivative to remove those. In the bottom panel of Fig. 3
we show the logarithmic derivative of the density matrix

2

FIG. 1: The e↵ective nuclear potentials (MeV), in the vac-
uum (black solid line) and a modified one at the freezeout
conditions (blue dashed line).

and thus clustering is relatively modest.
There are however two important regimes in which

this simple conclusion can be reversed, and rather large
correlations can be achieved. One regime is when one
important ingredient of the phenomenological potential,
the e↵ective mass of the � meson, is strongly reduced
because of closeness of chiral symmetry restoration at
T > Tc ⇡ 155 MeV. According to studies of chiral tran-
sition at µ = 0 [? ], and discussion in our previous pa-
per [4], the initial NN potential the � mass can be re-
duced from 500 MeV down to m� ⇠ 285 MeV. As shown
in Fig. 1 this modification results in crucial changes of
the e↵ective potential, inverting the situation to

|V (rmin)|

T
⇠ 2 � 3

This situation becomes more evident in the vicinity of the
QCD critical point (if it exists), since the critical mode
becomes really light, making appear long-range forces as-
sociated with its exchange.

These larger Boltzmann factors exp(|V (rmin)|/T ) play
much more important role when several nucleons are in-
volved. For example, the N = 4 nucleons we will discuss
have six relative potentials, in a (tetrahedral) pre-cluster,
so the Boltzmann factor enters in the sixth power. Of
course, the Boltzmann factor is just classical thermody-
namics, and one needs to include also quantum e↵ects,
expected to reduce the correlations. This is the question
we focus on in this paper.

More specifically, we focus on 4-nucleon pre-clusters of
the ppnn (or alpha-particle) type. Only in this case one
may think of all four particle as distinguishable (all in
di↵erent spin-isospin states), without account for e↵ects
of Fermi-Dirac statistics. Respectively, its ground state is
the only light nuclei which is relatively strongly bound. It

is well known that 12C, 16O and perhaps even 24Mg have
strong alpha-particle correlations, and their lowest states
are consistent with few-alpha-particle Bose-Einstein con-
densation [5].

II. SEMICLASSICAL THEORY AT FINITE
TEMPERATURE

A. New version of semiclassical theory, at zero
temperature

Semiclassical approximations are well-known tools,
both in quantum mechanics and quantum field the-
ory. Standard textbooks of quantum mechanics usually
start with Bohr-Sommerfeld quantization conditions, and
semiclassical Wentzel-Kramers-Brillouin (WKB) approx-
imation for the wave function. Unfortunately, extending
such methods beyond the one-dimensional case (or mul-
tidimensional with separable variables) proved to be dif-
ficult. Also already the first WKB correction to classical
term, 1/

p
p(x) is not correct and contains an unphysical

singularity at the turning point.

B. Analytic methods of few-body physics at finite
temperature

Standard textbook definition of the density matrix

P (x0) =
X

i

| i(x0)|
2 e�Ei/T (2)

suggest to find all states and their wave functions, and
then do weighting with the Boltzmann factor. Needless
to say, it is rarely possible to use this definition in prac-
tice. In this work we will follow this approach twice:
for the two nucleon problem in section IV A, with large
set of solutions to Schŕ’odinger equation for relative mo-
tion, and in Sec. IV B, with solutions to e↵ective radial
equation in K-harmonics method applied to 4He. This
last method goes back to 1960’s,when it was applied to
the ground states of light nuclei. Our finding of the sec-
ond bound state in 4He and more general use of it to
finite-temperature clustering problem is (to our knowl-
edge) new.

As shown by Feynman, the density matrix for any
quantum system can be expressed by the path integrals,
over paths passing through the point x0. Analytic con-
tinuation to Euclidean (Matsubara) time defined on a
circle ⌧ 2 [0,� = ~/T ] lead to its finite temperature gen-
eralization

P (x0) =

Z
Dx(t)e�SE [x(⌧)] , (3)

taken over the periodic paths which starts and ends at
x0. This expression has led to multiple applications, per-
turbative (using Feynman diagrams) or numerical (e.g.

the usual density matrix (line, 60 states)

P (x0) ⇠ exp
�
� SE [xflucton(⌧)]

�

(points on the plot) 
so, the method works very well

(the first time ever) testing the flucton method at finite T 



K-harmonics applied to He4 (not a new method,  
and yet we found something new with it…)

9 Jacobi coordinates for 4 particles
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above as a contribution from pre-clusters. Similar e↵ect
for He4/p4 ratio is expected at lower RHIC energies, but
it is not yet observed.

Another proposed signal would be two-body decay
channels of pre-clusters, as an enhancement at low in-
variant mass in, say p + t, dd channels. (We also remind
that pre-cluster decays into 4 protons is presumably the
reason for the large kurtosis of the multiplicity distribu-
tion.)

Another summary is for readers interested in many
body theory. Large part of the paper is methodical de-
velopment, of the semiclassical “flucton” method [7], so
far developed for T = 0 only [9, 10]. We have shown how
to use it for nonzero temperatures. It does work well,
e.g. for standard toy models such as anharmonic oscil-
lator (see Fig.3). The method was applied to 2 and 4
nucleon problem at finite temperatures.

Another (much more traditional) way to calculate the
density matrix is via solving Schroedinger equation for
many levels, and weight them by the Boltzmann factor.
We did so for two nucleons, and, using K-harmonics, for
4 nucleons. The results, shown in Fig.9, show modest
⇠ 1.4 correlation for the unmodified potential, but ⇠ 10
enhancement for the modified one.

The flucton method (see Fig. 5) predicts larger ef-
fects, ⇠ 4 for the unmodified potential, and really huge
enhancement for the modified one. The di↵erence may
be related to the fact that we only calculated the lead-
ing semiclassical part of the 4-nucleon density matrix,
exp(��Sflucton), without the one-loop preexponent (de-
terminant) or other corrections. It may also indicate that
the action is not large enough.

Appendix A: Wave function of 4He using
K-harmonics

The so-called method of K-harmonics was developed
in Ref. [16]. Its main idea is that the multi-dimensional
Schrödinger equation can be treated with some single
“radial” coordinate plus “angular variables”, for which
a complete set of functions is known. Furthermore, in
certain cases rather good approximation can be obtained
using a single lowest angular function, with trivial angu-
lar dependence. Such cases include in particular A = 3
nuclei and also 4He, the case we would discuss here fol-
lowing Ref. [17] . Since these papers are rather old, we
indicate in this appendix their main points.

As a preliminary information, let us note that 4He is a
surprisingly compact nucleus, with r.m.s. radius of only
R(4He) ⇡ 1.6 fm. Its binding may appear to be large
B(4He) = 28.3 MeV, but since there are 6 nucleon pairs
the “binding per pair” is rather small and only about
twice that in the deuteron.

The first standard step in many body physics is the
separation of the center of mass motion from relative co-
ordinates. It is usually done using the Jacobi coordinates,

which for the A = 4 case at hand are

~⇠[1] =
~x[1] � ~x[2]

p
2

, ~⇠[2] =
~x[1] + ~x[2] � 2~x[3]

p
6

,

~⇠[3] =
~x[1] + ~x[2] + ~x[3] � 3~x[4]

2
p

3

The radial coordinate, or hyperdistance, is defined as

⇢2 =
3X

m=1

~⇠[m]2 =
1

4

� X

i 6=j

(~x[i] � ~x[j])2
�

(A1)

The radial part of the Laplacian in these Jacobi coordi-
nates is  00(⇢) + 8 0(⇢)/⇢, and using substitution

 (⇢) = �(⇢)/⇢4 , (A2)

one arrives to conventional-looking Schrödinger equation
for K = 0 harmonics

d2�

d⇢2
�

12

⇢2
��

2M

~2
(W (⇢) + VC(⇢) � E)� = 0 , (A3)

where W is the projection of the potential to this har-
monic. According to [17]

W (⇢) =
315

4

Z
1

0

V (
p

2⇢x)(1 � x2)2x2dx , (A4)

where V is the NN potential.
Using the simplest nuclear potential used in [17] (called

V1 there)

V (r) = �83.34 e�r2/1.62

+ 144.86 e�r2/0.822

, (A5)

with the prefactors given in MeV while the radii in expo-
nent in fm. In Eq. (A3) also appears a Coulomb repulsion
between the two protons, which adds VC = 2.23 MeV·

fm/⇢. The discussion of the solutions of this equation is
given in the main text.

For the application of Eq. (A3) into the semiclassical
flucton solution, it is easy to realize that it is equivalent
to a 1D Schrödinger equation,

�
~2

2M

d2�

d⇢2
+ Veff (⇢)� = E� , (A6)

with the e↵ective potential,

Veff (⇢) = W (⇢) +
12

2M⇢2
+ VC(⇢) . (A7)

Therefore we can apply the standard method described
in the text to obtain the flucton solution to the inverted
potential �Veff . The potentials W (⇢) and Veff (⇢) are
plotted in Fig. 14.
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above as a contribution from pre-clusters. Similar e↵ect
for He4/p4 ratio is expected at lower RHIC energies, but
it is not yet observed.

Another proposed signal would be two-body decay
channels of pre-clusters, as an enhancement at low in-
variant mass in, say p + t, dd channels. (We also remind
that pre-cluster decays into 4 protons is presumably the
reason for the large kurtosis of the multiplicity distribu-
tion.)

Another summary is for readers interested in many
body theory. Large part of the paper is methodical de-
velopment, of the semiclassical “flucton” method [7], so
far developed for T = 0 only [9, 10]. We have shown how
to use it for nonzero temperatures. It does work well,
e.g. for standard toy models such as anharmonic oscil-
lator (see Fig.3). The method was applied to 2 and 4
nucleon problem at finite temperatures.

Another (much more traditional) way to calculate the
density matrix is via solving Schroedinger equation for
many levels, and weight them by the Boltzmann factor.
We did so for two nucleons, and, using K-harmonics, for
4 nucleons. The results, shown in Fig.9, show modest
⇠ 1.4 correlation for the unmodified potential, but ⇠ 10
enhancement for the modified one.

The flucton method (see Fig. 5) predicts larger ef-
fects, ⇠ 4 for the unmodified potential, and really huge
enhancement for the modified one. The di↵erence may
be related to the fact that we only calculated the lead-
ing semiclassical part of the 4-nucleon density matrix,
exp(��Sflucton), without the one-loop preexponent (de-
terminant) or other corrections. It may also indicate that
the action is not large enough.

Appendix A: Wave function of 4He using
K-harmonics

The so-called method of K-harmonics was developed
in Ref. [16]. Its main idea is that the multi-dimensional
Schrödinger equation can be treated with some single
“radial” coordinate plus “angular variables”, for which
a complete set of functions is known. Furthermore, in
certain cases rather good approximation can be obtained
using a single lowest angular function, with trivial angu-
lar dependence. Such cases include in particular A = 3
nuclei and also 4He, the case we would discuss here fol-
lowing Ref. [17] . Since these papers are rather old, we
indicate in this appendix their main points.

As a preliminary information, let us note that 4He is a
surprisingly compact nucleus, with r.m.s. radius of only
R(4He) ⇡ 1.6 fm. Its binding may appear to be large
B(4He) = 28.3 MeV, but since there are 6 nucleon pairs
the “binding per pair” is rather small and only about
twice that in the deuteron.

The first standard step in many body physics is the
separation of the center of mass motion from relative co-
ordinates. It is usually done using the Jacobi coordinates,

which for the A = 4 case at hand are
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The radial part of the Laplacian in these Jacobi coordi-
nates is  00(⇢) + 8 0(⇢)/⇢, and using substitution

 (⇢) = �(⇢)/⇢4 , (A2)

one arrives to conventional-looking Schrödinger equation
for K = 0 harmonics
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monic. According to [17]

W (⇢) =
315

4

Z
1

0

V (
p

2⇢x)(1 � x2)2x2dx , (A4)

where V is the NN potential.
Using the simplest nuclear potential used in [17] (called

V1 there)

V (r) = �83.34 e�r2/1.62

+ 144.86 e�r2/0.822

, (A5)

with the prefactors given in MeV while the radii in expo-
nent in fm. In Eq. (A3) also appears a Coulomb repulsion
between the two protons, which adds VC = 2.23 MeV·

fm/⇢. The discussion of the solutions of this equation is
given in the main text.

For the application of Eq. (A3) into the semiclassical
flucton solution, it is easy to realize that it is equivalent
to a 1D Schrödinger equation,
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with the e↵ective potential,

Veff (⇢) = W (⇢) +
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Therefore we can apply the standard method described
in the text to obtain the flucton solution to the inverted
potential �Veff . The potentials W (⇢) and Veff (⇢) are
plotted in Fig. 14.
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above as a contribution from pre-clusters. Similar e↵ect
for He4/p4 ratio is expected at lower RHIC energies, but
it is not yet observed.

Another proposed signal would be two-body decay
channels of pre-clusters, as an enhancement at low in-
variant mass in, say p + t, dd channels. (We also remind
that pre-cluster decays into 4 protons is presumably the
reason for the large kurtosis of the multiplicity distribu-
tion.)

Another summary is for readers interested in many
body theory. Large part of the paper is methodical de-
velopment, of the semiclassical “flucton” method [7], so
far developed for T = 0 only [9, 10]. We have shown how
to use it for nonzero temperatures. It does work well,
e.g. for standard toy models such as anharmonic oscil-
lator (see Fig.3). The method was applied to 2 and 4
nucleon problem at finite temperatures.

Another (much more traditional) way to calculate the
density matrix is via solving Schroedinger equation for
many levels, and weight them by the Boltzmann factor.
We did so for two nucleons, and, using K-harmonics, for
4 nucleons. The results, shown in Fig.9, show modest
⇠ 1.4 correlation for the unmodified potential, but ⇠ 10
enhancement for the modified one.

The flucton method (see Fig. 5) predicts larger ef-
fects, ⇠ 4 for the unmodified potential, and really huge
enhancement for the modified one. The di↵erence may
be related to the fact that we only calculated the lead-
ing semiclassical part of the 4-nucleon density matrix,
exp(��Sflucton), without the one-loop preexponent (de-
terminant) or other corrections. It may also indicate that
the action is not large enough.

Appendix A: Wave function of 4He using
K-harmonics

The so-called method of K-harmonics was developed
in Ref. [16]. Its main idea is that the multi-dimensional
Schrödinger equation can be treated with some single
“radial” coordinate plus “angular variables”, for which
a complete set of functions is known. Furthermore, in
certain cases rather good approximation can be obtained
using a single lowest angular function, with trivial angu-
lar dependence. Such cases include in particular A = 3
nuclei and also 4He, the case we would discuss here fol-
lowing Ref. [17] . Since these papers are rather old, we
indicate in this appendix their main points.

As a preliminary information, let us note that 4He is a
surprisingly compact nucleus, with r.m.s. radius of only
R(4He) ⇡ 1.6 fm. Its binding may appear to be large
B(4He) = 28.3 MeV, but since there are 6 nucleon pairs
the “binding per pair” is rather small and only about
twice that in the deuteron.

The first standard step in many body physics is the
separation of the center of mass motion from relative co-
ordinates. It is usually done using the Jacobi coordinates,
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with the prefactors given in MeV while the radii in expo-
nent in fm. In Eq. (A3) also appears a Coulomb repulsion
between the two protons, which adds VC = 2.23 MeV·

fm/⇢. The discussion of the solutions of this equation is
given in the main text.

For the application of Eq. (A3) into the semiclassical
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above as a contribution from pre-clusters. Similar e↵ect
for He4/p4 ratio is expected at lower RHIC energies, but
it is not yet observed.

Another proposed signal would be two-body decay
channels of pre-clusters, as an enhancement at low in-
variant mass in, say p + t, dd channels. (We also remind
that pre-cluster decays into 4 protons is presumably the
reason for the large kurtosis of the multiplicity distribu-
tion.)

Another summary is for readers interested in many
body theory. Large part of the paper is methodical de-
velopment, of the semiclassical “flucton” method [7], so
far developed for T = 0 only [9, 10]. We have shown how
to use it for nonzero temperatures. It does work well,
e.g. for standard toy models such as anharmonic oscil-
lator (see Fig.3). The method was applied to 2 and 4
nucleon problem at finite temperatures.

Another (much more traditional) way to calculate the
density matrix is via solving Schroedinger equation for
many levels, and weight them by the Boltzmann factor.
We did so for two nucleons, and, using K-harmonics, for
4 nucleons. The results, shown in Fig.9, show modest
⇠ 1.4 correlation for the unmodified potential, but ⇠ 10
enhancement for the modified one.

The flucton method (see Fig. 5) predicts larger ef-
fects, ⇠ 4 for the unmodified potential, and really huge
enhancement for the modified one. The di↵erence may
be related to the fact that we only calculated the lead-
ing semiclassical part of the 4-nucleon density matrix,
exp(��Sflucton), without the one-loop preexponent (de-
terminant) or other corrections. It may also indicate that
the action is not large enough.
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in Ref. [16]. Its main idea is that the multi-dimensional
Schrödinger equation can be treated with some single
“radial” coordinate plus “angular variables”, for which
a complete set of functions is known. Furthermore, in
certain cases rather good approximation can be obtained
using a single lowest angular function, with trivial angu-
lar dependence. Such cases include in particular A = 3
nuclei and also 4He, the case we would discuss here fol-
lowing Ref. [17] . Since these papers are rather old, we
indicate in this appendix their main points.
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B(4He) = 28.3 MeV, but since there are 6 nucleon pairs
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between the two protons, which adds VC = 2.23 MeV·
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flucton solution, it is easy to realize that it is equivalent
to a 1D Schrödinger equation,

�
~2

2M

d2�

d⇢2
+ Veff (⇢)� = E� , (A6)

with the e↵ective potential,

Veff (⇢) = W (⇢) +
12

2M⇢2
+ VC(⇢) . (A7)

Therefore we can apply the standard method described
in the text to obtain the flucton solution to the inverted
potential �Veff . The potentials W (⇢) and Veff (⇢) are
plotted in Fig. 14.
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needs to consider separately the centrifugal potential

�V l
rot =

l(l + 1)

2mRr2

for various nonzero values of l = 1, ... (mr = m/2 is
the reduced mass). In order not to deal with continuous
spectrum of scattering states we use a standard method,
put a system in a confining “cup” potential, chosen in a
form

Vcup =

✓
r

Rcup

◆8

, (21)

with large enough Rcup = 10 fm. The original potential
in Eq. (??), while is can lead to reasonable properties for
infinite nuclear matter [4] does not have any bound state.
For the shake of illustration let us reduce the repulsion of
that potential and use ↵! = 9.42, to increase the depth
of the potential.

In summary we solve

�
u00

l (r)

2mR
+ (VNN + Vcup + �V l

rot)ul(r) = Elul(r) , (22)

with u = r (r). Then, we found 20 energies and wave
functions for each l.

The beginning of the energy spectrum at l = 0 is (in
units of fm�1

⇡ 197 MeV)

El=0

i = � 0.0113821, 0.074862, 0.204088, 0.369106,

0.564357, 0.786536, 1.03336, 1.30313, ...

The only bound state is “Walecka deuteron” with an en-
ergy of �2.2 MeV and a r.m.s. of 2.2 fm (remember that
we tuned the repulsive part to get these numbers just for
illustration, the physical deuteron also contains a small
admixture of l = 2 component, which we do not obtain
in this example with a simple radial potential).

Using this set of states one can find quantum-thermal
density matrix

P (r,�) =
X

i,l

(2l + 1)| l,i(r)|
2e��El

i . (23)

Examples at two di↵erent temperatures are shown in
Fig. 7, for T = 100, 20 MeV for di↵erent angular mo-
menta. We sum over the first 20 levels for each value of
l.

B. The lowest K-harmonics and the wave functions
of 4He

While the two-body problem is solvable using the rel-
ative motion of the system, for clusters with A > 2 the
solution is not that straightforward. One would also like
to use a complete set of states, bound and unbound, to
calculate the thermal density matrix for these cases.

FIG. 7: The density matrix (21) at T = 100, 20 MeV, upper
and lower plots respectively. The solid black line for l = 0,
blue dashed and brown dash-dotted lines are for l = 1 and 2.

One interesting possibility is provided by the so called
K-harmonics [16], which we describe briefly in App. A.
In the practice one focuses on the lowest, most symmet-
ric ground states, obtained from 1D radial Schrödinger
equation for the “hyperdistance” ⇢ defined in Eq. (A1)
as a sum over Jacobi coordinates squared. We briefly
indicate in the App. A the derivation of the correspond-
ing Schrödinger-like equation in the case of 4He here we
only note that the squared hyperdistance is related to
r(t) coordinate (we used above for fluctons) via simple
relation

⇢2 =
6

4
r2 . (24)

Solving the eigenvalue problem in App. A we have ob-
tained 40 lowest eigenstates for Eq. (A3) using the sim-
plest potential V1 from Ref. [17] and the Coulomb term
between the two protons. The ground state energy we
find is E0 = �27.8 MeV, very close to the experimental
value of �28.3 MeV.

Rather unexpectedly, we also find a second bound state
(missed in [17]) with energy E1 = �2.8 MeV. To deter-
mine whether this state is physical, we show in Table ??
the excited states of 4He. Among them there is just one
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find is E0 = �27.8 MeV, very close to the experimental
value of �28.3 MeV.
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0+ state, with a binding energy of

B = �28.3 MeV + 20.2 MeV = �8.1 MeV , (25)

which is not the same as for our second 0+ state, but close
enough to identify them as the same radial excitation
state. The plot of both solutions is shown in Fig. 8.
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FIG. 8: Two radial bound state 0+ wave functions for 4He,
which are solutions of Eq. (A3) as a function of the hyperdis-
tance variable. Their energies are discussed in the text.

At finite temperature, we also use the unbound states
to weight them with the corresponding Boltzmann fac-
tor and calculate the thermal density matrix. The results
are shown in Fig. 9 for T = 100 MeV. In the upper plot
we present the results using the potential V1 given in
Ref. [17]. The solid line is the weighted density matrix
at T = 100 MeV compared to the contribution of the
lowest bound state only (blue dashed line). For this (un-
modified) potential the contribution of excited state to
the density matrix is important as can be seen from the
di↵erence between the two curves.

In order to see what happens if the interaction poten-
tial is medium-modified, we repeat the calculation with
the same form of the potential, but with the coe�cient
of the attractive term double. In this case the minimum
of the potential reaches ⇠ �400 MeV, similarly to what
happens in Fig. 1.

This modified potential now has several radial bound
states: their energies are

E( MeV) = �226.1, �120.1, �52.6, �17.3, �3.4, �0.1 .

The density matrix element and the lowest bound state
wave function squared are shown in the lower panel of
Fig. 9. In contrast to the upper plot, (for unmodified
potential) the lowest state dominates the density matrix.
It is not surprising, since the binding is more than twice
the temperature.

In that figure we can read the magnitude of the cor-
relation, relative to the constant asymptotic distance
(the thermal contribution of propagating positive energy

FIG. 9: Solid lines: Boltzmann-weighted density matrix, at
T = 100 MeV, using 40 lowest states of the K-harmonics
radial equation, for the unmodified nuclear potential V1 used
in Ref. [17] (upper plot) and a modified one (lower plot). In
both cases the blue dashed lines show the contribution of the
lowest bound state.

states) increases from ⇠ 0.4 to ⇠ 12, a huge factor. It is
however expected from our semiclassical calculation, see
e.g. Fig. 5 for similar e↵ect in the two-body case.

V. PRE-CLUSTERS AND PRODUCTION OF
LIGHT NUCLEI

The reader who went that far in the paper must be con-
vinced that pre-clustering of the nucleons does happen in
heavy ion collisions, at the kinetic freezeout time. Fur-
thermore, it is significantly enhanced if the internucleon
potential is modified due to meson mass modification or
appearance of the QCD critical point. Indeed, we stud-
ied this phenomenon in our previous paper [4] by classical
molecular dynamics simulations, and in the previous sec-
tions by semiclassical and PIMC quantum methods.

Before proceeding to the observables, let us start by
reminding once more what we call the “pre-clustering”
phenomenon. It is very important to keep in mind that
the pre-clusters we study are very di↵erent from “nuclear
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TABLE I: Low-lying resonances of 4He system, from BNL
properties of nuclides listed in nndc.bnl.gov web page. JP

is total angular momentum and parity, � is the width. The
last column is the decay channel branching ratios, in percents.
p, n, d correspond to emission of proton, neutron or deuterons.

E (MeV) JP � (MeV) decay modes, in %

20.21 0+ 0.50 p =100

21.01 0� 0.84 n =24, p =76

21.84 2� 2.01 n = 37, p = 63

23.33 2� 5.01 n = 47, p = 53

23.64 1� 6.20 n = 45, p = 55

24.25 1� 6.10 n = 47, p = 50 , d=3

25.28 0� 7.97 n = 48 , p = 52

25.95 1� 12.66 n = 48 ,p = 52

27.42 2+ 8.69 n = 3 , p = 3 ,d = 94

28.31 1+ 9.89 n = 47 , p = 48 , d = 5

28.37 1� 3.92 n = 2, p = 2, d = 96

28.39 2� 8.75 n = 0.2, p = 0.2 , d = 99.6

28.64 0� 4.89 d=100

28.67 2+ 3.78 d=100

29.89 2+ 9.72 n = 0.4 , p = 0.4, d = 99.2

One feature expected would be a peak at small relative
rapidity. In the invariant mass distribution (p1 + p2)2

one also should find low mass enhancement, related to
4-nucleon resonances. While we have not derived those
theoretically, from quantum mechanics, we in fact have
quite a number of them found experimentally. In Table 1
we list 15 such resonances occupying the strip of energies
of the width �E = 10MeV above binding, shown with
their quantum numbers and branching ratios for their
decay modes.

Note that already in this strip the resonances are
strongly overlapping, as the widths and energy di↵er-
ences are comparable. Growing density of states and
widths above this strip makes their separation/discovery
hard. But we are not discussing finding them one-by-one,
but rather a collective near-zero e↵ective mass enhance-
ment.

It is important that their lifetimes (the inverse of the
width shown in the third column, of about few MeV) are
several times larger than the time of fireball freezeout
�⌧ ⇠ 10fm/c ⇠ 1/(20 MeV ), so all this decays take
place outside of matter, in free space.

In the spirit of statistical models, one may assume that
all

Nstates =
X

i

(2Ji + 1) = 49

states in this energy strip are populated equally in the
quantum decomposition of pre-clusters which in our clas-
sical simulation have corresponding energies. With this
assumption, and using the decays indicated in the ta-

ble (interpreted as p + t, n + He3, d + d exclusive chan-
nels), one further finds that decays of a single ppnn
pre-cluster should produce, in average, 0.24(p+ tritium),
0.27 (n+He3) and 0.97 deuterons (0.49 dd pairs). Detec-
tor resolution permitting, one should search for evidences
of these p + t, d + d resonances in heavy ion datasets. If
such “feed down” be found, it would obviously be the
direct evidence for 4-nucleon pre-clustering we advocate
in this work.

C. Post-freezeout wave package decay

The pre-clusters are not stationary states with fixed en-
ergy, and therefore, after they are produced at freezeout
(last collision) time, they decay into stationary states. As
we will see, most of those are the positive energy scatter-
ing states, with the bound states being only some fraction
of the output. The pre-clusters also are not pure states,
they are described by the density matrix. Their projec-
tion to physical final states, bound or unbound, should
be done as described earlier in this section.

An yet, it is instructive to study time evolution of some
wave packages, possible in cases in which a full set of
states is available. An example of such time evolution
for the two-particle problem is shown in Fig.12. As one
can see, the initial cluster smoothly increase its spatial
size. By the time t = 8 fm/c ( blue dash dotted curve)
this size even exceeds that of the bound state (red dashed
line). Note that at this late time about half of the density
is resigning in the states other than the ground states.

Note also that visible spatial oscillations at later time
suggest existence of certain cuto↵ above some state num-
ber n > ncutoff . This is not an artifact – our calculation
includes 60 states – but a physical e↵ect. Only for those
few states (with energies listed above) their energies are
comparable to the potential, and some observable scat-
tering phase shifts are detected. So, the pre-clusters are
superpositions of the ground state and several states with
positive energy. Their number depends on the unphysical
wall, but their energy spread is not. The energy uncer-
tainty of the pre-cluster is defined by the temperature,
�E ⇠ T . And indeed, only the ground state and 4 more
(listed above) have E0n < T = 100MeV ⇡ 0.5 fm�1.

(At time t > 10 fm/c the unphysical wall we used
to generate discrete states generates unphysical reflected
waves, therefore those are not shown.)

Qualitative lesson from this exercise is as follows. After
collisional stage the systems are produced as pre-clusters,
with hadronic size ⇠ 1 fm. Then their e↵ective sizes
grow smoothly with time. The cross section of something
colliding with it � ⇠< r2(t) > increases by about an or-
der of magnitude during the time ⇠ 10 fm/c. But, due
to overall 3-d expansion of the system, the density drops,
and by a larger factor. We know it, because otherwise col-
lisions would be happening and the spectrum would con-
tinue to be modified: while the observed spectra do indi-
cate a rather sharp kinetic freezeout at Tf ⇠ 100 MeV .

here are experimentally observed 
excited states of He4 
the first one fits well  

to our second bound state
Now, getting convinced  

that we understand 
quantum mechanics of 4 nucleons in He4 

At zero T, 
we proceed to calculate  

the density matrix at finite T 
and check how it changes  

when the nuclear potential changes

So, people doing stat models  
For light nuclei 

Were missing about 50 states!
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distribution in ⇢. It is this flat region, where the KF
distribution is the same as the random distribution that
I normalize the random distribution to be equal to the
KF distribution. I take the average of this region (in this
case, about 0.0006) and divide the random distribution
by that to fit it under the KF distribution.

FIG. 4: KF distribution divided by the random distribution

for 19.6 GeV.

This normalizes the random distribution, which you
can now see in Fig. 5.

FIG. 5: KF distribution and normalized random distribution

for 19.6 GeV.

Now I can subtract the random distribution to find the
precluster. Fig. 6 shows the precluster. Despite the fact
it looks much smaller than the ground state, it must be
multiplied by ⇢8 when integrated, so the large-⇢ tail is
actually very large and the ground state only makes up
about 1 percent of the total distribution.

The size and shape of the precluster is, of course, sen-
sitive to how we subtract out the thermal tail. Even a
small increase in the normalization of the random dis-
tribution will reduce the size of the precluster quite a
bit.

FIG. 6: Ground state and precluster for 19.6 GeV.

II. INTERNAL ANGLE DISTRIBUTION

I also have distribution of the internal angles between
the nucleons. This is shown for the ground state, KF,
and randomly-placed nuclei in Fig. 7. There are a few
things to take away from this plot. The KF and ran-
dom distributions are nearly identical. This makes sense
as the nucleons spend most of there time far from each
other outside the clustering region as can be seen in Fig.
2. The ground state is a little more sharply peaked and
tends toward smaller angles. There are two reasons is is
not centered at cos↵ = 1/2 (60 degrees). First is that
the Coulomb repulsion of the protons breaks the tetra-
hedral symmetry of the minimum energy configuration.
The second is that, as can be seen from the random dis-
tribution, there is simply more phase space to produces
triangles with small angles.

FIG. 7: Distribution of cosine of internal angles cos↵ for

the ground state (blue), KF (orange), and random nucleons

(green) at 19.6 GeV.

This plot is nearly identical for all beam energies.

Path integral simulations of the few-nucleon clustering at heavy ion collisions freezeot, 

 (with Dallas DeMartini, SB student ) 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by that to fit it under the KF distribution.

FIG. 4: KF distribution divided by the random distribution

for 19.6 GeV.

This normalizes the random distribution, which you
can now see in Fig. 5.

FIG. 5: KF distribution and normalized random distribution

for 19.6 GeV.

Now I can subtract the random distribution to find the
precluster. Fig. 6 shows the precluster. Despite the fact
it looks much smaller than the ground state, it must be
multiplied by ⇢8 when integrated, so the large-⇢ tail is
actually very large and the ground state only makes up
about 1 percent of the total distribution.

The size and shape of the precluster is, of course, sen-
sitive to how we subtract out the thermal tail. Even a
small increase in the normalization of the random dis-
tribution will reduce the size of the precluster quite a
bit.

FIG. 6: Ground state and precluster for 19.6 GeV.

II. INTERNAL ANGLE DISTRIBUTION

I also have distribution of the internal angles between
the nucleons. This is shown for the ground state, KF,
and randomly-placed nuclei in Fig. 7. There are a few
things to take away from this plot. The KF and ran-
dom distributions are nearly identical. This makes sense
as the nucleons spend most of there time far from each
other outside the clustering region as can be seen in Fig.
2. The ground state is a little more sharply peaked and
tends toward smaller angles. There are two reasons is is
not centered at cos↵ = 1/2 (60 degrees). First is that
the Coulomb repulsion of the protons breaks the tetra-
hedral symmetry of the minimum energy configuration.
The second is that, as can be seen from the random dis-
tribution, there is simply more phase space to produces
triangles with small angles.

FIG. 7: Distribution of cosine of internal angles cos↵ for

the ground state (blue), KF (orange), and random nucleons

(green) at 19.6 GeV.

This plot is nearly identical for all beam energies.
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above as a contribution from pre-clusters. Similar e↵ect
for He4/p4 ratio is expected at lower RHIC energies, but
it is not yet observed.

Another proposed signal would be two-body decay
channels of pre-clusters, as an enhancement at low in-
variant mass in, say p + t, dd channels. (We also remind
that pre-cluster decays into 4 protons is presumably the
reason for the large kurtosis of the multiplicity distribu-
tion.)

Another summary is for readers interested in many
body theory. Large part of the paper is methodical de-
velopment, of the semiclassical “flucton” method [7], so
far developed for T = 0 only [9, 10]. We have shown how
to use it for nonzero temperatures. It does work well,
e.g. for standard toy models such as anharmonic oscil-
lator (see Fig.3). The method was applied to 2 and 4
nucleon problem at finite temperatures.

Another (much more traditional) way to calculate the
density matrix is via solving Schroedinger equation for
many levels, and weight them by the Boltzmann factor.
We did so for two nucleons, and, using K-harmonics, for
4 nucleons. The results, shown in Fig.9, show modest
⇠ 1.4 correlation for the unmodified potential, but ⇠ 10
enhancement for the modified one.

The flucton method (see Fig. 5) predicts larger ef-
fects, ⇠ 4 for the unmodified potential, and really huge
enhancement for the modified one. The di↵erence may
be related to the fact that we only calculated the lead-
ing semiclassical part of the 4-nucleon density matrix,
exp(��Sflucton), without the one-loop preexponent (de-
terminant) or other corrections. It may also indicate that
the action is not large enough.

Appendix A: Wave function of 4He using
K-harmonics

The so-called method of K-harmonics was developed
in Ref. [16]. Its main idea is that the multi-dimensional
Schrödinger equation can be treated with some single
“radial” coordinate plus “angular variables”, for which
a complete set of functions is known. Furthermore, in
certain cases rather good approximation can be obtained
using a single lowest angular function, with trivial angu-
lar dependence. Such cases include in particular A = 3
nuclei and also 4He, the case we would discuss here fol-
lowing Ref. [17] . Since these papers are rather old, we
indicate in this appendix their main points.

As a preliminary information, let us note that 4He is a
surprisingly compact nucleus, with r.m.s. radius of only
R(4He) ⇡ 1.6 fm. Its binding may appear to be large
B(4He) = 28.3 MeV, but since there are 6 nucleon pairs
the “binding per pair” is rather small and only about
twice that in the deuteron.

The first standard step in many body physics is the
separation of the center of mass motion from relative co-
ordinates. It is usually done using the Jacobi coordinates,

which for the A = 4 case at hand are

~⇠[1] =
~x[1] � ~x[2]

p
2

, ~⇠[2] =
~x[1] + ~x[2] � 2~x[3]

p
6

,

~⇠[3] =
~x[1] + ~x[2] + ~x[3] � 3~x[4]

2
p

3

The radial coordinate, or hyperdistance, is defined as

⇢2 =
3X

m=1

~⇠[m]2 =
1

4

� X

i 6=j

(~x[i] � ~x[j])2
�

(A1)

The radial part of the Laplacian in these Jacobi coordi-
nates is  00(⇢) + 8 0(⇢)/⇢, and using substitution

 (⇢) = �(⇢)/⇢4 , (A2)

one arrives to conventional-looking Schrödinger equation
for K = 0 harmonics

d2�

d⇢2
�

12

⇢2
��

2M

~2
(W (⇢) + VC(⇢) � E)� = 0 , (A3)

where W is the projection of the potential to this har-
monic. According to [17]

W (⇢) =
315

4

Z
1

0

V (
p

2⇢x)(1 � x2)2x2dx , (A4)

where V is the NN potential.
Using the simplest nuclear potential used in [17] (called

V1 there)

V (r) = �83.34 e�r2/1.62

+ 144.86 e�r2/0.822

, (A5)

with the prefactors given in MeV while the radii in expo-
nent in fm. In Eq. (A3) also appears a Coulomb repulsion
between the two protons, which adds VC = 2.23 MeV·

fm/⇢. The discussion of the solutions of this equation is
given in the main text.

For the application of Eq. (A3) into the semiclassical
flucton solution, it is easy to realize that it is equivalent
to a 1D Schrödinger equation,

�
~2

2M

d2�

d⇢2
+ Veff (⇢)� = E� , (A6)

with the e↵ective potential,

Veff (⇢) = W (⇢) +
12

2M⇢2
+ VC(⇢) . (A7)

Therefore we can apply the standard method described
in the text to obtain the flucton solution to the inverted
potential �Veff . The potentials W (⇢) and Veff (⇢) are
plotted in Fig. 14.
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discuss the universal e↵ective potential ⌦(�) describing critical fluctuations on the critical line of
Ising-class phase transitions. In the next section IV we consider a deformation of this potential
by some external current J , shifting a bit from the critical line, and representing the freezeout
path on the QCD phase diagram. Nonlinear coe�cients of these deformed potentials are used as
coupling constants in many-body diagrams. Combining those with calculation of the diagrams
themselves we get to results shown in Fig. 10. According to it, strong attraction due to exchange
of the critical mode between the nucleons enhances clustering, with maximum at t ⇡ 0.4 of factor
several, and at smaller t < 0.25 (closer to CP) it changes to repulsion, soon killing clustering. In
section V we summarize the paper and discuss current status of relevant experimental observables.

II. THREE AND FOUR-NUCLEON FORCES AND THE FOUR-NUCLEON
CLUSTERS

A. E↵ect of critical binary potential

Refs. [4, 5, 7] all discussed the e↵ect of the the hypothetical critical point on nucleon interactions,
but only via binary forces. The critical fluctuations were assumed to add to conventional nuclear
force a new binary potential corresponding to the diagram Fig. 2(a)

Va = � g2c
4⇡

h�(~r)�(0)i = � g2c
4⇡

exp(�r/⇠)

r
(3)

Since this potential was included in the exponential of the action, all of its iterations were also
included. The coupling of the critical mode to nucleons gc of course depends on the nature of
the critical mode �. While in principle it can be estimated from mapping of Ising coordinates to
QCD phase diagram, it does not belong to a class of observables uniquely predicted by universality
arguments. One perhaps can view � as having some admixture of the lowest (isoscalar) mesons
�, !, (or more precisely, the lowest-mass edge of the corresponding spectral densities). But, since
the couplings to them have opposite sign, the magnitude of gc is hard to estimate, and we will use
it as a free parameter.

As shown in all these works [4, 5, 7], such approach leads to huge e↵ects, which were judged to
be unrealistic. Indeed, if say the correlation length ⇠ > 2 fm ⇠ 1/(100 MeV ), all six pair terms in
a four-nucleon cluster get comparable, leading to correlation ⇠ exp(6|Va|/T ).

In fact, it has been noticed previously by one of us [8] that such approach would lead to catas-
trophic phenomena when ⇠ ! 1. Indeed, in this limit we will have attractive Newton-like potential
between all nucleons in the fireball acting coherently. Since the total number of nucleons in the
fireball is N = O(100), the number of pairs N(N � 1)/2 is so huge that for any meaningful gc

(larger than QED electric coupling) one faces a (gravitation-style) collapse of the system! Looking
for e↵ects which can prevent this from happening, one naturally should consider the multi-nucleon
forces.

B. Qualitative discussion of the multibody e↵ects

Before we discuss phenomena associated with the critical point, let us recall how the usual
nuclear potential and related clustering enter the thermodynamics. As explained in detail in our
previous work [7], the 4-body clusters made of 4 distinguishable nucleons contribute the potential
energy part of the statistical sum in the form of the fourth virial coe�cient.

The potential part of the partition function (of a single species system) of N particles can be
re-written in the form

Zpot = 1 +
1

V N

Z
d3x1...

Z
d3xN

⇥
e
�
�
P

i>j V (~xi�~xj)/T
�

� 1
⇤

(4)
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by adding and subtracting 1. Since we focus on clusters of 4 particles, coordinates of all others
can be integrated out, as well as the coordinates of its center of mass. What is left is

Zpot = 1 +
N(N � 1)(N � 2)(N � 3)

4!
(
Vcor

V 3
) ⇡ 1 + n3V (9)

cor
N

4!
, (5)

where the so-called 9-dimensional correlation volume is

V (9)
cor =

32

105
⇡4

Z
d⇢⇢8(P (⇢) � 1). (6)

Here P (⇢) is the probability distribution in the 9-dimensional hyperdistance ⇢ normalized to that
of a non-interacting ideal gas, and the factor in front is the solid angle in 9 dimensions. We neglect
repulsion and integrate over the region in which the integrand is positive. The addition to the free

energy is then �(�T log(Z)) = �Tn3V (9)
cor

N
4! , same as to the grand partition sum. Di↵erentiating it

with respect to µ, present in each N , one finds the addition to particle number �N/N = n3V (9)
cor /3!

(a factor of 4 cancels out).
The expressions are a bit modified in the case of several particle species. In the problem at hand,

nucleons have spin 1/2 and isospin 1/2, so the number of distinct species is 4. If ns is density per
species, the total density of symmetric matter is simply nB = 4ns. In the case of particular clusters
of p"p#, n"n#) type we actually simulated, with all four species distinguishable (no Fermi e↵ects),
there is no need for symmetrization and there is no 4! = 24 in denominator. However, the density
in front is in this case ns, not total nB , and the numerical suppression factor is 1/43 = 1/64.

The magnitude of this e↵ective volume depends on the temperature and density of the matter,
and it was calculated in our PIMC simulations [7]. For example, at kinetic freezeout conditions ofp

s = 7.7 GeV, we found

V (9)
cor (7.7) ⇡ 4.3 · 104 fm9 (7)

To put it in proper prospective, one can define the “density of the cluster” as

ncl ⌘ 4
�
V (9)

cor
�1/3

(8)

which for
p

s = 7.7 GeV is ncl ⇡ 0.114 /fm3. This value is about 3 times the density of ambient
matter nB(7.7) ⇡ 0.037 /fm3.

In our previous work, the PIMC action included only the binary forces between nucleons, ei-
ther the standard ones (simplified to the Walecka form), or modified due to chiral crossover via
reduced sigma mass. In this work our task is to include the many-body forces appearing near the
hypothetical critical point.

Since below we will need to compare the inter-nucleon separations to the critical correlation
length ⇠, we will also define it by a cubic root of the respective densities

Ramb ⌘ n�1/3
B ⇡ 3.0 fm, Rcl ⌘ n�1/3

cl ⇡ 2.0 fm (9)

The di↵erence between these values may not appear to be large, but it would turn out to be
crucial, as it will enter the relevant formulae in large powers. We do not yet know if the CP exists
or not on the phase diagram, and we do not know what magnitude its maximal correlation length
⇠ may reach on the freezeout line. For an estimate, it is traditionally assumed that this value is
perhaps

⇠max ⇠ 2 fm (10)
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about 3 times the density of  
ambient matter nB(7.7) ≈ 0.037/fm3.  
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discuss the universal e↵ective potential ⌦(�) describing critical fluctuations on the critical line of
Ising-class phase transitions. In the next section IV we consider a deformation of this potential
by some external current J , shifting a bit from the critical line, and representing the freezeout
path on the QCD phase diagram. Nonlinear coe�cients of these deformed potentials are used as
coupling constants in many-body diagrams. Combining those with calculation of the diagrams
themselves we get to results shown in Fig. 10. According to it, strong attraction due to exchange
of the critical mode between the nucleons enhances clustering, with maximum at t ⇡ 0.4 of factor
several, and at smaller t < 0.25 (closer to CP) it changes to repulsion, soon killing clustering. In
section V we summarize the paper and discuss current status of relevant experimental observables.

II. THREE AND FOUR-NUCLEON FORCES AND THE FOUR-NUCLEON
CLUSTERS

A. E↵ect of critical binary potential

Refs. [4, 5, 7] all discussed the e↵ect of the the hypothetical critical point on nucleon interactions,
but only via binary forces. The critical fluctuations were assumed to add to conventional nuclear
force a new binary potential corresponding to the diagram Fig. 2(a)
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h�(~r)�(0)i = � g2c
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exp(�r/⇠)

r
(3)
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Zpot = 1 +
N(N � 1)(N � 2)(N � 3)

4!
(
Vcor

V 3
) ⇡ 1 + n3V (9)

cor
N

4!
, (5)

where the so-called 9-dimensional correlation volume is

V (9)
cor =

32

105
⇡4

Z
d⇢⇢8(P (⇢) � 1). (6)
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nucleons have spin 1/2 and isospin 1/2, so the number of distinct species is 4. If ns is density per
species, the total density of symmetric matter is simply nB = 4ns. In the case of particular clusters
of p"p#, n"n#) type we actually simulated, with all four species distinguishable (no Fermi e↵ects),
there is no need for symmetrization and there is no 4! = 24 in denominator. However, the density
in front is in this case ns, not total nB , and the numerical suppression factor is 1/43 = 1/64.

The magnitude of this e↵ective volume depends on the temperature and density of the matter,
and it was calculated in our PIMC simulations [7]. For example, at kinetic freezeout conditions ofp
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s = 7.7 GeV is ncl ⇡ 0.114 /fm3. This value is about 3 times the density of ambient
matter nB(7.7) ⇡ 0.037 /fm3.

In our previous work, the PIMC action included only the binary forces between nucleons, ei-
ther the standard ones (simplified to the Walecka form), or modified due to chiral crossover via
reduced sigma mass. In this work our task is to include the many-body forces appearing near the
hypothetical critical point.

Since below we will need to compare the inter-nucleon separations to the critical correlation
length ⇠, we will also define it by a cubic root of the respective densities

Ramb ⌘ n�1/3
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The di↵erence between these values may not appear to be large, but it would turn out to be
crucial, as it will enter the relevant formulae in large powers. We do not yet know if the CP exists
or not on the phase diagram, and we do not know what magnitude its maximal correlation length
⇠ may reach on the freezeout line. For an estimate, it is traditionally assumed that this value is
perhaps
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discuss the universal e↵ective potential ⌦(�) describing critical fluctuations on the critical line of
Ising-class phase transitions. In the next section IV we consider a deformation of this potential
by some external current J , shifting a bit from the critical line, and representing the freezeout
path on the QCD phase diagram. Nonlinear coe�cients of these deformed potentials are used as
coupling constants in many-body diagrams. Combining those with calculation of the diagrams
themselves we get to results shown in Fig. 10. According to it, strong attraction due to exchange
of the critical mode between the nucleons enhances clustering, with maximum at t ⇡ 0.4 of factor
several, and at smaller t < 0.25 (closer to CP) it changes to repulsion, soon killing clustering. In
section V we summarize the paper and discuss current status of relevant experimental observables.

II. THREE AND FOUR-NUCLEON FORCES AND THE FOUR-NUCLEON
CLUSTERS

A. E↵ect of critical binary potential

Refs. [4, 5, 7] all discussed the e↵ect of the the hypothetical critical point on nucleon interactions,
but only via binary forces. The critical fluctuations were assumed to add to conventional nuclear
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by adding and subtracting 1. Since we focus on clusters of 4 particles, coordinates of all others
can be integrated out, as well as the coordinates of its center of mass. What is left is
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N
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where the so-called 9-dimensional correlation volume is

V (9)
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Z
d⇢⇢8(P (⇢) � 1). (6)

Here P (⇢) is the probability distribution in the 9-dimensional hyperdistance ⇢ normalized to that
of a non-interacting ideal gas, and the factor in front is the solid angle in 9 dimensions. We neglect
repulsion and integrate over the region in which the integrand is positive. The addition to the free

energy is then �(�T log(Z)) = �Tn3V (9)
cor

N
4! , same as to the grand partition sum. Di↵erentiating it

with respect to µ, present in each N , one finds the addition to particle number �N/N = n3V (9)
cor /3!

(a factor of 4 cancels out).
The expressions are a bit modified in the case of several particle species. In the problem at hand,

nucleons have spin 1/2 and isospin 1/2, so the number of distinct species is 4. If ns is density per
species, the total density of symmetric matter is simply nB = 4ns. In the case of particular clusters
of p"p#, n"n#) type we actually simulated, with all four species distinguishable (no Fermi e↵ects),
there is no need for symmetrization and there is no 4! = 24 in denominator. However, the density
in front is in this case ns, not total nB , and the numerical suppression factor is 1/43 = 1/64.

The magnitude of this e↵ective volume depends on the temperature and density of the matter,
and it was calculated in our PIMC simulations [7]. For example, at kinetic freezeout conditions ofp

s = 7.7 GeV, we found

V (9)
cor (7.7) ⇡ 4.3 · 104 fm9 (7)

To put it in proper prospective, one can define the “density of the cluster” as

ncl ⌘ 4
�
V (9)

cor
�1/3

(8)

which for
p

s = 7.7 GeV is ncl ⇡ 0.114 /fm3. This value is about 3 times the density of ambient
matter nB(7.7) ⇡ 0.037 /fm3.

In our previous work, the PIMC action included only the binary forces between nucleons, ei-
ther the standard ones (simplified to the Walecka form), or modified due to chiral crossover via
reduced sigma mass. In this work our task is to include the many-body forces appearing near the
hypothetical critical point.

Since below we will need to compare the inter-nucleon separations to the critical correlation
length ⇠, we will also define it by a cubic root of the respective densities

Ramb ⌘ n�1/3
B ⇡ 3.0 fm, Rcl ⌘ n�1/3

cl ⇡ 2.0 fm (9)

The di↵erence between these values may not appear to be large, but it would turn out to be
crucial, as it will enter the relevant formulae in large powers. We do not yet know if the CP exists
or not on the phase diagram, and we do not know what magnitude its maximal correlation length
⇠ may reach on the freezeout line. For an estimate, it is traditionally assumed that this value is
perhaps

⇠max ⇠ 2 fm (10)
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of the effect proportional to n and n2, respectively. How-
ever, given the small binding of d and t, one should expect
such contributions to be small. What is left is

Zpot = 1+
N(N − 1)(N − 2)(N − 3)

4!
(
V (9)
cor

V 3
) ≈ 1+n3V (9)

cor
N

4!
(13)

where the so-called 9-dimensional correlation volume
V (9)
cor is

V (9)
cor =

32

105
π4

∫

dρρ8(P (ρ)− 1), (14)

Here P (ρ) is the probability distribution relative to an
ideal gas in 9-dimensional radius ρ shown in Fig. 5, and
the factor in front is the solid angle in 9 dimensions. We
neglect repulsion and integrate over the region in which
the integrand is positive. The addition to free energy

is then ∆(−T log(Z)) = −Tn3V (9)
cor

N
4! , same as to the

grand partition sum. Differentiating it over µ, present
in each N , one finds the addition to the particle number

∆N/N = n3V (9)
cor /3! (a factor of 4 cancels out).

As a check on the numerical factor in the thermody-
namic expression, we can compare it to a more ’direct’
method of computing the ratio of clusters. We can de-

fine the total volume of the entire distribution V (9)
tot anal-

ogously and then compute to ratio R of clusters to un-

clustered configuration R = V (9)
cor /(V

(9)
tot − V (9)

cor ).
The expressions are a bit modified in the case of sev-

eral particle species. In the problem at hand, nucleons
have spin 1/2 and isospin 1/2, so the number of distinct
species is 4. If ns is density per species, the total density
of symmetric matter is simply nB = 4ns. In the case
of particular clusters we actually simulate, made of four
distinct species, there is no need for symmetrization and
there is no 4! = 24 in denominator. However, the density
in front is in this case ns, not total nB, and the numerical
suppression factor is 1/43 = 1/64. Therefore, the clus-
tering contribution to ⟨N⟩ is small, at the percent level
or less.

TABLE III: Correlation volume V
(9)
cor of the 4N system at all

beam energies for mσ = 500, 450, 400 MeV.

√
s (GeV) V

(9)
cor (fm9)

mσ (MeV) 500 450 400

2.4 8.7 · 104 4.4 · 105 4.5 · 106

7.7 4.3 · 104 1.9 · 105 1.6 · 106

11.5 8.8 · 104 2.2 · 105 9.0 · 105

19.6 7.2 · 104 2.7 · 105 7.6 · 105

27. 9.5 · 104 2.5 · 105 7.1 · 105

39. 9.1 · 104 2.4 · 105 6.9 · 105

Furthermore, the n-th derivative of log(Z) over chem-
ical potential, called Kn, can also be calculated. One
finds that K4, with extra three derivatives compared to

K1 = ⟨N⟩, does not have this 1/43 numerical factor, and
so, in the same approximation as above,

K4

⟨N⟩
− 1 = n3

BV
(9)
cor (15)

The values of the r.h.s. are shown in Fig. 10. As one can
see, the predicted cluster contribution to the 4th moment
are no longer small, for the two left points, corresponding
to HADES and the lowest BES-I energy

√
s = 7.7GeV .

This is precisely what is observed.

FIG. 10: The 4th cumulant deviation (Eq. (15)) versus
√
s,

using the 9-dimensional correlated volume V
(9)
cor determined

from the PIMC simulations.

Another perspective at the observed cumulantsKn can
be obtained using factorial cumulants Cn. In particular

K4 − ⟨N⟩ = 7C2 + 6C3 + C4 (16)

According to [15], BES-I data show small values for
C2, C3 and K4 is in fact dominated by the factorial cu-
mulant C4. It correlates well with our general finding,
that clustering starts from the 4N systems, and with the
dependence of K4, C4 on collision energy.
Characterizing the strength of spatial correlations in

the 4N system is necessary for making predictions of the
overall magnitude of the feed-down contributions. Mod-
els of light nuclei production, such as the previously-
mentioned coalescence model [4] show explicit depen-
dence on spatial correlations of nuclei. Our correlated
value is a measure of such correlations.
From Tables II and IV one can then estimate that

about 25% − 30% of the clusters decay into t. The re-
sulting ratio of tritium to proton yields t/p is then about
0.4% at

√
s = 7.7 GeV, which agrees with STAR BES

data.
Table III lists the values of V (9)

cor for all six beam ener-
gies and for three values of mσ. It must be noted that

Although 4-clusters contain  
only fraction of a percent of nucleons 

In kurtosis it is O(1) at  the lowest BES energies

Calculation with 
Conventional nuclear forces

Will be reached  first by the correlation length 

From PIMC

Or 4^4 



7

TABLE I: Low-lying resonances of the 4He system, from BNL
properties of nuclides JP are the total angular momentum
and parity, Γ is the decay width. The last column is the
decay channel branching ratios, in percent. p, n, d correspond
to the emission of proton, neutron, or deuterons respectively.

E (MeV) JP Γ (MeV) decay modes, in %

20.21 0+ 0.50 p = 100

21.01 0− 0.84 n = 24, p = 76

21.84 2− 2.01 n = 37, p = 63

23.33 2− 5.01 n = 47, p = 53

23.64 1− 6.20 n = 45, p = 55

24.25 1− 6.10 n = 47, p = 50, d = 3

25.28 0− 7.97 n = 48, p = 52

25.95 1− 12.66 n = 48, p = 52

27.42 2+ 8.69 n = 3, p = 3, d = 94

28.31 1+ 9.89 n = 47, p = 48, d = 5

28.37 1− 3.92 n = 2, p = 2, d = 96

28.39 2− 8.75 n = 0.2, p = 0.2, d = 99.6

28.64 0− 4.89 d = 100

28.67 2+ 3.78 d = 100

29.89 2+ 9.72 n = 0.4, p = 0.4, d = 99.2

inter-nucleon potential ⟨VNN ⟩ ≃ 0. The cluster at kinetic
freezeout, which is a sum of states of various angular mo-
menta and the thermal tail, shows no angular correlation
between the nucleons. The distributions in Fig. 7 are
qualitatively identical for all beam energies tested.
The wide distribution in internal angles, even in the

ground state, shows the importance of an approximation-
free method for few-body quantum systems such as
PIMC. The previously-used methods, reducing the sys-
tem to a one-dimensional quantum system or the semi-
classical ”flucton” method, assume a symmetry in inter-
nal angles which is not found in the majority of configu-
rations.

IV. MODIFICATION OF THE
INTER-NUCLEON POTENTIAL

In heavy-ion collisions the medium is expected to mod-
ify the parameters of the inter-nucleon potential. This is
especially true near the critical point, where long-range
correlations should arise. The most dramatic effect sug-
gested of this form is the reduction of the σ mass mσ

near Tc [24]

mσ ∼
(

|T − Tc|
Tc

)ν

. (11)

Such a reduction in the σ mass, which drives the attrac-
tive portion of the interaction, will greatly increase the
strength and range of the attraction. A similar decrease
in the ω mass is not expected, meaning the repulsion

FIG. 8: Binding energy EB of the 4N system as a function of
the σ mass mσ

should not increase to compensate. Clearly such a mod-
ification will greatly modify the clustering dynamics of
the 4N system of interest in this work. The most obvi-
ous question to ask is then: how much modification of
mσ should be expected near kinetic freezeout? The an-
swer is that it should be only a small modification for two
main reasons. The first is that the reduction ofmσ to 0 is
expected at Tc which is some ∼ 40 MeV above Tkin for a
wide range of beam energies. The second is that even at
the critical point, the finite size and finite lifetime of the
QGP system prevent the correlation length from getting
too large, and thus, mσ from getting too small.

The strengthening of the attractive force is seen clearly
in Fig. 8. Here the binding energy of the 4N system is
shown for the σ mass reduced down to 300 MeV. Re-
ducing the mass down to this value increases the binding
energy from its physical value of 28.3 MeV by approxi-
mately a factor of 50.

For the smallest value of mσ studied, 300 MeV, the
binding energy is greater than a GeV. Clearly such a
deeply-bound state is unrealistic. This is a limit of the
simplicity of our model. In addition to the binary inter-
action included here, one should also include three- and
four-body interactions as well. These interactions should
also be sensitive to mσ and the three-body interaction
in particular should be strongly repulsive, which should
prevent the system from becoming so deeply bound at
small mσ. These interactions, while not included here,
will be the subject of our future studies.

The effect of the modified interaction on clustering is
seen directly in Fig. 9. Reducing the standard σ mass
by 50 MeV causes the peak correlation to jump from ∼
4 to ∼ 20. Similar values are seen for all but the lowest
beam energy, which all have approximately equal Tkin.
For

√
2 = 2.4 GeV, where Tkin is reduced, the peak cor-

Calculation with 
Modified nuclear forces  

— reduced sigma mass — 
Predicted by chiral transition 

produce huge unrealistic effect

Paradox (ES,2006) at CP: the effect of binary forces induced by the critical mode at CP,  
where ξ → ∞ must be catastrophic. Indeed, if all N (N − 1)/2 ∼ 104 pairs of 

nucleons in the fireball be attracted to each other, with a Newton-like long-range 
potential, the fireball would implode, similar to a gravitational collapse.  

Predicted for 
Chiral transition by RG 
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that was actually happening.

As it will be shown in this paper, the inclusion of many � body forces induced by critical
fluctuations near the hypothetical CP resolves the problem. Furthermore, with presumed growth
of the correlation length ⇠, repulsive three and four-nucleon forces grow even stronger than binary
forces, reversing the dependence on ⇠ seen in the binary force. Basically, they all pre-clustering in
a small vicinity of CP should be killed by these e↵ects. Thus, our calculations have indeed predict
even more non�monotonous signal, starting as an enhancement of clustering, to its rapid absence
near CP, and back to enhancement at the other side of the CP.

Before we begin our discussion, let us state for clarity that in this paper we are not interested
in the most generic problem of the many-body forces influencing the thermodynamics of infinite
matter (at freezeout). Traditional studies of nuclear matter do include well documented three-
body forces, derived from precise treatment of light nuclei. Those are not important here, since
the nucleon density at freezeout conditions of heavy ion collisions of interest are even smaller than
nuclear matter density. Also, as one can see below, the e↵ects we discuss are much larger than
those 3-body forces.

We focus on preclusters with four nucleons. While they include only a fraction of a percent of
all nucleons, their density is ⇠ 3 times larger than nuclear matter density, and therefore three-
and four-body forces are no longer small. Also important is that their size fits well to the maximal
correlation length scale expected near CP. Furthermore, we only discuss four nucleon clusters
of flavor-spin arrangement p"p#n"n#, with all four nucleons being distinguishable particles. This
simplifies combinatorial factors and reduced the technical challenges of the previous PIMC calcu-
lations. As such, Pauli blocking is completely absent, and there are no e↵ects of 5- and 6-body
forces; although such vertices are present in the e↵ective action, it is not supposed to be used in
loops.

The structure of the paper is as follows: in section II we introduce some lowest-order diagrams
describing the interaction of the critical mode with nucleons and with itself, and qualitatively
discuss their signs and magnitudes. Dependence of the diagram magnitude on the cluster size
relative to the correlation length is discussed in section II D. The next section II E averages out
over cluster shapes, using snapshots from path integration performed in Ref. [7]. In section III we

(a) (b)

(c) (d)

FIG. 2. Diagrams representing the many-body interactions of the four-nucleon cluster. Blue circles are
nucleons, black lines are propagators of the � fields
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It is comparable to Rcl defined above, but smaller than Ramb. As we will see, due of this the
multibody forces are important for clusters but not for ambient matter.

Let us now approach the critical point e↵ects, using first the simplest approach available, known
as Landau’s mean field model. We also assume, for simplicity, that the freezeout and crossover
transition line coincide. If so, the e↵ective potential has � ! �� symmetry and therefore odd
powers of it must vanish, �3 = 0 and with it Vb, Vd = 0 (Vi are the interactions of diagram (i)).
Traditionally the Landau potential has only inputs of the mass term and nonzero 4-point vertex
coupling �4.

This approximation leaves us with only two terms: the attractive Va ⇠ n2
B and the repulsive

Vc ⇠ �4n4
B . At the small density of ambient matter, nB is small and the former dominates, while

at the high density of the cluster, the latter dominates.
The free energy per particle is

F

N
⇠ �g2c

R

� ⇠

R

�2
+

�4g4c
R

� ⇠

R

�8
(11)

In an Ising-type critical point in fact the quartic coupling vanishes, as �4 ⇠ 1/⇠, making the
e↵ective power of it in the last term seven, not eight. Still, the dependence on ⇠ is the same:
negative at small ⇠ is reversed to large and positive as ⇠ grows. This means CP should suppress
preclustering and thus reduce feed-down from the 4N system!

The magnitude of the couplings gc, �4 are not yet known, but the e↵ects of the ⇠/R ratios can
be calculated. While in clusters this ratio is just about 1, with all its powers, for ambient matter
these two terms have them be equal to

� ⇠max

Ramb

�2 ⇡ 0.444,
� ⇠max

Ramb

�7 ⇡ 0.058 (12)

and the many-body repulsion term is relatively small.

The critical fluctuation e↵ects thus can work against clustering, reducing the cluster volume V (9)
cor ,

and thus the reduction of kurtosis. Note, that this approximation corresponds to approaching the
CP from smaller to large density, or µB , or the collisions at energies above that of CP.

C. Multibody forces in four-nucleon clusters

In general, the potential part of the partition function should include both binary and many-
body forces. While the former ones were included in PIMC simulations, the latter were not there.
Our task in this work to do so, in particular for the many-body forces appearing due to nonlinear
e↵ective Lagrangian of the critical mode.

Let us introduce the notations we use. For three-body forces induced by diagram (b) we define
function

Vb

�
~x1, ~x2, ~x3

�
⌘

Z
d3uD(~x1 � ~u)D(~x2 � ~u)D(~x3 � ~u) (13)

where

D(r) = exp(�r/⇠)/r (14)

is the binary Yukawa potential. Note, that this function is dimensionless, and that we do not include
here the factor 1/4⇡ present in 3d propagator, which will be included later with the couplings.

We introduce the following objects 8

Similarly, we define four-body function for diagram (c), we have

Vc

�
~x1, ~x2, ~x3, ~x4

�
⌘

Z
d3uD(~x1 � ~u)D(~x2 � ~u)D(~x3 � ~u)D(~x3 � ~u). (15)

Note that its dimension will be [fm�1]
Finally, for diagram (d) we define

Vd

�
~x1, ~x2, ~x3, ~x4

�
⌘

Z
d3ud3vD(~x1 � ~u)D(~x2 � ~u)D(~u � ~v)D(~x3 � ~v)D(~x4 � ~v) (16)

with corresponding dimension [fm].
These functions depend on 3 or 4 points, and should be averaged over manybody density matrix

P
�
~x1, ~x2, ~x3, ~x4

�
of the clusters.

For orientation, we start with clusters of particular shapes and size, varying the correlation
length xi. For di↵erent shapes we will select clusters in which the 9-dimensional hyperdistance ⇢
(defined in (A3) ) is the same. so that one can define the average 3-body potential

Using these definitions, we can write the e↵ective potential for four-nucleon cluster in the fol-
lowing form

V =�4 · 3

2

g2c
4⇡

exp(�rij/⇠)

rij
+ 4 · 3!�3(

gc

4⇡
)3Vb

+4!�4(
gc

4⇡
)4Vc � 4!

�2
3

8⇡
(
gc

4⇡
)4Vd (17)

where we now restore combinatorial factors and signs. Note that an extra 1/8⇡ in the last term
comes from 1/2! of the second order expansion and 1/4⇡ from an extra intermediate propagator
between the vertices.

Generally speaking, this many-body potential should be included in PIMC simulations, as it
was done with the binary potential, to directly observe its e↵ect on clustering. It is not however
practical to do so as they include extra multidimensional integrations over the locations of the
nonlinear vertices.

We therefore adopt the perturbative approach, in which all locations of the nucleons ~xi in the
cluster are to be averaged over the appropriate 9-dimensional density matrix calculated in PIMC
with the binary interactions only .

In doing this average, we would like to separate the dependencies on the “hyperdistance” ⇢ and
the “shapes” (angular variables) of the cluster. The former is defined via most-symmetric definition
of the hyperdistance ⇢ (A3) coordinate.

D. Dependence of multibody forces on the cluster shape and the correlation length

As a warm-up, we calculate the diagrams for two specific shapes. The most symmetric one is
a tetrahedral shape, in which all pair distances are the same Ltet. Another shape we considered
is a flat square with size Lsq: in order for both to correspond to the same hyperdistance ⇢, they
should be related by

6L2
tet = (4 + 2 · 2)L2

sq = 4⇢2 (18)

The results are shown in Fig. 3 as a function of the basic ratio ⇠/⇢, and also in the Table 1
for ⇠/⇢ = 1 . In diagram (d) there are two vertices and the square configuration can be further
divided into two more configurations: one in which nucleons on the same side of the square are
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It is comparable to Rcl defined above, but smaller than Ramb. As we will see, due of this the
multibody forces are important for clusters but not for ambient matter.

Let us now approach the critical point e↵ects, using first the simplest approach available, known
as Landau’s mean field model. We also assume, for simplicity, that the freezeout and crossover
transition line coincide. If so, the e↵ective potential has � ! �� symmetry and therefore odd
powers of it must vanish, �3 = 0 and with it Vb, Vd = 0 (Vi are the interactions of diagram (i)).
Traditionally the Landau potential has only inputs of the mass term and nonzero 4-point vertex
coupling �4.

This approximation leaves us with only two terms: the attractive Va ⇠ n2
B and the repulsive

Vc ⇠ �4n4
B . At the small density of ambient matter, nB is small and the former dominates, while

at the high density of the cluster, the latter dominates.
The free energy per particle is

F

N
⇠ �g2c

R

� ⇠

R

�2
+

�4g4c
R

� ⇠

R

�8
(11)

In an Ising-type critical point in fact the quartic coupling vanishes, as �4 ⇠ 1/⇠, making the
e↵ective power of it in the last term seven, not eight. Still, the dependence on ⇠ is the same:
negative at small ⇠ is reversed to large and positive as ⇠ grows. This means CP should suppress
preclustering and thus reduce feed-down from the 4N system!

The magnitude of the couplings gc, �4 are not yet known, but the e↵ects of the ⇠/R ratios can
be calculated. While in clusters this ratio is just about 1, with all its powers, for ambient matter
these two terms have them be equal to
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Ramb

�2 ⇡ 0.444,
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Ramb

�7 ⇡ 0.058 (12)

and the many-body repulsion term is relatively small.

The critical fluctuation e↵ects thus can work against clustering, reducing the cluster volume V (9)
cor ,

and thus the reduction of kurtosis. Note, that this approximation corresponds to approaching the
CP from smaller to large density, or µB , or the collisions at energies above that of CP.

C. Multibody forces in four-nucleon clusters

In general, the potential part of the partition function should include both binary and many-
body forces. While the former ones were included in PIMC simulations, the latter were not there.
Our task in this work to do so, in particular for the many-body forces appearing due to nonlinear
e↵ective Lagrangian of the critical mode.

Let us introduce the notations we use. For three-body forces induced by diagram (b) we define
function

Vb

�
~x1, ~x2, ~x3

�
⌘

Z
d3uD(~x1 � ~u)D(~x2 � ~u)D(~x3 � ~u) (13)

where

D(r) = exp(�r/⇠)/r (14)

is the binary Yukawa potential. Note, that this function is dimensionless, and that we do not include
here the factor 1/4⇡ present in 3d propagator, which will be included later with the couplings.

the factor 1/4π present in 3d propagator 
will be included later with the couplings. 

These functions depend on 3 or 4 points 
should be averaged over manybody 

 density matrix of the clusters. 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discuss the universal e↵ective potential ⌦(�) describing critical fluctuations on the critical line of
Ising-class phase transitions. In the next section IV we consider a deformation of this potential
by some external current J , shifting a bit from the critical line, and representing the freezeout
path on the QCD phase diagram. Nonlinear coe�cients of these deformed potentials are used as
coupling constants in many-body diagrams. Combining those with calculation of the diagrams
themselves we get to results shown in Fig. 10. According to it, strong attraction due to exchange
of the critical mode between the nucleons enhances clustering, with maximum at t ⇡ 0.4 of factor
several, and at smaller t < 0.25 (closer to CP) it changes to repulsion, soon killing clustering. In
section V we summarize the paper and discuss current status of relevant experimental observables.

II. THREE AND FOUR-NUCLEON FORCES AND THE FOUR-NUCLEON
CLUSTERS

A. E↵ect of critical binary potential

Refs. [4, 5, 7] all discussed the e↵ect of the the hypothetical critical point on nucleon interactions,
but only via binary forces. The critical fluctuations were assumed to add to conventional nuclear
force a new binary potential corresponding to the diagram Fig. 2(a)

Va = � g2c
4⇡

h�(~r)�(0)i = � g2c
4⇡

exp(�r/⇠)

r
(3)

Since this potential was included in the exponential of the action, all of its iterations were also
included. The coupling of the critical mode to nucleons gc of course depends on the nature of
the critical mode �. While in principle it can be estimated from mapping of Ising coordinates to
QCD phase diagram, it does not belong to a class of observables uniquely predicted by universality
arguments. One perhaps can view � as having some admixture of the lowest (isoscalar) mesons
�, !, (or more precisely, the lowest-mass edge of the corresponding spectral densities). But, since
the couplings to them have opposite sign, the magnitude of gc is hard to estimate, and we will use
it as a free parameter.

As shown in all these works [4, 5, 7], such approach leads to huge e↵ects, which were judged to
be unrealistic. Indeed, if say the correlation length ⇠ > 2 fm ⇠ 1/(100 MeV ), all six pair terms in
a four-nucleon cluster get comparable, leading to correlation ⇠ exp(6|Va|/T ).

In fact, it has been noticed previously by one of us [8] that such approach would lead to catas-
trophic phenomena when ⇠ ! 1. Indeed, in this limit we will have attractive Newton-like potential
between all nucleons in the fireball acting coherently. Since the total number of nucleons in the
fireball is N = O(100), the number of pairs N(N � 1)/2 is so huge that for any meaningful gc

(larger than QED electric coupling) one faces a (gravitation-style) collapse of the system! Looking
for e↵ects which can prevent this from happening, one naturally should consider the multi-nucleon
forces.

B. Qualitative discussion of the multibody e↵ects

Before we discuss phenomena associated with the critical point, let us recall how the usual
nuclear potential and related clustering enter the thermodynamics. As explained in detail in our
previous work [7], the 4-body clusters made of 4 distinguishable nucleons contribute the potential
energy part of the statistical sum in the form of the fourth virial coe�cient.

The potential part of the partition function (of a single species system) of N particles can be
re-written in the form

Zpot = 1 +
1

V N

Z
d3x1...

Z
d3xN

⇥
e
�
�
P

i>j V (~xi�~xj)/T
�

� 1
⇤

(4)

If nucleons are uncorrelated 
They are easy to calculate. 

But they are correlated!



How diagrams depend on the cluster shape and the correlation length?
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FIG. 3. (Color online) Interactions Vb (left), Vc (center), and Vd (right) corresponding to diagrams
(b,c,d) of Fig. 2, respectively, as a function of the correlation-length-to-hyperdistance ratio ⇠/⇢ for both
the tetrahedral and square configurations. The curve is an interpolation of the tetrahedral data points.
The distinction between the ’same’ and ’opposite’ square configurations for diagram (d) is explained in the
text.

connected to the same vertex and one in which nucleons on opposite corners are connected. The
same distinction can be made for the binary interaction (diagram (a)), where two nucleons on the
same or opposite side of the square can be connected by the propagator. While Vb and Vc show
very small dependence on cluster shape, it is not so for Vd. Both the tetrahedron and square are
very symmetric configurations and we know from the previous work that even in the correlated
cluster, there are not significant angular correlations between the nucleons.

Using these results and assuming, for simplicity, a Landau form of e↵ective action, with only
diagrams (a) and (c) included, one can access the dependence of the cluster potential on the
magnitude of the correlation length ⇠. Assuming further that all clusters have the same tetrahedral
shapes, we define the average potential as

Vtet = �6
g2c
4⇡

hVaitet + 4!�4(
gc

4⇡
)4hVcitet (19)

Now we need to select reasonable values for the couplings. Some guidance on the magnitude of g,
the coupling of � to the nucleon, can be obtained from the Walecka model applications to nuclear
matter. In it the sigma and omega couplings are

g2�
4⇡

= 6.04,
g2!
4⇡

= 15.17. (20)

The critical mode � is presumably some superposition of the (lowest-momenta parts of the spectral
densities) with �, ! quantum numbers. So, its coupling must be comparable. As a guess, we take
it to be that of the nucleon-sigma meson coupling.

The value of quartic coupling �4 in the Landau model remains an arbitrary parameter. So in
Fig.4 we show the dependence of the additional cluster energy (19) as a function of the correlation
length, for its two values. Naturally, at small ⇠ all forces are very short range and additional energy
is very small. With ⇠ growing to about 1.5 fm the six attractive potentials reach together a value
of the order of �1 GeV, but for larger ⇠ values the quartic term mitigates attraction and turns the
curve upward, eventually making this additional energy positive. A similar trend would be seen
for any other cluster shape. This plot provides some initial understanding of possible role of the
manybody forces.

At small correlation length very strong dependence on xi 
But it is moderate at xi/rho>1 

Rather weak dependence 
 on shape if rho is the same



Averaging diagrams over snapshots from PIMC simulation
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FIG. 5. Distribution of values of the multibody interactions Vb (left), Vc (center), and Vd (right) corre-
sponding to diagrams (b,c,d) of Fig. 2, respectively, in 250 configurations generated in PIMC simulation.
All configuration have 1.49 < ⇢ < 1.51 (fm) and were computed with ⇠ = 2 fm.
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FIG. 6. Distribution of values of the multibody interactions Vb (left), Vc (center), and Vd (right) corre-
sponding to diagrams (b,c,d) of Fig. 2, respectively, in 5000 configurations each for the cluster (⇢ < 3 fm)
and ambient nucleon matter (⇢ > 3 fm) generated in PIMC simulation. Calculation performed with ⇠ = 2
fm.

Comparing the average values of the interactions, one finds

hVaicl

hVaiamb
= 2.63,

hVbicl

hVbiamb
= 4.00,

hVcicl

hVciamb
= 10.73,

hVdicl

hVdiamb
= 6.52. (21)

As expected, there is a clear hierarchy in these ratios. The dependence of the N -body diagrams on
the ratio ⇠/⇢ grows with N . Thus, the many-body interactions grow in their importance relative
to the standard binary interaction as ⇠ increases near CP. These ratios should grow at smaller
values of row such as ⇢ ⇠ 1.5 fm, where peak spatial correlation is observed.

Diagrams are significantly larger for clusters
Tails to the right are due to very small clusters: but those will be killed
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FIG. 3. (Color online) Interactions Vb (left), Vc (center), and Vd (right) corresponding to diagrams
(b,c,d) of Fig. 2, respectively, as a function of the correlation-length-to-hyperdistance ratio ⇠/⇢ for both
the tetrahedral and square configurations. The curve is an interpolation of the tetrahedral data points.
The distinction between the ’same’ and ’opposite’ square configurations for diagram (d) is explained in the
text.

connected to the same vertex and one in which nucleons on opposite corners are connected. The
same distinction can be made for the binary interaction (diagram (a)), where two nucleons on the
same or opposite side of the square can be connected by the propagator. While Vb and Vc show
very small dependence on cluster shape, it is not so for Vd. Both the tetrahedron and square are
very symmetric configurations and we know from the previous work that even in the correlated
cluster, there are not significant angular correlations between the nucleons.

Using these results and assuming, for simplicity, a Landau form of e↵ective action, with only
diagrams (a) and (c) included, one can access the dependence of the cluster potential on the
magnitude of the correlation length ⇠. Assuming further that all clusters have the same tetrahedral
shapes, we define the average potential as

Vtet = �6
g2c
4⇡

hVaitet + 4!�4(
gc

4⇡
)4hVcitet (19)

Now we need to select reasonable values for the couplings. Some guidance on the magnitude of g,
the coupling of � to the nucleon, can be obtained from the Walecka model applications to nuclear
matter. In it the sigma and omega couplings are

g2�
4⇡

= 6.04,
g2!
4⇡

= 15.17. (20)

The critical mode � is presumably some superposition of the (lowest-momenta parts of the spectral
densities) with �, ! quantum numbers. So, its coupling must be comparable. As a guess, we take
it to be that of the nucleon-sigma meson coupling.

The value of quartic coupling �4 in the Landau model remains an arbitrary parameter. So in
Fig.4 we show the dependence of the additional cluster energy (19) as a function of the correlation
length, for its two values. Naturally, at small ⇠ all forces are very short range and additional energy
is very small. With ⇠ growing to about 1.5 fm the six attractive potentials reach together a value
of the order of �1 GeV, but for larger ⇠ values the quartic term mitigates attraction and turns the
curve upward, eventually making this additional energy positive. A similar trend would be seen
for any other cluster shape. This plot provides some initial understanding of possible role of the
manybody forces.
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Walecka model of 
Relativistic mean field 

For nuclear matter

Critical mode is their mixture 
Stephanov used 10  

as some round average 
And so do we

But  we do not know  
The value of  

The quartic coupling
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FIG. 4. Energy of four-nucleon tetrahedral cluster (in GeV ) as a function of correlation length ⇠ (fm).
The critical mode-nucleon coupling is taken to be equal to nucleon-sigma meson coupling of the Walecka
model (20), and the values of quartic coupling �4 = 1.5 (upper curve) and �4 = 1 (lower curve).

E. Averaging the multi-body forces over PIMC clusters

To make the analysis of the previous section a bit more quantitative, one needs to understand the
e↵ect of averaging over all cluster shapes. In order to do so we use the 9-dimensional configurations
taken from PIMC simulation at a fixed value of ⇢ and calculates all 4 diagrams for them. The
distribution of values is shown in Fig. 5. One finds that in fact there where a wider distribution
of values is seen than for the fixed shapes discussed before. For all three diagrams, variation by
⇠ 50% is seen from changing the shape but keeping ⇢ fixed. This indicates that an accurate
parameterization of these interactions requires not just dependence on hyperdistance ⇢, but rather
they must depend on the full set of 9-dimensional hypercoordinates. However, we find that there
is overall less sensitivity to system shape than to other quantities in the energy of the cluster, such
as the nucleon coupling gN or the external current J (see Section IV).

After these preliminary studies of the diagrams for clusters of particular shapes, we perform the
actual density matrix from our PIMC ensemble [7]. The results are shown as histograms of the
values of the potentials Vi, for configurations. The cluster configurations are chosen from those
with ⇢ < 3 fm, the approximate maximum size of the cluster. Ambient configurations are then
chosen from those with ⇢ > 3 fm, where the average inter-nucleon binary interaction is small
hVNN i ' 0 and no correlation is observed. For each set 5000 configurations are chosen from the
PIMC simulation corresponding to kinetic freezeout at

p
s = 7.7 GeV. As expected, these values are

quite di↵erent for these two subsets, indicating that many-body forces are much more important
within the clusters than for random (uncorrelated) nucleons.

The results are plotted at Fig. 6. These histograms show that the many-body interactions are
much stronger in the cluster compared to the ambient matter at freezeout. The distributions in
the cluster possess both larger average values of the interactions and much longer high-value tails
than the ambient matter distributions. The long tails of these distributions correspond to the most
compact clusters (with the smallest values of ⇢).

Repulsing wins  
Close to CP
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TABLE I. The first two rows are the average values of the diagrams in both the cluster and ambient
nucleon matter computed with ⇠ = 2 fm. Latter three rows are the values of the diagrams for the specific
geometries calculated with ⇠/⇢ = 1. All values are given without couplings, combinatorial factors, signs,
and factors of 4⇡ in propagators: e.g. Va are given without �g

2
c/4⇡.

a b c d

hV icl 0.110 1.092 0.292 4.184

hV iamb 0.289 0.273 0.027 0.642

Vtet 0.541 1.434 0.924 3.143

Vsq,same 0.697 1.485 0.956 3.713

Vsq,opp 0.368 - - 2.523

III. THE UNIVERSAL EFFECTIVE ACTION FOR ISING-TYPE CRITICAL
FLUCTUATIONS

The Landau model, used as an initial approximation, does not however represent correct behavior
near Ising-like critical points. Wilson’s epsilon expansion – in ✏ = 4�d where d is space dimension–
has found that under the renormalization group flow the Landau model goes into the fixed-point
regime in infrared, with small coupling at small ✏. While Wilson famously calculated approximate
values of the critical indices, one might still doubt whether ✏-expansion gives an accurate account
at ✏ = 1, d = 3.

Let us assume that many degrees of freedom, deemed “fast”, are integrated out, and introduce
an e↵ective action ⌦(�) for “slow” or IR critical mode �. The partition function we put in the
form the form

Z =

Z
D�e�(⌦(�)+J(x)�(x))V3/T (22)

where derivatives of �(x) are neglected, and a current term is introduced for future use. Here V3

is volume of the system and T is temperature.
Let us start with brief qualitative discussion of possible form of this e↵ective potential ⌦(�). It

will consist of two arguments suggesting that at the critical point ⌦ ⇠ �6. Both are not new, being
kind of folklore in the field, but given for benefit of the readers.

One generic idea is to “probe” it by a nonzero external term J and study mean “magnetization”
h�i(J), and it was followed by various techniques. Standard definition of the index � is

h�i(J) ⇠ J1/�, � =
d + 2 � ⌘

d � 2 + ⌘
⇡ 4.78 (23)

and the number here is its empirical values, from real and numerical experiments for systems
belonging to Ising universality class.

The minimum of the potential shifted by J 6= 0 is given by the solution of

d⌦

d�
= J. (24)

For m ! 0 and Landau theory, when the only nonlinear term is �4, one finds � = 3, which is not
close to the true value. The closest integer to 4.78 is 5 (corresponding to ⌘ = 0) or ⌦ ⇠ �6. One
can therefore think that a potential with dominant six-field term would be a better approximation
to reality.

The second argument is theoretical: including a �6 term – but not higher powers – can be
justified because this term is the last renormalizable one, in d = 3 space.
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Three arguments suggesting that at the critical point Ω ∼ φ6.  
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1. Much closer to 5 than to 3

2. including a φ6  term – but not higher powers – can be justified  
because this term is the renormalizable one, in d = 3 case  

3. there are numerical studies showing this ansatz for Ω gives good fits of lattice data.  
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Probing effective action at large phi is done by 

doing simulations with different J


At critical line parameterized by t=T/Tc-1
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Finally, there are numerical studies showing this ansatz for ⌦ gives good fits of lattice data. In
particular, very good fits to � distributions of the Ising model were demonstrated in Ref. [9], after
the pre-exponent factor

p
d2V/d�2 was included. Following notations of this paper, one writes the

form of the e↵ective action of the critical field to be

⌦(�) =

Z
d3x

⇥ (�,µ)2

2
+

m2�2

2
+ mg4�

4 + g6�
6
⇤

(25)

Note that at m ! 0, ⇠ ! 1 it indeed has only the last �6 term.
( Let us add a comment on numerical simulations Ref.[9]. In it many lattices are used, but the

ratio of the box size L to the correlation length xi was kept constant, specifically L/⇠ = 4.1. This
implies existence of about (L/⇠)3 ⇠ 70 statistically uncorrelated domains. Curiously, by numerical
coincidence a similar ratio (and number of domains) are expected for fireballs corresponding to
central heavy ion collisions and ⇠max ⇠ 2 fm. Therefore, histograms for mean field distributions
P (�) ⇠ exp[�V4⌦(�)] from the paper are approximately the same as in these fireballs.)

For our purposes we prefer to put it in dimensionless form. The dimensions of the two couplings
are nonzero: [g4] ⇠ L, [g6] ⇠ L2, with L indicating length [10]. Obviously, any length scale
cannot be universal, only dimensionless ratios can be. Celebrated epsilon expansion starts with
g6/g24 = 2✏ + ... and in 3d or ✏ = 1 one expects the ratio to be around 2. Unfortunately, further
terms in epsilon expansion apparently show that at ✏ = 1 the series is divergent , putting such
conclusions in doubt. And yet, numerical fits from Ref. [9] suggested this ratio is indeed close to
2, specifically

g6
g24

=
2.05

0.972
⇡ 2.17 (26)

which we adopt as the universal property of the Ising universality class. Let us rewrite the e↵ective
action in a simpler way. The quartic coupling we will select as our basic mass scale

g4 ⌘ 1

M
(27)

Using it, let us make the fluctuation field dimensionless by

�̃ ⌘ �

M
(28)

Note that M , unlike m, it is not changing near the CP. Using the definition of critical index ⌫
of the correlation length, we relate them by

m =
1

⇠
⇡ Mt⌫ (29)

where we use standard dimensionless temperature variable t ⌘ (T/Tc � 1).
With these notations, the distribution of the homogeneous (no derivative) fluctuations take a

compact form in which each term is dimensionless

P (�̃) ⇠ exp
⇥
� (V3M3)

(T/M)

�
�̃2t2⌫/2 + �̃4t⌫ + 2.17�̃6

�⇤
(30)

Note that in the limit directly at CP, ⇠ = 1, t = 0, only the last term survives. Far from it, say
at t = 1, the first term is dominant at small �̃ and make fluctuations Gaussian.

Further, for estimates we will assume that M ⇡ m� = 500 MeV and so ⇠min = 0.4 fm. If
⇠max = 2 fm, then t⌫min ⇡ 1/5.
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P (�) ⇠ exp[�V4⌦(�)] from the paper are approximately the same as in these fireballs.)

For our purposes we prefer to put it in dimensionless form. The dimensions of the two couplings
are nonzero: [g4] ⇠ L, [g6] ⇠ L2, with L indicating length [10]. Obviously, any length scale
cannot be universal, only dimensionless ratios can be. Celebrated epsilon expansion starts with
g6/g24 = 2✏ + ... and in 3d or ✏ = 1 one expects the ratio to be around 2. Unfortunately, further
terms in epsilon expansion apparently show that at ✏ = 1 the series is divergent , putting such
conclusions in doubt. And yet, numerical fits from Ref. [9] suggested this ratio is indeed close to
2, specifically
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g24

=
2.05

0.972
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which we adopt as the universal property of the Ising universality class. Let us rewrite the e↵ective
action in a simpler way. The quartic coupling we will select as our basic mass scale

g4 ⌘ 1

M
(27)

Using it, let us make the fluctuation field dimensionless by

�̃ ⌘ �

M
(28)

Note that M , unlike m, it is not changing near the CP. Using the definition of critical index ⌫
of the correlation length, we relate them by

m =
1

⇠
⇡ Mt⌫ (29)

where we use standard dimensionless temperature variable t ⌘ (T/Tc � 1).
With these notations, the distribution of the homogeneous (no derivative) fluctuations take a

compact form in which each term is dimensionless

P (�̃) ⇠ exp
⇥
� (V3M3)

(T/M)

�
�̃2t2⌫/2 + �̃4t⌫ + 2.17�̃6

�⇤
(30)

Note that in the limit directly at CP, ⇠ = 1, t = 0, only the last term survives. Far from it, say
at t = 1, the first term is dominant at small �̃ and make fluctuations Gaussian.

Further, for estimates we will assume that M ⇡ m� = 500 MeV and so ⇠min = 0.4 fm. If
⇠max = 2 fm, then t⌫min ⇡ 1/5.

M. M. Tsypin, (1994), arXiv:hep-lat/9401034 [hep-lat]. 
Agrees also with RG calculation by Heidelberg group  

Dimensionless  
couplings are fixed
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at CP, ξ = ∞, t = 0, only the last term survives. 
Only one dimensional parameter M  
Which we take to be sigma mass
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FIG. 7. The universal probability distributions of dimensionless �̃ field . Red Gaussian-like curve on
the left corresponds to t ⇠ O(1) or far from CP. Blue dashed line corresponds to tmin = 0.077, the
minimal value we think can be reached experimentally. Black dotted curve on the right shows fluctuation
distribution at the CP, t = 0: here critical fluctuations are maximal and strongly non-Gaussian.

(e) (f)

FIG. 8. Lowest order diagrams including five and six nucleons. Blue closed circles are those belonging to
4-N cluster, open circles indicate nucleons from the “ambient matter”

Here V3 is 3d volume and T is the temperature. For crude estimates one may take V3 to be the
volume of ”preclusters” and T the kinetic freezeout temperature.

The assumed dominance of the 6-field coupling puts into question whether the original 4 diagrams
of Fig.2 would be enough, especially very close to the CP. Therefore we introduce two more, shown
in Fig.8. The diagram (f) can be written as

Vf/n ⇠ 1

Rcl

� �6

R2
cl

�� ⇠12

R9
clR

3
amb

�
(31)

with two last brackets dimensionless. So, for ⇠ ⌧ Rcl < Ramb it is extremely strongly suppressed,
but if ⇠ ⇠ Rcl ⇠ 2 fm most of the suppression is gone. It is this repulsive diagram alone which
should be able to moderate huge attraction due to diagram (a) at the CP.

t=0 
Very 
non- 

Gaussian

t=1 
Gaussian

t=0.077

g4=0.97, g6-2.05 from fit

P=exp(-VM^3 Omega)



DEFORMED EFFECTIVE POTENTIAL NEAR THE CRITICAL LINE  
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t ⌦(�)

0.0776869 �0.000277864 + 0.0356226�2 + 0.125483�3 + 0.531943�4 + 1.31482�5 + 2.17�6

0.117687 �0.000178195 + 0.0418503�2 + 0.0855832�3 + 0.413747�4 + 0.895387�5 + 2.17�6

0.157687 �0.00012604 + 0.053607�2 + 0.067323�3 + 0.392567�4 + 0.646205�5 + 2.17�6

0.197687 �0.0000955707 + 0.0680456�2 + 0.0570089�3 + 0.407011�4 + 0.493784�5 + 2.17�6

0.237687 �0.0000760389 + 0.0840729�2 + 0.050198�3 + 0.434366�4 + 0.394223�5 + 2.17�6

0.277687 �0.000062618 + 0.101214�2 + 0.0452523�3 + 0.466472�4 + 0.325205�5 + 2.17�6

0.317687 �0.0000529043 + 0.119227�2 + 0.041441�3 + 0.500157�4 + 0.27502�5 + 2.17�6

0.357687 �0.0000455885 + 0.137967�2 + 0.0383842�3 + 0.534097�4 + 0.237124�5 + 2.17�6

0.397687 �0.0000399036 + 0.15734�2 + 0.0358613�3 + 0.567714�4 + 0.207629�5 + 2.17�6

0.437687 �0.0000353736 + 0.17728�2 + 0.0337333�3 + 0.600758�4 + 0.184102�5 + 2.17�6

TABLE II. Universal dimensionless potential, deformed by J̃ = 0.005, and re-centered to the same value
of the maximum, � = 0.

IV. DEFORMED EFFECTIVE POTENTIAL NEAR THE CRITICAL LINE

The universal e↵ective potential discussed in preceding section (25) was defined at the critical
line. Therefore it possesses the � ! �� symmetry and includes only even powers of �, of which
power 6 seems to be dominant at CP. However, in heavy ion collisions the freezeout line – the
endpoints of evolution paths on the phase diagram – is expected to be located at a certain distance
below (lower T ) the critical line. This fact limits the maximal value of the correlation length
⇠ = 1/m, but also modifies the e↵ective potential. As we now detail, it put into work all diagrams
(a-f) discussed.

We thought of two approaches to define the deformed e↵ective potential:
(1) One general way is to start with the universal Equation of State (EOS) on the 2-d plane of the
Ising variables, the reduced t and the magnetization M , and then map it to QCD phase diagram.
This approach, started in the epsilon-expansion framework, was used by Nonaka and Asakawa
[11], and Stephanov [6]. We followed it to some extent, and put the related formulae and plot in
Appendix C.
(2) Another is to use the e↵ective potential on the critical line, defined in the previous section,
and then calculate its deformation by a linear term J�. Explicit assumptions here are: J must be
approximately constant at the freezeout line. Using it, we calculate the deformation of the e↵ective
potentials and then use the coe�cients of �3, �4 in the potential as the nonlinear couplings.

Suppose the fluctuation distribution is deformed by a certain additional term, in dimensionless
notations by �J̃0�̃, shifting the minimum away from the symmetry point � = 0. This new
maximum point, �̃0(J̃), is to be found from solving the equation

@⌦

@�̃
(�̃0) = J (32)

Writing the fluctuation field in the form

�̃ = �̃0 + � (33)

one can express the potential in terms of new fluctuation field �. This was done for a number of
values of re-scaled temperature variable t and shown in the Table II. As one can see, there are no
linear terms, but there appear all other powers of � (up to the sixth). Note that the smallest value
tmin (in the first row) corresponds to maximal correlation length ⇠ = 1/Mt⌫ = 2 fm.

In order to get an idea about actual distributions of the fluctuating critical field one has to return
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As example we use dimensionless J =1/100 
Then solve the 5-th order eqn for maximum 

Then re-center the distribution by 
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linear terms, but there appear all other powers of � (up to the sixth). Note that the smallest value
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In order to get an idea about actual distributions of the fluctuating critical field one has to return

And get new action in terms of delta 
Which has all powers of it except the first

Six curves, top to bottom, correspond 
to values of t = 0.01, 0.09, 0.19, 0.29, 

0.39, 0.49, 0.59.  
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can be estimated as

Vf/n ⇠ g6c
Rcl

g6
� ⇠12

R9
clR

3
amb

�
(31)

with two last brackets dimensionless. So, for ⇠ ⌧ Rcl < Ramb it is extremely strongly suppressed,
but if ⇠ ⇠ Rcl ⇠ 2 fm most of the suppression is gone. It is this repulsive diagram alone which
should be able to moderate huge attraction due to diagram (a) at the CP.

IV. DEFORMED EFFECTIVE POTENTIAL NEAR THE CRITICAL LINE

The universal e↵ective potential discussed in the preceding section (25) was defined on the critical
line. Therefore it was symmetric under � ! �� and included only even powers of �. However,
in heavy ion collisions we expect the endpoints of evolution paths on the phase diagram, known
as the freezeout line, to be located at certain distance below ( at lower T ) critical line. Such shift
modifies the e↵ective potential. In particular, the maximal value of the correlation length ⇠ = 1/m
gets limited. Also the � ! �� symmetry is broken and odd powers of � appear. As we now detail,
it turned out to be very important for the estimated many-body forces.

We thought of two approaches to define the deformed e↵ective potential:
(1) One general way is to start with the universal Equation of State (EOS) on the 2D plane of the
Ising variables, the reduced t and the magnetization M , and then map it to QCD phase diagram.
This approach, started in the epsilon-expansion framework, was used by Nonaka and Asakawa [12],
and Stephanov [6]. We followed it to some extent, and put some the related formulae and one plot
in Appendix C.
(2) Another is to use the e↵ective potential on the critical line, defined in the previous section, and
calculate its deformation by a linear term J�, assuming that J remains constant at the freezeout
line. Using it, we calculate the deformation of e↵ective potential shape and then use the coe�cients
of �3, �4 as e↵ective nonlinear couplings �3, �4.

The first e↵ect of the deformation by J̃ �̃ term is a shift of the maximum away from the symmetry
point � = 0. Location of the new maximum �̃0(J̃) is to be found from solving polynomial equation

@⌦def

@�̃
(�̃0) = J̃ (32)

which, with our truncation, is of the 5th order. As an example, for J̃ = 1/100 we perform this
procedure for various values of t. In particular, the real roots of this equation are

�̃0(t = 0.01) ⇡ 0.224, �̃0(t = 0.41) ⇡ 0.031

We then rewrite the fluctuation field in the form

�̃ = �̃0 + � (33)

and re-express the potential in terms of new fluctuation field �. This was done for all values of
t, for example the deformed potential at t = 0.01 takes the form

⌦def (t = 0.01) ⇡ �0.0017 + 0.095�2 + 0.51�3 + 1.60�4 + 2.75�5 + 2.05�6

Note that there is no linear terms, but other odd powers of � are present.
In order to get an idea about actual distributions of the fluctuating critical field one has to return

to dimensionful prefactor of the universal action, and also select the scale at which the fluctuations
will be studied. The probability distribution of homogeneous fields is given in Eq. (34) where
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and Stephanov [6]. We followed it to some extent, and put some the related formulae and one plot
in Appendix C.
(2) Another is to use the e↵ective potential on the critical line, defined in the previous section, and
calculate its deformation by a linear term J�, assuming that J remains constant at the freezeout
line. Using it, we calculate the deformation of e↵ective potential shape and then use the coe�cients
of �3, �4 as e↵ective nonlinear couplings �3, �4.

The first e↵ect of the deformation by J̃ �̃ term is a shift of the maximum away from the symmetry
point � = 0. Location of the new maximum �̃0(J̃) is to be found from solving polynomial equation

@⌦def

@�̃
(�̃0) = J̃ (32)

which, with our truncation, is of the 5th order. As an example, for J̃ = 1/100 we perform this
procedure for various values of t. In particular, the real roots of this equation are

�̃0(t = 0.01) ⇡ 0.224, �̃0(t = 0.41) ⇡ 0.031

We then rewrite the fluctuation field in the form

�̃ = �̃0 + � (33)

and re-express the potential in terms of new fluctuation field �. This was done for all values of
t, for example the deformed potential at t = 0.01 takes the form

⌦def (t = 0.01) ⇡ �0.0017 + 0.095�2 + 0.51�3 + 1.60�4 + 2.75�5 + 2.05�6

Note that there is no linear terms, but other odd powers of � are present.
In order to get an idea about actual distributions of the fluctuating critical field one has to return

to dimensionful prefactor of the universal action, and also select the scale at which the fluctuations
will be studied. The probability distribution of homogeneous fields is given in Eq. (34) where
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FIG. 9. Probability distributions of the deformed action P (�) distorted by J̃ = 0.01 in the 4-nucleon cluster
volume. The six curves, from top to bottom, correspond to values of t = 0.01, 0.09, 0.17, 0.25, 0.33, 0.41,
respectively. The 3D volume and mass prefactors are explained in the text.

V3 is the 3D volume, made dimensionless by the 3rd power of basic scale M . Using the volume
of the cluster V3 = (4.3 ⇤ 104 fm9)1/3, one finds a very large product of the first bracket, ⇠ 550.
Yet since small � appears in high powers, one gets the distributions shown in Fig. 9. While it is
approximately Gaussian for larger t (bottom curves), it becomes quite strongly deformed close to
CP.

The dependence of m2 = 1/⇠2, and the triple and quartic couplings from the deformed e↵ective
action on t is shown in Fig. 10. Note significant growth of the coupling near CP (left). Note also
that at small t the inverse correlation length m does not go to zero, although it remains small.

P (�) ⇠ exp
⇥
� (V3M

3)⌦def (�)
⇤

(34)

Unfortunately, the real fluctuating fields are not homogeneous, and so these distributions serve
only for orientation. What one needs to do is to evaluate the diagrams with propagators containing
appropriate correlation length for each t. The value of the nonlinear couplings �3, �4 should be
taken as coe�cients of �3, �4 terms. In the case of �3 a factor of M is inserted to restore it to its
dimensionful form.

The free energy density of a cluster divided by the nucleon density we define for binary term as
follows

Fa = �4 · 3

2

g2c
4⇡r

exp
⇥
� rMt⌫

⇤
, (35)

No linear term, small quadratic one => \xi not infinite even at t=0
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that was actually happening.

As it will be shown in this paper, the inclusion of many � body forces induced by critical
fluctuations near the hypothetical CP resolves the problem. Furthermore, with presumed growth
of the correlation length ⇠, repulsive three and four-nucleon forces grow even stronger than binary
forces, reversing the dependence on ⇠ seen in the binary force. Basically, they all pre-clustering in
a small vicinity of CP should be killed by these e↵ects. Thus, our calculations have indeed predict
even more non�monotonous signal, starting as an enhancement of clustering, to its rapid absence
near CP, and back to enhancement at the other side of the CP.

Before we begin our discussion, let us state for clarity that in this paper we are not interested
in the most generic problem of the many-body forces influencing the thermodynamics of infinite
matter (at freezeout). Traditional studies of nuclear matter do include well documented three-
body forces, derived from precise treatment of light nuclei. Those are not important here, since
the nucleon density at freezeout conditions of heavy ion collisions of interest are even smaller than
nuclear matter density. Also, as one can see below, the e↵ects we discuss are much larger than
those 3-body forces.

We focus on preclusters with four nucleons. While they include only a fraction of a percent of
all nucleons, their density is ⇠ 3 times larger than nuclear matter density, and therefore three-
and four-body forces are no longer small. Also important is that their size fits well to the maximal
correlation length scale expected near CP. Furthermore, we only discuss four nucleon clusters
of flavor-spin arrangement p"p#n"n#, with all four nucleons being distinguishable particles. This
simplifies combinatorial factors and reduced the technical challenges of the previous PIMC calcu-
lations. As such, Pauli blocking is completely absent, and there are no e↵ects of 5- and 6-body
forces; although such vertices are present in the e↵ective action, it is not supposed to be used in
loops.

The structure of the paper is as follows: in section II we introduce some lowest-order diagrams
describing the interaction of the critical mode with nucleons and with itself, and qualitatively
discuss their signs and magnitudes. Dependence of the diagram magnitude on the cluster size
relative to the correlation length is discussed in section II D. The next section II E averages out
over cluster shapes, using snapshots from path integration performed in Ref. [7]. In section III we

(a) (b)

(c) (d)

FIG. 2. Diagrams representing the many-body interactions of the four-nucleon cluster. Blue circles are
nucleons, black lines are propagators of the � fields

Energy of 4-N cluster 
rho=2 fm 
t=T/Tc-1

8

Similarly, we define four-body function for diagram (c), we have

Vc

�
~x1, ~x2, ~x3, ~x4

�
⌘

Z
d3uD(~x1 � ~u)D(~x2 � ~u)D(~x3 � ~u)D(~x3 � ~u). (15)

Note that its dimension will be [fm�1].
Finally, for diagram (d) we define

Vd

�
~x1, ~x2, ~x3, ~x4

�
⌘

Z
d3ud3vD(~x1 � ~u)D(~x2 � ~u)D(~u � ~v)D(~x3 � ~v)D(~x4 � ~v) (16)

with corresponding dimension [fm].
These functions depend on 3 or 4 points, and should be averaged over many-body density matrix

P
�
~x1, ~x2, ~x3, ~x4

�
of the clusters.

For orientation, we start with clusters of particular shapes and size, varying the correlation
length ⇠. For di↵erent shapes we will select clusters in which the 9-dimensional hyperdistance ⇢
(defined in (A3) ) is the same. so that one can define the average 3-body potential

Using these definitions, we can write the e↵ective potential for four-nucleon cluster in the fol-
lowing form

V =�4 · 3

2

g2c
4⇡

exp(�rij/⇠)

rij
+ 4 · 3!�3(

gc

4⇡
)3Vb

+4!�4(
gc

4⇡
)4Vc � 4!

�2
3

8⇡
(
gc

4⇡
)4Vd (17)

where we now restore combinatorial factors and signs. Note that an extra 1/8⇡ in the last term
comes from 1/2! of the second order expansion and 1/4⇡ from an extra intermediate propagator
between the vertices.

Generally speaking, this many-body potential should be included in PIMC simulations, as it
was done with the binary potential, to directly observe its e↵ect on clustering. It is not however
practical to do so as they include extra multidimensional integrations over the locations of the
nonlinear vertices.

We therefore adopt the perturbative approach, in which all locations of the nucleons ~xi in the
cluster are to be averaged over the appropriate 9-dimensional density matrix calculated in PIMC
with the binary interactions only .

In doing this average, we would like to separate the dependencies on the “hyperdistance” ⇢ and
the “shapes” (angular variables) of the cluster. The former is defined via most-symmetric definition
of the hyperdistance ⇢ (A3) coordinate.

D. Dependence of multibody forces on the cluster shape and the correlation length

As a warm-up, we calculate the diagrams for two specific shapes. The most symmetric one is
a tetrahedral shape, in which all pair distances are the same Ltet. Another shape we considered
is a flat square with size Lsq: in order for both to correspond to the same hyperdistance ⇢, they
should be related by

6L2
tet = (4 + 2 · 2)L2

sq = 4⇢2 (18)

The results are shown in Fig. 3 as a function of the basic ratio ⇠/⇢, and also in the Table 1
for ⇠/⇢ = 1 . In diagram (d) there are two vertices and the square configuration can be further
divided into two more configurations: one in which nucleons on the same side of the square are

Repulsive three and four 
Body forces overcome 

Attraction near CP
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FIG. 12. (Color online) Left plot: The change in e↵ective potential �F as a function of cluster size ⇢ with
g2c/4⇡ = 10 for three values of scaled temperature t. Right plot: The change in e↵ective potential �F as
a function of cluster size ⇢ at t = 0.077 for two values of the nucleon-critical mode coupling gc. In both
plots, diagram (a) has had the unmodified binary interaction subtracted out as described in the text.

are much larger than the excited 4He states which feed down into light nuclei.
Concluding our calculations, we remind the reader that while in this paper we focused only on

4-body clusters, there are of course larger ones. For them one should also include five and six-body
forces. Note that the deformed e↵ective action predicts them to be also repulsive, and even larger
. Therefore, our main finding – suppression of all forms of clustering in the vicinity of the CP –
should hold, even if all possible clusters are included.

V. SUMMARY AND DISCUSSION

Let us start by reminding the reader that the paradox (pointed out in Ref. [8]): the e↵ect of
binary forces induced by the critical mode at CP, where ⇠ ! 1 must be catastrophic. Indeed, if all
N(N � 1)/2 ⇠ 104 pairs of nucleons in the fireball be attracted to each other, with a Newton-like
long-range potential, the fireball would implode, similar to a gravitational collapse.

The resolution of this paradox is the main conclusion of this paper. Large correlation length ⇠
of the critical mode, via triple, quartic etc self-coupling constants, generate repulsive many-body
forces which are strong enough to mitigate the binary attraction and reverse the trend, suppressing
preclustering close to CP.

After formulating our qualitative conclusion, let us discuss the uncertainties involved. Many
features of the CP are known, as it is supposed to belong to the 3D Ising universality class. Yet
some basic mass scale M and the critical mode coupling gc are non-universal and remain unknown.
Changing gc will modify the overall scale of the predicted e↵ects, as N -body interactions depend
on gN

c . The mass scale M appears directly in the 3-body term and a↵ects the mapping between t
and ⇠. While their values are not known, we have used physically-motivated estimates – the values
should be comparable to the nucleon-sigma coupling g� and the sigma mass m�, respectively.
Additionally, the external current J̃ deforms the potential. At present, we have chosen J̃ to be

Taking all effects together
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FIG. 11. (Color online) Left plot: contributions to the change in free energy �F of a 4-nucleon cluster
of size ⇢ = 2 fm due to individual diagrams (a,b,c) and their total combined contribution, with coupling
g2c/4⇡ = 10, versus t = T/Tc�1. Diagram (a) has had the unmodified binary interaction subtracted out as
described in the text. Right plot: Boltzmann factor of the change in potential exp(��F/T ) with T = 120
MeV, versus t. Note that the leftmost point, t = 0.077 (not shown) has Boltzmann factor ' 10�10.

Since, in the left plot of Fig. 11, it is hard to read the magnitude of the attractive e↵ect on
the r.h.s. , we separately show how this free energy translates into the probability of precluster
production, exp(��F/T ) in the right plot. In it one finds that attractive force is strong enough
to enhance clustering, by a few orders of magnitude at distance t = 0.2 from the CP. At the same
time it plunges well below 1 due to repulsive many-body forces at smaller t (closer to the CP).
This is the “non-monotonous signal” we speak about.

Let us remind that very strong e↵ects displayed in Fig. 11 were shown as a function of t, on a
line close to the critical line distorted by J̃ = 1/100, for clusters of fixed size ⇢ = 2 fm. We selected
this size as characteristic of pre-clusters as PIMC calculation with conventional nuclear forces.

Another perspective on the problem is obtained if one fixes t, say to values rather close to CP,
just above t = 0.077 with correlation lengths just below ⇠ = 2 fm, and plot the total energy of the
cluster as a function of its size ⇢, see Fig. 12. One can see from it that while for ⇢ < 2 fm the
potential is indeed repulsive and much larger than T ⇠ 100 MeV, it is very rapidly changing for
larger sizes. As one approaches CP, the size of this repulsive region increases and the maximum
depth of the attraction decreases. In particular, near the minimum at ⇢ ⇡ 4 fm, ��F/T ⇡ 2
at the smallest value of t. Therefore, here instead of suppression one finds enhancement in the
production of clusters of a larger size relative to PIMC is by factor exp(2) ⇠ 7, rather than by
three orders of magnitude, as in Fig. 11. This qualitative behavior remains unchanged for di↵erent
reasonable choices of the nucleon-critical mode coupling. Varying this coupling modifies the size of
the repulsive region, while keeping the maximum depth of the attraction relatively fixed, as seen
in Fig. 12 (right).

It might be tempting to conclude that accounting for many-body forces simply modifies clusters
to be of the size ⇢ > 3 fm rather than ⇠ 2 fm as was seen in PIMC calculations. Such a conclusion
would however be rather meaningless, since at such size the e↵ective cluster density would not
be any di↵erent from that of ambient matter. In other words, there would be enhancement, but
feed-down from such large clusters to light nuclei production would be negligible, as the clusters
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the r.h.s. , we separately show how this free energy translates into the probability of precluster
production, exp(��F/T ) in the right plot. In it one finds that attractive force is strong enough
to enhance clustering, by a few orders of magnitude at distance t = 0.2 from the CP. At the same
time it plunges well below 1 due to repulsive many-body forces at smaller t (closer to the CP).
This is the “non-monotonous signal” we speak about.

Let us remind that very strong e↵ects displayed in Fig. 11 were shown as a function of t, on a
line close to the critical line distorted by J̃ = 1/100, for clusters of fixed size ⇢ = 2 fm. We selected
this size as characteristic of pre-clusters as PIMC calculation with conventional nuclear forces.

Another perspective on the problem is obtained if one fixes t, say to values rather close to CP,
just above t = 0.077 with correlation lengths just below ⇠ = 2 fm, and plot the total energy of the
cluster as a function of its size ⇢, see Fig. 12. One can see from it that while for ⇢ < 2 fm the
potential is indeed repulsive and much larger than T ⇠ 100 MeV, it is very rapidly changing for
larger sizes. As one approaches CP, the size of this repulsive region increases and the maximum
depth of the attraction decreases. In particular, near the minimum at ⇢ ⇡ 4 fm, ��F/T ⇡ 2
at the smallest value of t. Therefore, here instead of suppression one finds enhancement in the
production of clusters of a larger size relative to PIMC is by factor exp(2) ⇠ 7, rather than by
three orders of magnitude, as in Fig. 11. This qualitative behavior remains unchanged for di↵erent
reasonable choices of the nucleon-critical mode coupling. Varying this coupling modifies the size of
the repulsive region, while keeping the maximum depth of the attraction relatively fixed, as seen
in Fig. 12 (right).

It might be tempting to conclude that accounting for many-body forces simply modifies clusters
to be of the size ⇢ > 3 fm rather than ⇠ 2 fm as was seen in PIMC calculations. Such a conclusion
would however be rather meaningless, since at such size the e↵ective cluster density would not
be any di↵erent from that of ambient matter. In other words, there would be enhancement, but
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HADES:  2002.08701
1) Lots of events: 160M
2) Thin target to suppress pileup
3) Wide acceptance in pT & y

HADES: A FXT Experiment at GSI
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FIG. 11. Upper plot: The ratio K4/K2 from STAR and Hades experiments, versus
p
s, from [? ] Red

points show the most central bins, black points for mid-central one, 30� 40%.
Lower plot: Compilation of experimental data for the ratio of yields of tritium, deuterium and protons
t · p/d2 from [12].

between the STAR centrality dependence at 7.7 GeV and that reported by HADES at 2.4 GeV .
Before one gets excited by such opposite trends in it, one needs to wait for BES-II data to clarify
what happens in between these two energies.

After these warning are made, let us analyze these two plots looking for hints for our main
theoretical prediction, a non-monotonous pattern shown in the lower Fig. 10: enhancement of
clustering at some distance from CP due to binary forces, rapidly changed to repulsive many-body
forces which suppress clustering near the CP. Let us enumerate what we seem to observe:

1. The most dramatic change in Fig.11(upper) is the reversal of centrality dependence betweenp
s = 7.7 GeV and 2.4 GeV already noticed.

Let us now look at experimental kurtosis

Two dips for central bins 
large at 2 and smaller at 20 GeV? 

Errors still large => BESII

Older STAR data have shown large effect

• 	e-Print: 2001.02852

https://arxiv.org/abs/2001.02852
https://arxiv.org/abs/2001.02852
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• 	e-Print: 2001.02852

Which was recently found to be  partly 
due to small set of defective events for central bin 
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Figure 4: Ss (1) and ks2 (2) as a function of collision energy for net-proton distributions measured

in Au+Au collisions. The results are shown for central (0-5%, filled circles ) and peripheral (70-

80%, open squares) collisions within 0.4 < pT (GeV/c) < 2.0 and |y| < 0.5. The vertical narrow

and wide bars represent the statistical and systematic uncertainties, respectively. Shaded green

band is the estimated statistical uncertainty for BES-II and the energy range for STAR fixed-target

(FXT) program is shown as arrows in panel (2). The peripheral data points have been shifted along

x-axis for clarity of presentation. Results from a hadron resonance gas (HRG) model 35 and a

transport model calculation (UrQMD 33) for central collisions (0-5%) are shown as black and gold

bands, respectively. These model calculations utilize the experimental acceptance, and incorporate

conservation laws for strong interactions, but do not include a phase transition or a critical point.

3.1s. This significance is obtained by generating one million sets of points, where for each set, the

measured C4/C2 value at a given
p

sNN is randomly varied within the total Gaussian uncertainties

(systematic and statistical uncertainties added in quadrature). Then for each new C4/C2 versus
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FIG. 11. Upper plot: The ratio K4/K2 from STAR and Hades experiments, versus
p
s, from [? ] Red

points show the most central bins, black points for mid-central one, 30� 40%.
Lower plot: Compilation of experimental data for the ratio of yields of tritium, deuterium and protons
t · p/d2 from [12].

between the STAR centrality dependence at 7.7 GeV and that reported by HADES at 2.4 GeV .
Before one gets excited by such opposite trends in it, one needs to wait for BES-II data to clarify
what happens in between these two energies.

After these warning are made, let us analyze these two plots looking for hints for our main
theoretical prediction, a non-monotonous pattern shown in the lower Fig. 10: enhancement of
clustering at some distance from CP due to binary forces, rapidly changed to repulsive many-body
forces which suppress clustering near the CP. Let us enumerate what we seem to observe:

1. The most dramatic change in Fig.11(upper) is the reversal of centrality dependence betweenp
s = 7.7 GeV and 2.4 GeV already noticed.

Let us now look at experimental kurtosis

Two dips for central bins 
large at 2 and smaller at 20 GeV? 

Errors still large => BESII

Older STAR data have shown large effect
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transport model calculation (UrQMD 33) for central collisions (0-5%) are shown as black and gold

bands, respectively. These model calculations utilize the experimental acceptance, and incorporate

conservation laws for strong interactions, but do not include a phase transition or a critical point.
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measured C4/C2 value at a given
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We study in the coalescence model the collision energy dependence of (anti-)deuteron and (anti-
)triton production in the most central Au+Au collisions at

p
sNN = 7.7, 11.5, 19.6, 27, 39, 62.4

and 200 GeV. The needed phase-space distribution of nucleons at the kinetic freeze-out is generated
from a new 3D hybrid dynamical model (iEBE-MUSIC) by using a smooth crossover equation of
state (EoS) without a QCD critical point. Our model calculations predict that the coalescence
parameters of (anti-)deuteron (B2(d) and B2(d̄)) decrease monotonically as the collision energy
increases, and the light nuclei yield ratio NtNp/N

2
d remains approximately a constant with respect

to the collision energy. These calculated observables fail to reproduce the non-monotonic behavior of
the corresponding data from the STAR Collaboration. Without including any effects of the critical
point in our model, our results serve as the baseline predictions for the yields of light nuclei in the
search for the possible QCD critical points from the experimental beam energy scan of heavy ion
collisions.

PACS numbers: 25.75.Ld, 25.75.Gz, 24.10.Nz

I. INTRODUCTION

One of the primary goals of the experiments at the
Relativistic Heavy Ion Collider (RHIC) is to explore and
map out the phase structure of QCD [1–10]. In par-
ticular, the search for the conjectured critical point in
the QCD phase diagram has attracted much interest in
the past ten years [8–26]. Experiments at the RHIC
Beam Energy Scan (BES) program have already found
some intriguing results that might be related to the crit-
ical phenomenon in QCD matter. For example, the cu-
mulant ratio k�

2 of the katosis  and variance �
2 of

the (net) proton multiplicity distribution obviously de-
viates from the Poisson distribution expected from sta-
tistical fluctuations and shows a non-monotonic behavior
at lower collision energies [27]. Also, the Gaussian emis-
sion source radii difference (R2

out�R
2
side) extracted from

two-pion interferometry measurements is found to have a
non-monotonic dependence on the collision energy with
a maximum value at around p

sNN = 20-40 GeV [28–
30]. Furthermore, the measured yield ratio NtNp/N

2
d

of proton, deuteron and triton in central Au+Au colli-
sions clearly shows a non-monotonic behavior in its colli-
sion energy dependence with a peak around p

sNN = 20
GeV [31].

Besides studying the signatures of critical fluctuations
in heavy ion collisions, it is also important and necessary
to systematically investigate and understand the noncrit-
ical and/or thermal fluctuations that are present in these
collisions as they provide the background against which
the signals can be identified and used to locate the po-

sition of the possible critical point in the QCD phase
diagram [8, 9, 32–39]. However, because of the many
complicated processes involved in realistic heavy-ion col-
lisions, it is difficult to obtain clean baseline contribu-
tions to observables in these collisions. For example, the
net-proton multiplicity distribution, which has been sug-
gested as a sensitive signal for the QCD critical point [11–
13], is strongly influenced by both volume fluctuations
and charge conservations, which result in deviations from
the Skellam distribution [33–36]. To impose strict charge
conservations in the hybrid model simulations for QGP
and hadronic evolution turns out to be difficult because
the local correlation length between a charged particle
pair is finite and is sensitive to the expansion of the pro-
duced fireball [40, 41]. It is thus highly nontrivial to
include all of the important effects originated from non-
critical fluctuations in a single model and calculate their
contributions to the higher-order cumulants and the cu-
mulant ratio of net-proton multiplicity distribution.

Recently, the STAR Collaboration has collected a
wealth of data on light nuclei, such as (anti-)deuteron (d̄,
d), (anti-)triton (t̄, t) and (anti-)helium-3 (3H̄e, 3

He),
and has also analyzed the energy dependence of their
yields and yield ratios in heavy ion collisions at RHIC
BES energies [31, 42–44]. The observed coalescence pa-
rameters of (anti-)deuteron (B2(d) and B2(d̄)) and the
yield ratio of light nuclei, NtNp/N

2
d , both show a clear

non-monotonic energy dependence with a dip and a peak
around p

sNN =20 GeV in central Au+Au collisions, re-
spectively [31, 44], implying a dramatic change of the
speed of sound and a large relative density fluctuations of

ar
X

iv
:2

00
9.

06
95

9v
3 

 [n
uc

l-t
h]

  2
1 

O
ct

 2
02

0

Beam Energy dependence of Light Nuclei Production in Au+Au Collisions

Wenbin Zhao,1, 2, 3, 4 Chun Shen,5, 6 Che Ming Ko,7 Quansheng Liu,1, 2 and Huichao Song1, 2, 3

1Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
2Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
3Center for High Energy Physics, Peking University, Beijing 100871, China

4Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOE),
Central China Normal University, Wuhan, Hubei 430079, China

5Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201, USA
6RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA

7Department of Physics and astronomy, Cyclotron Institute,
a Texas A&M University, College Station, TX 77843, USA

(Dated: October 22, 2020)

We study in the coalescence model the collision energy dependence of (anti-)deuteron and (anti-
)triton production in the most central Au+Au collisions at

p
sNN = 7.7, 11.5, 19.6, 27, 39, 62.4

and 200 GeV. The needed phase-space distribution of nucleons at the kinetic freeze-out is generated
from a new 3D hybrid dynamical model (iEBE-MUSIC) by using a smooth crossover equation of
state (EoS) without a QCD critical point. Our model calculations predict that the coalescence
parameters of (anti-)deuteron (B2(d) and B2(d̄)) decrease monotonically as the collision energy
increases, and the light nuclei yield ratio NtNp/N

2
d remains approximately a constant with respect

to the collision energy. These calculated observables fail to reproduce the non-monotonic behavior of
the corresponding data from the STAR Collaboration. Without including any effects of the critical
point in our model, our results serve as the baseline predictions for the yields of light nuclei in the
search for the possible QCD critical points from the experimental beam energy scan of heavy ion
collisions.

PACS numbers: 25.75.Ld, 25.75.Gz, 24.10.Nz

I. INTRODUCTION
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Relativistic Heavy Ion Collider (RHIC) is to explore and
map out the phase structure of QCD [1–10]. In par-
ticular, the search for the conjectured critical point in
the QCD phase diagram has attracted much interest in
the past ten years [8–26]. Experiments at the RHIC
Beam Energy Scan (BES) program have already found
some intriguing results that might be related to the crit-
ical phenomenon in QCD matter. For example, the cu-
mulant ratio k�

2 of the katosis  and variance �
2 of

the (net) proton multiplicity distribution obviously de-
viates from the Poisson distribution expected from sta-
tistical fluctuations and shows a non-monotonic behavior
at lower collision energies [27]. Also, the Gaussian emis-
sion source radii difference (R2

out�R
2
side) extracted from

two-pion interferometry measurements is found to have a
non-monotonic dependence on the collision energy with
a maximum value at around p

sNN = 20-40 GeV [28–
30]. Furthermore, the measured yield ratio NtNp/N
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d

of proton, deuteron and triton in central Au+Au colli-
sions clearly shows a non-monotonic behavior in its colli-
sion energy dependence with a peak around p

sNN = 20
GeV [31].

Besides studying the signatures of critical fluctuations
in heavy ion collisions, it is also important and necessary
to systematically investigate and understand the noncrit-
ical and/or thermal fluctuations that are present in these
collisions as they provide the background against which
the signals can be identified and used to locate the po-

sition of the possible critical point in the QCD phase
diagram [8, 9, 32–39]. However, because of the many
complicated processes involved in realistic heavy-ion col-
lisions, it is difficult to obtain clean baseline contribu-
tions to observables in these collisions. For example, the
net-proton multiplicity distribution, which has been sug-
gested as a sensitive signal for the QCD critical point [11–
13], is strongly influenced by both volume fluctuations
and charge conservations, which result in deviations from
the Skellam distribution [33–36]. To impose strict charge
conservations in the hybrid model simulations for QGP
and hadronic evolution turns out to be difficult because
the local correlation length between a charged particle
pair is finite and is sensitive to the expansion of the pro-
duced fireball [40, 41]. It is thus highly nontrivial to
include all of the important effects originated from non-
critical fluctuations in a single model and calculate their
contributions to the higher-order cumulants and the cu-
mulant ratio of net-proton multiplicity distribution.

Recently, the STAR Collaboration has collected a
wealth of data on light nuclei, such as (anti-)deuteron (d̄,
d), (anti-)triton (t̄, t) and (anti-)helium-3 (3H̄e, 3

He),
and has also analyzed the energy dependence of their
yields and yield ratios in heavy ion collisions at RHIC
BES energies [31, 42–44]. The observed coalescence pa-
rameters of (anti-)deuteron (B2(d) and B2(d̄)) and the
yield ratio of light nuclei, NtNp/N

2
d , both show a clear

non-monotonic energy dependence with a dip and a peak
around p

sNN =20 GeV in central Au+Au collisions, re-
spectively [31, 44], implying a dramatic change of the
speed of sound and a large relative density fluctuations of
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FIG. 4: (Color online) Collision energy dependence of the
yield ratio NtNp/(N

2
d ) in 0-10% Au+Au collisions calculated

from the coalescence model. The data is taken from Ref. [31].

EoS in the iEBE-MUSIC hybrid model. As to the yield
ratio NtNp/N

2
d , the two-body process slightly overesti-

mates whereas the three-body process slightly underes-
timates the measured value at 200 GeV. Both processes
greatly underestimate, however, the measured value atp
sNN  62.4 GeV.

Figure 4 further shows that the yield ratio NtNp/N
2
d

with tritons produced from the 2-body process is larger
than that with tritons produced from the 3-body process
in our model, which is a consequence of the non-trivial
spatial-momentum correlations in the nucleon phase-
space distributions from our iEBE-MUSIC hybrid model.
It is shown in Ref. [100] that the yield ratios from these
two processes would be the same if the nucleon phase-
space distributions are uniform in the coordinate space.
We emphasis that our model does not contain any ef-
fects from a critical point, which thus provides the non-
critical baseline results for the yields of these light nuclei
in heavy ion collisions at the RHIC BES energies. For a
better explanation of the observed non-monotonic behav-
ior of NtNp/N

2
d , B2(d), B2(d̄) and

p
B3(t) in their colli-

sion energy dependence, a dynamical model with critical
fluctuations or the effects of critical point is required.

We note that our result on the yield ratio NtNp/N
2
d

is similar to those found in Ref. [39], which is based
on a simple phase-space coalescence model using nucle-
ons from the JAM hadronic cascade model [101] and in
Ref. [48], which is based on a coalescence model similar
to that in the present study with nucleons from a multi-
phase transport (AMPT) model [102].

Although a non-monotonic collision energy dependence
of the yield ratio NtNp/N

2
d has been reported in Ref. [49]

from a coalescence model study using nucleons from the
UrQMD model [66], the result is puzzling because of the
unexpected very different nucleon and light nuclei rapid-
ity distributions predicted from this study.

IV. SUMMARY

In this paper, we have used the nucleon coalescence
model to study light nuclei production in the most cen-
tral Au+Au collisions at p

sNN = 7.7, 11.5, 19.6, 27, 39,
62.4 and 200 GeV. The input phase-space distributions
of (anti-)protons and (anti-)neutrons at kinetic freeze-
out for the coalescence calculations are generated from
the iEBE-MUSIC hybrid model using three dimensional
dynamical initial conditions and a crossover EoS. These
comprehensive simulations can nicely reproduce the mea-
sured pT -spectra of (anti-)pions, (anti-)kaons, and (anti-
)protons for Au+Au collisions at psNN = 7.7� 200 GeV
(as shown in the appendix and in Ref. [84]). We have
found that the subsequent coalescence model calculations
can reproduce the measured pT -spectra and dN/dy of
(anti-)deuterons and (anti-)tritons and the particle ratios
of t/p within 10% of accuracy. However, the deviations
between the calculated and measured particle ratios of
d/p, d̄/p̄, and t/d increase to 15%, 20%, and 10%, re-
spectively.

Although the coalescence model reasonably describes
the pT -spectra and yields of light nuclei at various col-
lision energies, the predicted coalescence parameters of
(anti-)deuterons and tritons, B2(d), B2(d̄) and

p
B3(t),

decrease monotonically with increasing collision energy,
and the yield ratio NtNp/N

2
d stays almost constant with

respect to the collision energy. All these theoretical re-
sults fail to describe the non-monotonic behavior of the
corresponding measurements in experiments. We empha-
sis that the hydrodynamic part of our calculations with
a crossover EoS for all collision energies does not gener-
ate any dynamical density fluctuations, which are related
to the critical point and first-order phase transition, for
the subsequent nucleon coalescence model calculations.
According to Refs. [45, 46], non-trivial density fluctua-
tions in the produced hot QCD matter are needed to
describe this non-monotonic behavior. Our model calcu-
lations thus provide the non-critical baseline results for
comparisons with related light nuclei measurements at
the RHIC BES program. We leave the implementation
of an EoS with a critical point in the hydrodynamic evo-
lution and the inclusion of dynamical density fluctuations
to future studies.
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between the STAR centrality dependence at 7.7 GeV and that reported by HADES at 2.4 GeV .
Before one gets excited by such opposite trends in it, one needs to wait for BES-II data to clarify
what happens in between these two energies.

After these warning are made, let us analyze these two plots looking for hints for our main
theoretical prediction, a non-monotonous pattern shown in the lower Fig. 10: enhancement of
clustering at some distance from CP due to binary forces, rapidly changed to repulsive many-body
forces which suppress clustering near the CP. Let us enumerate what we seem to observe:

1. The most dramatic change in Fig.11(upper) is the reversal of centrality dependence betweenp
s = 7.7 GeV and 2.4 GeV already noticed.

In this ratio the main driver 
 — fugacity  exp(mu/T) - 
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I. INTRODUCTION

One of the primary goals of the experiments at the
Relativistic Heavy Ion Collider (RHIC) is to explore and
map out the phase structure of QCD [1–10]. In par-
ticular, the search for the conjectured critical point in
the QCD phase diagram has attracted much interest in
the past ten years [8–26]. Experiments at the RHIC
Beam Energy Scan (BES) program have already found
some intriguing results that might be related to the crit-
ical phenomenon in QCD matter. For example, the cu-
mulant ratio k�

2 of the katosis  and variance �
2 of

the (net) proton multiplicity distribution obviously de-
viates from the Poisson distribution expected from sta-
tistical fluctuations and shows a non-monotonic behavior
at lower collision energies [27]. Also, the Gaussian emis-
sion source radii difference (R2

out�R
2
side) extracted from

two-pion interferometry measurements is found to have a
non-monotonic dependence on the collision energy with
a maximum value at around p

sNN = 20-40 GeV [28–
30]. Furthermore, the measured yield ratio NtNp/N

2
d

of proton, deuteron and triton in central Au+Au colli-
sions clearly shows a non-monotonic behavior in its colli-
sion energy dependence with a peak around p

sNN = 20
GeV [31].

Besides studying the signatures of critical fluctuations
in heavy ion collisions, it is also important and necessary
to systematically investigate and understand the noncrit-
ical and/or thermal fluctuations that are present in these
collisions as they provide the background against which
the signals can be identified and used to locate the po-

sition of the possible critical point in the QCD phase
diagram [8, 9, 32–39]. However, because of the many
complicated processes involved in realistic heavy-ion col-
lisions, it is difficult to obtain clean baseline contribu-
tions to observables in these collisions. For example, the
net-proton multiplicity distribution, which has been sug-
gested as a sensitive signal for the QCD critical point [11–
13], is strongly influenced by both volume fluctuations
and charge conservations, which result in deviations from
the Skellam distribution [33–36]. To impose strict charge
conservations in the hybrid model simulations for QGP
and hadronic evolution turns out to be difficult because
the local correlation length between a charged particle
pair is finite and is sensitive to the expansion of the pro-
duced fireball [40, 41]. It is thus highly nontrivial to
include all of the important effects originated from non-
critical fluctuations in a single model and calculate their
contributions to the higher-order cumulants and the cu-
mulant ratio of net-proton multiplicity distribution.

Recently, the STAR Collaboration has collected a
wealth of data on light nuclei, such as (anti-)deuteron (d̄,
d), (anti-)triton (t̄, t) and (anti-)helium-3 (3H̄e, 3

He),
and has also analyzed the energy dependence of their
yields and yield ratios in heavy ion collisions at RHIC
BES energies [31, 42–44]. The observed coalescence pa-
rameters of (anti-)deuteron (B2(d) and B2(d̄)) and the
yield ratio of light nuclei, NtNp/N

2
d , both show a clear

non-monotonic energy dependence with a dip and a peak
around p

sNN =20 GeV in central Au+Au collisions, re-
spectively [31, 44], implying a dramatic change of the
speed of sound and a large relative density fluctuations of
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increases, and the light nuclei yield ratio NtNp/N

2
d remains approximately a constant with respect

to the collision energy. These calculated observables fail to reproduce the non-monotonic behavior of
the corresponding data from the STAR Collaboration. Without including any effects of the critical
point in our model, our results serve as the baseline predictions for the yields of light nuclei in the
search for the possible QCD critical points from the experimental beam energy scan of heavy ion
collisions.
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I. INTRODUCTION

One of the primary goals of the experiments at the
Relativistic Heavy Ion Collider (RHIC) is to explore and
map out the phase structure of QCD [1–10]. In par-
ticular, the search for the conjectured critical point in
the QCD phase diagram has attracted much interest in
the past ten years [8–26]. Experiments at the RHIC
Beam Energy Scan (BES) program have already found
some intriguing results that might be related to the crit-
ical phenomenon in QCD matter. For example, the cu-
mulant ratio k�

2 of the katosis  and variance �
2 of

the (net) proton multiplicity distribution obviously de-
viates from the Poisson distribution expected from sta-
tistical fluctuations and shows a non-monotonic behavior
at lower collision energies [27]. Also, the Gaussian emis-
sion source radii difference (R2

out�R
2
side) extracted from

two-pion interferometry measurements is found to have a
non-monotonic dependence on the collision energy with
a maximum value at around p

sNN = 20-40 GeV [28–
30]. Furthermore, the measured yield ratio NtNp/N

2
d

of proton, deuteron and triton in central Au+Au colli-
sions clearly shows a non-monotonic behavior in its colli-
sion energy dependence with a peak around p

sNN = 20
GeV [31].

Besides studying the signatures of critical fluctuations
in heavy ion collisions, it is also important and necessary
to systematically investigate and understand the noncrit-
ical and/or thermal fluctuations that are present in these
collisions as they provide the background against which
the signals can be identified and used to locate the po-

sition of the possible critical point in the QCD phase
diagram [8, 9, 32–39]. However, because of the many
complicated processes involved in realistic heavy-ion col-
lisions, it is difficult to obtain clean baseline contribu-
tions to observables in these collisions. For example, the
net-proton multiplicity distribution, which has been sug-
gested as a sensitive signal for the QCD critical point [11–
13], is strongly influenced by both volume fluctuations
and charge conservations, which result in deviations from
the Skellam distribution [33–36]. To impose strict charge
conservations in the hybrid model simulations for QGP
and hadronic evolution turns out to be difficult because
the local correlation length between a charged particle
pair is finite and is sensitive to the expansion of the pro-
duced fireball [40, 41]. It is thus highly nontrivial to
include all of the important effects originated from non-
critical fluctuations in a single model and calculate their
contributions to the higher-order cumulants and the cu-
mulant ratio of net-proton multiplicity distribution.

Recently, the STAR Collaboration has collected a
wealth of data on light nuclei, such as (anti-)deuteron (d̄,
d), (anti-)triton (t̄, t) and (anti-)helium-3 (3H̄e, 3

He),
and has also analyzed the energy dependence of their
yields and yield ratios in heavy ion collisions at RHIC
BES energies [31, 42–44]. The observed coalescence pa-
rameters of (anti-)deuteron (B2(d) and B2(d̄)) and the
yield ratio of light nuclei, NtNp/N

2
d , both show a clear

non-monotonic energy dependence with a dip and a peak
around p

sNN =20 GeV in central Au+Au collisions, re-
spectively [31, 44], implying a dramatic change of the
speed of sound and a large relative density fluctuations of
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FIG. 4: (Color online) Collision energy dependence of the
yield ratio NtNp/(N

2
d ) in 0-10% Au+Au collisions calculated

from the coalescence model. The data is taken from Ref. [31].

EoS in the iEBE-MUSIC hybrid model. As to the yield
ratio NtNp/N

2
d , the two-body process slightly overesti-

mates whereas the three-body process slightly underes-
timates the measured value at 200 GeV. Both processes
greatly underestimate, however, the measured value atp
sNN  62.4 GeV.

Figure 4 further shows that the yield ratio NtNp/N
2
d

with tritons produced from the 2-body process is larger
than that with tritons produced from the 3-body process
in our model, which is a consequence of the non-trivial
spatial-momentum correlations in the nucleon phase-
space distributions from our iEBE-MUSIC hybrid model.
It is shown in Ref. [100] that the yield ratios from these
two processes would be the same if the nucleon phase-
space distributions are uniform in the coordinate space.
We emphasis that our model does not contain any ef-
fects from a critical point, which thus provides the non-
critical baseline results for the yields of these light nuclei
in heavy ion collisions at the RHIC BES energies. For a
better explanation of the observed non-monotonic behav-
ior of NtNp/N

2
d , B2(d), B2(d̄) and

p
B3(t) in their colli-

sion energy dependence, a dynamical model with critical
fluctuations or the effects of critical point is required.

We note that our result on the yield ratio NtNp/N
2
d

is similar to those found in Ref. [39], which is based
on a simple phase-space coalescence model using nucle-
ons from the JAM hadronic cascade model [101] and in
Ref. [48], which is based on a coalescence model similar
to that in the present study with nucleons from a multi-
phase transport (AMPT) model [102].

Although a non-monotonic collision energy dependence
of the yield ratio NtNp/N

2
d has been reported in Ref. [49]

from a coalescence model study using nucleons from the
UrQMD model [66], the result is puzzling because of the
unexpected very different nucleon and light nuclei rapid-
ity distributions predicted from this study.

IV. SUMMARY

In this paper, we have used the nucleon coalescence
model to study light nuclei production in the most cen-
tral Au+Au collisions at p

sNN = 7.7, 11.5, 19.6, 27, 39,
62.4 and 200 GeV. The input phase-space distributions
of (anti-)protons and (anti-)neutrons at kinetic freeze-
out for the coalescence calculations are generated from
the iEBE-MUSIC hybrid model using three dimensional
dynamical initial conditions and a crossover EoS. These
comprehensive simulations can nicely reproduce the mea-
sured pT -spectra of (anti-)pions, (anti-)kaons, and (anti-
)protons for Au+Au collisions at psNN = 7.7� 200 GeV
(as shown in the appendix and in Ref. [84]). We have
found that the subsequent coalescence model calculations
can reproduce the measured pT -spectra and dN/dy of
(anti-)deuterons and (anti-)tritons and the particle ratios
of t/p within 10% of accuracy. However, the deviations
between the calculated and measured particle ratios of
d/p, d̄/p̄, and t/d increase to 15%, 20%, and 10%, re-
spectively.

Although the coalescence model reasonably describes
the pT -spectra and yields of light nuclei at various col-
lision energies, the predicted coalescence parameters of
(anti-)deuterons and tritons, B2(d), B2(d̄) and

p
B3(t),

decrease monotonically with increasing collision energy,
and the yield ratio NtNp/N

2
d stays almost constant with

respect to the collision energy. All these theoretical re-
sults fail to describe the non-monotonic behavior of the
corresponding measurements in experiments. We empha-
sis that the hydrodynamic part of our calculations with
a crossover EoS for all collision energies does not gener-
ate any dynamical density fluctuations, which are related
to the critical point and first-order phase transition, for
the subsequent nucleon coalescence model calculations.
According to Refs. [45, 46], non-trivial density fluctua-
tions in the produced hot QCD matter are needed to
describe this non-monotonic behavior. Our model calcu-
lations thus provide the non-critical baseline results for
comparisons with related light nuclei measurements at
the RHIC BES program. We leave the implementation
of an EoS with a critical point in the hydrodynamic evo-
lution and the inclusion of dynamical density fluctuations
to future studies.
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between the STAR centrality dependence at 7.7 GeV and that reported by HADES at 2.4 GeV .
Before one gets excited by such opposite trends in it, one needs to wait for BES-II data to clarify
what happens in between these two energies.

After these warning are made, let us analyze these two plots looking for hints for our main
theoretical prediction, a non-monotonous pattern shown in the lower Fig. 10: enhancement of
clustering at some distance from CP due to binary forces, rapidly changed to repulsive many-body
forces which suppress clustering near the CP. Let us enumerate what we seem to observe:

1. The most dramatic change in Fig.11(upper) is the reversal of centrality dependence betweenp
s = 7.7 GeV and 2.4 GeV already noticed.
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We study in the coalescence model the collision energy dependence of (anti-)deuteron and (anti-
)triton production in the most central Au+Au collisions at

p
sNN = 7.7, 11.5, 19.6, 27, 39, 62.4

and 200 GeV. The needed phase-space distribution of nucleons at the kinetic freeze-out is generated
from a new 3D hybrid dynamical model (iEBE-MUSIC) by using a smooth crossover equation of
state (EoS) without a QCD critical point. Our model calculations predict that the coalescence
parameters of (anti-)deuteron (B2(d) and B2(d̄)) decrease monotonically as the collision energy
increases, and the light nuclei yield ratio NtNp/N

2
d remains approximately a constant with respect

to the collision energy. These calculated observables fail to reproduce the non-monotonic behavior of
the corresponding data from the STAR Collaboration. Without including any effects of the critical
point in our model, our results serve as the baseline predictions for the yields of light nuclei in the
search for the possible QCD critical points from the experimental beam energy scan of heavy ion
collisions.

PACS numbers: 25.75.Ld, 25.75.Gz, 24.10.Nz

I. INTRODUCTION

One of the primary goals of the experiments at the
Relativistic Heavy Ion Collider (RHIC) is to explore and
map out the phase structure of QCD [1–10]. In par-
ticular, the search for the conjectured critical point in
the QCD phase diagram has attracted much interest in
the past ten years [8–26]. Experiments at the RHIC
Beam Energy Scan (BES) program have already found
some intriguing results that might be related to the crit-
ical phenomenon in QCD matter. For example, the cu-
mulant ratio k�

2 of the katosis  and variance �
2 of

the (net) proton multiplicity distribution obviously de-
viates from the Poisson distribution expected from sta-
tistical fluctuations and shows a non-monotonic behavior
at lower collision energies [27]. Also, the Gaussian emis-
sion source radii difference (R2

out�R
2
side) extracted from

two-pion interferometry measurements is found to have a
non-monotonic dependence on the collision energy with
a maximum value at around p

sNN = 20-40 GeV [28–
30]. Furthermore, the measured yield ratio NtNp/N

2
d

of proton, deuteron and triton in central Au+Au colli-
sions clearly shows a non-monotonic behavior in its colli-
sion energy dependence with a peak around p

sNN = 20
GeV [31].

Besides studying the signatures of critical fluctuations
in heavy ion collisions, it is also important and necessary
to systematically investigate and understand the noncrit-
ical and/or thermal fluctuations that are present in these
collisions as they provide the background against which
the signals can be identified and used to locate the po-

sition of the possible critical point in the QCD phase
diagram [8, 9, 32–39]. However, because of the many
complicated processes involved in realistic heavy-ion col-
lisions, it is difficult to obtain clean baseline contribu-
tions to observables in these collisions. For example, the
net-proton multiplicity distribution, which has been sug-
gested as a sensitive signal for the QCD critical point [11–
13], is strongly influenced by both volume fluctuations
and charge conservations, which result in deviations from
the Skellam distribution [33–36]. To impose strict charge
conservations in the hybrid model simulations for QGP
and hadronic evolution turns out to be difficult because
the local correlation length between a charged particle
pair is finite and is sensitive to the expansion of the pro-
duced fireball [40, 41]. It is thus highly nontrivial to
include all of the important effects originated from non-
critical fluctuations in a single model and calculate their
contributions to the higher-order cumulants and the cu-
mulant ratio of net-proton multiplicity distribution.

Recently, the STAR Collaboration has collected a
wealth of data on light nuclei, such as (anti-)deuteron (d̄,
d), (anti-)triton (t̄, t) and (anti-)helium-3 (3H̄e, 3

He),
and has also analyzed the energy dependence of their
yields and yield ratios in heavy ion collisions at RHIC
BES energies [31, 42–44]. The observed coalescence pa-
rameters of (anti-)deuteron (B2(d) and B2(d̄)) and the
yield ratio of light nuclei, NtNp/N

2
d , both show a clear

non-monotonic energy dependence with a dip and a peak
around p

sNN =20 GeV in central Au+Au collisions, re-
spectively [31, 44], implying a dramatic change of the
speed of sound and a large relative density fluctuations of
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I. INTRODUCTION

One of the primary goals of the experiments at the
Relativistic Heavy Ion Collider (RHIC) is to explore and
map out the phase structure of QCD [1–10]. In par-
ticular, the search for the conjectured critical point in
the QCD phase diagram has attracted much interest in
the past ten years [8–26]. Experiments at the RHIC
Beam Energy Scan (BES) program have already found
some intriguing results that might be related to the crit-
ical phenomenon in QCD matter. For example, the cu-
mulant ratio k�

2 of the katosis  and variance �
2 of

the (net) proton multiplicity distribution obviously de-
viates from the Poisson distribution expected from sta-
tistical fluctuations and shows a non-monotonic behavior
at lower collision energies [27]. Also, the Gaussian emis-
sion source radii difference (R2

out�R
2
side) extracted from

two-pion interferometry measurements is found to have a
non-monotonic dependence on the collision energy with
a maximum value at around p

sNN = 20-40 GeV [28–
30]. Furthermore, the measured yield ratio NtNp/N

2
d

of proton, deuteron and triton in central Au+Au colli-
sions clearly shows a non-monotonic behavior in its colli-
sion energy dependence with a peak around p

sNN = 20
GeV [31].

Besides studying the signatures of critical fluctuations
in heavy ion collisions, it is also important and necessary
to systematically investigate and understand the noncrit-
ical and/or thermal fluctuations that are present in these
collisions as they provide the background against which
the signals can be identified and used to locate the po-

sition of the possible critical point in the QCD phase
diagram [8, 9, 32–39]. However, because of the many
complicated processes involved in realistic heavy-ion col-
lisions, it is difficult to obtain clean baseline contribu-
tions to observables in these collisions. For example, the
net-proton multiplicity distribution, which has been sug-
gested as a sensitive signal for the QCD critical point [11–
13], is strongly influenced by both volume fluctuations
and charge conservations, which result in deviations from
the Skellam distribution [33–36]. To impose strict charge
conservations in the hybrid model simulations for QGP
and hadronic evolution turns out to be difficult because
the local correlation length between a charged particle
pair is finite and is sensitive to the expansion of the pro-
duced fireball [40, 41]. It is thus highly nontrivial to
include all of the important effects originated from non-
critical fluctuations in a single model and calculate their
contributions to the higher-order cumulants and the cu-
mulant ratio of net-proton multiplicity distribution.

Recently, the STAR Collaboration has collected a
wealth of data on light nuclei, such as (anti-)deuteron (d̄,
d), (anti-)triton (t̄, t) and (anti-)helium-3 (3H̄e, 3

He),
and has also analyzed the energy dependence of their
yields and yield ratios in heavy ion collisions at RHIC
BES energies [31, 42–44]. The observed coalescence pa-
rameters of (anti-)deuteron (B2(d) and B2(d̄)) and the
yield ratio of light nuclei, NtNp/N

2
d , both show a clear

non-monotonic energy dependence with a dip and a peak
around p

sNN =20 GeV in central Au+Au collisions, re-
spectively [31, 44], implying a dramatic change of the
speed of sound and a large relative density fluctuations of
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FIG. 4: (Color online) Collision energy dependence of the
yield ratio NtNp/(N

2
d ) in 0-10% Au+Au collisions calculated

from the coalescence model. The data is taken from Ref. [31].

EoS in the iEBE-MUSIC hybrid model. As to the yield
ratio NtNp/N

2
d , the two-body process slightly overesti-

mates whereas the three-body process slightly underes-
timates the measured value at 200 GeV. Both processes
greatly underestimate, however, the measured value atp
sNN  62.4 GeV.

Figure 4 further shows that the yield ratio NtNp/N
2
d

with tritons produced from the 2-body process is larger
than that with tritons produced from the 3-body process
in our model, which is a consequence of the non-trivial
spatial-momentum correlations in the nucleon phase-
space distributions from our iEBE-MUSIC hybrid model.
It is shown in Ref. [100] that the yield ratios from these
two processes would be the same if the nucleon phase-
space distributions are uniform in the coordinate space.
We emphasis that our model does not contain any ef-
fects from a critical point, which thus provides the non-
critical baseline results for the yields of these light nuclei
in heavy ion collisions at the RHIC BES energies. For a
better explanation of the observed non-monotonic behav-
ior of NtNp/N

2
d , B2(d), B2(d̄) and

p
B3(t) in their colli-

sion energy dependence, a dynamical model with critical
fluctuations or the effects of critical point is required.

We note that our result on the yield ratio NtNp/N
2
d

is similar to those found in Ref. [39], which is based
on a simple phase-space coalescence model using nucle-
ons from the JAM hadronic cascade model [101] and in
Ref. [48], which is based on a coalescence model similar
to that in the present study with nucleons from a multi-
phase transport (AMPT) model [102].

Although a non-monotonic collision energy dependence
of the yield ratio NtNp/N

2
d has been reported in Ref. [49]

from a coalescence model study using nucleons from the
UrQMD model [66], the result is puzzling because of the
unexpected very different nucleon and light nuclei rapid-
ity distributions predicted from this study.

IV. SUMMARY

In this paper, we have used the nucleon coalescence
model to study light nuclei production in the most cen-
tral Au+Au collisions at p

sNN = 7.7, 11.5, 19.6, 27, 39,
62.4 and 200 GeV. The input phase-space distributions
of (anti-)protons and (anti-)neutrons at kinetic freeze-
out for the coalescence calculations are generated from
the iEBE-MUSIC hybrid model using three dimensional
dynamical initial conditions and a crossover EoS. These
comprehensive simulations can nicely reproduce the mea-
sured pT -spectra of (anti-)pions, (anti-)kaons, and (anti-
)protons for Au+Au collisions at psNN = 7.7� 200 GeV
(as shown in the appendix and in Ref. [84]). We have
found that the subsequent coalescence model calculations
can reproduce the measured pT -spectra and dN/dy of
(anti-)deuterons and (anti-)tritons and the particle ratios
of t/p within 10% of accuracy. However, the deviations
between the calculated and measured particle ratios of
d/p, d̄/p̄, and t/d increase to 15%, 20%, and 10%, re-
spectively.

Although the coalescence model reasonably describes
the pT -spectra and yields of light nuclei at various col-
lision energies, the predicted coalescence parameters of
(anti-)deuterons and tritons, B2(d), B2(d̄) and

p
B3(t),

decrease monotonically with increasing collision energy,
and the yield ratio NtNp/N

2
d stays almost constant with

respect to the collision energy. All these theoretical re-
sults fail to describe the non-monotonic behavior of the
corresponding measurements in experiments. We empha-
sis that the hydrodynamic part of our calculations with
a crossover EoS for all collision energies does not gener-
ate any dynamical density fluctuations, which are related
to the critical point and first-order phase transition, for
the subsequent nucleon coalescence model calculations.
According to Refs. [45, 46], non-trivial density fluctua-
tions in the produced hot QCD matter are needed to
describe this non-monotonic behavior. Our model calcu-
lations thus provide the non-critical baseline results for
comparisons with related light nuclei measurements at
the RHIC BES program. We leave the implementation
of an EoS with a critical point in the hydrodynamic evo-
lution and the inclusion of dynamical density fluctuations
to future studies.

Acknowledgements

We thank X. F. Luo, N. Yu and D. W. Zhang for pro-
viding the STAR data as well as K. Murase, D. Oliiny-
chenko, K. J. Sun and S. Wu for discussions. W. Z.,
Q. L. and H. S. are supported by the NSFC under grant
Nos. 11675004. C. S is supported in part by the U.S.
Department of Energy (DOE) under grant number DE-
SC0013460 and in part by the National Science Foun-
dation (NSF) under grant number PHY-2012922. C.M.
K. is supported by US DOE under Award No. DE-
SC0015266 and the Welch Foundation under Grant No.

Extra source of t is needed: 
4-N reclusters => 

50 states of He4 => 
feeding 



Let us now look at light nuclei production: the tritium ratio

Also two dips for central bins 
large at 2 and smaller at 20 GeV? 

Errors still large => BESII

19

HADES:  2002.08701
1) Lots of events: 160M
2) Thin target to suppress pileup
3) Wide acceptance in pT & y

HADES: A FXT Experiment at GSI

Proton y

|∆"|<0.4

��
�
����
�
�

�
�
�

�
�� �

��
�

�

�

��

� FOPI

� NA49

� STAR BES I

� ALICE,

w/ t�3He

1 10 100 1000
0.2

0.5

1

2

sNN (GeV)

N
tN
p
/
N
d
2
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between the STAR centrality dependence at 7.7 GeV and that reported by HADES at 2.4 GeV .
Before one gets excited by such opposite trends in it, one needs to wait for BES-II data to clarify
what happens in between these two energies.

After these warning are made, let us analyze these two plots looking for hints for our main
theoretical prediction, a non-monotonous pattern shown in the lower Fig. 10: enhancement of
clustering at some distance from CP due to binary forces, rapidly changed to repulsive many-body
forces which suppress clustering near the CP. Let us enumerate what we seem to observe:

1. The most dramatic change in Fig.11(upper) is the reversal of centrality dependence betweenp
s = 7.7 GeV and 2.4 GeV already noticed.
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We study in the coalescence model the collision energy dependence of (anti-)deuteron and (anti-
)triton production in the most central Au+Au collisions at

p
sNN = 7.7, 11.5, 19.6, 27, 39, 62.4

and 200 GeV. The needed phase-space distribution of nucleons at the kinetic freeze-out is generated
from a new 3D hybrid dynamical model (iEBE-MUSIC) by using a smooth crossover equation of
state (EoS) without a QCD critical point. Our model calculations predict that the coalescence
parameters of (anti-)deuteron (B2(d) and B2(d̄)) decrease monotonically as the collision energy
increases, and the light nuclei yield ratio NtNp/N

2
d remains approximately a constant with respect

to the collision energy. These calculated observables fail to reproduce the non-monotonic behavior of
the corresponding data from the STAR Collaboration. Without including any effects of the critical
point in our model, our results serve as the baseline predictions for the yields of light nuclei in the
search for the possible QCD critical points from the experimental beam energy scan of heavy ion
collisions.

PACS numbers: 25.75.Ld, 25.75.Gz, 24.10.Nz

I. INTRODUCTION

One of the primary goals of the experiments at the
Relativistic Heavy Ion Collider (RHIC) is to explore and
map out the phase structure of QCD [1–10]. In par-
ticular, the search for the conjectured critical point in
the QCD phase diagram has attracted much interest in
the past ten years [8–26]. Experiments at the RHIC
Beam Energy Scan (BES) program have already found
some intriguing results that might be related to the crit-
ical phenomenon in QCD matter. For example, the cu-
mulant ratio k�

2 of the katosis  and variance �
2 of

the (net) proton multiplicity distribution obviously de-
viates from the Poisson distribution expected from sta-
tistical fluctuations and shows a non-monotonic behavior
at lower collision energies [27]. Also, the Gaussian emis-
sion source radii difference (R2

out�R
2
side) extracted from

two-pion interferometry measurements is found to have a
non-monotonic dependence on the collision energy with
a maximum value at around p

sNN = 20-40 GeV [28–
30]. Furthermore, the measured yield ratio NtNp/N

2
d

of proton, deuteron and triton in central Au+Au colli-
sions clearly shows a non-monotonic behavior in its colli-
sion energy dependence with a peak around p

sNN = 20
GeV [31].

Besides studying the signatures of critical fluctuations
in heavy ion collisions, it is also important and necessary
to systematically investigate and understand the noncrit-
ical and/or thermal fluctuations that are present in these
collisions as they provide the background against which
the signals can be identified and used to locate the po-

sition of the possible critical point in the QCD phase
diagram [8, 9, 32–39]. However, because of the many
complicated processes involved in realistic heavy-ion col-
lisions, it is difficult to obtain clean baseline contribu-
tions to observables in these collisions. For example, the
net-proton multiplicity distribution, which has been sug-
gested as a sensitive signal for the QCD critical point [11–
13], is strongly influenced by both volume fluctuations
and charge conservations, which result in deviations from
the Skellam distribution [33–36]. To impose strict charge
conservations in the hybrid model simulations for QGP
and hadronic evolution turns out to be difficult because
the local correlation length between a charged particle
pair is finite and is sensitive to the expansion of the pro-
duced fireball [40, 41]. It is thus highly nontrivial to
include all of the important effects originated from non-
critical fluctuations in a single model and calculate their
contributions to the higher-order cumulants and the cu-
mulant ratio of net-proton multiplicity distribution.

Recently, the STAR Collaboration has collected a
wealth of data on light nuclei, such as (anti-)deuteron (d̄,
d), (anti-)triton (t̄, t) and (anti-)helium-3 (3H̄e, 3

He),
and has also analyzed the energy dependence of their
yields and yield ratios in heavy ion collisions at RHIC
BES energies [31, 42–44]. The observed coalescence pa-
rameters of (anti-)deuteron (B2(d) and B2(d̄)) and the
yield ratio of light nuclei, NtNp/N

2
d , both show a clear

non-monotonic energy dependence with a dip and a peak
around p

sNN =20 GeV in central Au+Au collisions, re-
spectively [31, 44], implying a dramatic change of the
speed of sound and a large relative density fluctuations of
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FIG. 4: (Color online) Collision energy dependence of the
yield ratio NtNp/(N

2
d ) in 0-10% Au+Au collisions calculated

from the coalescence model. The data is taken from Ref. [31].

EoS in the iEBE-MUSIC hybrid model. As to the yield
ratio NtNp/N

2
d , the two-body process slightly overesti-

mates whereas the three-body process slightly underes-
timates the measured value at 200 GeV. Both processes
greatly underestimate, however, the measured value atp
sNN  62.4 GeV.

Figure 4 further shows that the yield ratio NtNp/N
2
d

with tritons produced from the 2-body process is larger
than that with tritons produced from the 3-body process
in our model, which is a consequence of the non-trivial
spatial-momentum correlations in the nucleon phase-
space distributions from our iEBE-MUSIC hybrid model.
It is shown in Ref. [100] that the yield ratios from these
two processes would be the same if the nucleon phase-
space distributions are uniform in the coordinate space.
We emphasis that our model does not contain any ef-
fects from a critical point, which thus provides the non-
critical baseline results for the yields of these light nuclei
in heavy ion collisions at the RHIC BES energies. For a
better explanation of the observed non-monotonic behav-
ior of NtNp/N

2
d , B2(d), B2(d̄) and

p
B3(t) in their colli-

sion energy dependence, a dynamical model with critical
fluctuations or the effects of critical point is required.

We note that our result on the yield ratio NtNp/N
2
d

is similar to those found in Ref. [39], which is based
on a simple phase-space coalescence model using nucle-
ons from the JAM hadronic cascade model [101] and in
Ref. [48], which is based on a coalescence model similar
to that in the present study with nucleons from a multi-
phase transport (AMPT) model [102].

Although a non-monotonic collision energy dependence
of the yield ratio NtNp/N

2
d has been reported in Ref. [49]

from a coalescence model study using nucleons from the
UrQMD model [66], the result is puzzling because of the
unexpected very different nucleon and light nuclei rapid-
ity distributions predicted from this study.

IV. SUMMARY

In this paper, we have used the nucleon coalescence
model to study light nuclei production in the most cen-
tral Au+Au collisions at p

sNN = 7.7, 11.5, 19.6, 27, 39,
62.4 and 200 GeV. The input phase-space distributions
of (anti-)protons and (anti-)neutrons at kinetic freeze-
out for the coalescence calculations are generated from
the iEBE-MUSIC hybrid model using three dimensional
dynamical initial conditions and a crossover EoS. These
comprehensive simulations can nicely reproduce the mea-
sured pT -spectra of (anti-)pions, (anti-)kaons, and (anti-
)protons for Au+Au collisions at psNN = 7.7� 200 GeV
(as shown in the appendix and in Ref. [84]). We have
found that the subsequent coalescence model calculations
can reproduce the measured pT -spectra and dN/dy of
(anti-)deuterons and (anti-)tritons and the particle ratios
of t/p within 10% of accuracy. However, the deviations
between the calculated and measured particle ratios of
d/p, d̄/p̄, and t/d increase to 15%, 20%, and 10%, re-
spectively.

Although the coalescence model reasonably describes
the pT -spectra and yields of light nuclei at various col-
lision energies, the predicted coalescence parameters of
(anti-)deuterons and tritons, B2(d), B2(d̄) and

p
B3(t),

decrease monotonically with increasing collision energy,
and the yield ratio NtNp/N

2
d stays almost constant with

respect to the collision energy. All these theoretical re-
sults fail to describe the non-monotonic behavior of the
corresponding measurements in experiments. We empha-
sis that the hydrodynamic part of our calculations with
a crossover EoS for all collision energies does not gener-
ate any dynamical density fluctuations, which are related
to the critical point and first-order phase transition, for
the subsequent nucleon coalescence model calculations.
According to Refs. [45, 46], non-trivial density fluctua-
tions in the produced hot QCD matter are needed to
describe this non-monotonic behavior. Our model calcu-
lations thus provide the non-critical baseline results for
comparisons with related light nuclei measurements at
the RHIC BES program. We leave the implementation
of an EoS with a critical point in the hydrodynamic evo-
lution and the inclusion of dynamical density fluctuations
to future studies.
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Summary

•Paradox (ES,2006) at CP is not there even at xi->infinity there is no implosion 
•Multi-body repulsive forces step in and will generate explosion instead 
•Before xi reaches inter-nucleon distances in ambient matter, it does so for 
clusters 
•So, watching the clusters (which are very sensitive) is a better signal than 
ambient EOS 
•We calculated main diagrams for different shapes and sizes of clusters 
•We used universal Ising fluctuation potential,  
•deformed because freeze out is away from critical line 
•And get temperature dependence of effective triple and quartic couplings 
•The results predict strong dip of clustering near TC 
•Experimental data hint for TWO (?) correlated dips in TWO (very different) 
observables, kurtosis and tritium ratio
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