



1

# <u>Discussion of Yellow Report Content - Tracking</u> with focus on two detector baselines

Leo Greiner, Domenico Elia, Kondo Gnanvo





### This is not a new or even original idea – just one worth pursuing

- A "hybrid" tracking detector (silicon + TPC + End Cap GEM layers) is part of the original BEAST concept and is the traditional configuration for general purpose HI collider detectors.
- All silicon tracking options have been proposed since the beginning of EIC development (e.g. TOPSiDE) and developed in ERD16, ERD18 in the MAPS technology.



https://indico.bnl.gov/event/8231/contributions/37 776/attachments/28208/43596/Pavia.OpenMIC.Con tributions.pdf

1 20





- The concept of two possible baseline detectors (all-silicon and hybrid) has continued to be developed during the YR process in the tracking workgroup.
- We now have optimized baseline layouts for both configurations.
- nico's The YR contains both options as baseline detector configurations.
  - The simulations for both have been completed in the barrel region (-1 < eta < 1) to a level that allows the performance characteristics to be assessed and compared to the physics derived requirements for most quantities. Preliminary performance studies in the forward/backward regions available, need to be finalized/completed by including further options (MPGDs) in the simulation. Coverage is provided for |eta|≤ 3.5
  - The concepts have been simulated based on ALICE ITS3 type sensors.
  - A number of options are presented for the gaseous detector in the hybrid versions.

Domenico's talk





- Both designs mostly meet the requirements in the physics requirements matrix.
- Selection will likely be based on factors that are an optimization of the whole EIC detector design e.g. magnet size and field, PID considerations, cost, relative importance of compactness in a tracking detector design, etc.
- The different characteristics will be useful in the complementarity studies and in the process of the development of a detector for the second interaction region.
- Based on this, it is worthwhile to take another look at the tracking technology options as they relate to overall detector design.





## In the Pavia meeting the tracking group presented a technology summary as it relates to complimentarity

(YES – too small to read)

| Tracking                                                      | WG: technology in                                                                                                                                                                                          | put for comple                                                                                                             | mentarity                                                                                               |                                                                                                            | TT                  | racking WG:                                                                            | technology                                                                                                               | input for                                                                                 | complementa                                                                                            | ritv                                                         |                                                                                   |
|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Tracking Si c                                                 | entral detector (vertex + barrel +                                                                                                                                                                         | discs)                                                                                                                     | ITS3 silicon design                                                                                     | n parameters<br>scale sensor (this proposal)                                                               |                     | TPC + Fast MPGD Layer                                                                  | Cylindrical MPGD<br>(Micromegas, μRWELL)                                                                                 | Drift Chambers /<br>Straw Tubes                                                           | Planar MPGDs (GEM,<br>Micromegas, µRWELL)                                                              | Small TGCs                                                   | MPGD-TRDs                                                                         |
| Technology:<br>technology th<br>sensor appea<br>based on AL   | for the vertex, barrel and inner of<br>at meets the requirements are M/<br>rs to fully meet all of the EIC requ<br>PIDE sensors with a smaller pixel                                                       | disc detectors, the only<br>APS. No currently existin<br>uirements (current simula<br>I size 20 x 20 um <sup>2</sup> ). In | identified<br>Silice techeses 20-40, Prot size<br>O(10 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -             | im<br>10 µm)<br>c up to 28 x 10 cm<br>is<br>is (option: <10ns)<br>1z/cm <sup>2</sup><br>1z/cm <sup>2</sup> | Barrel              | Pros:<br>- momentum res.;<br>- additional dE/dx;<br>- cost<br>- Low material in barrel | Pros:<br>- Space point & angular res.<br>- Time resolution (< 10 ns)<br>- Low material in End cap<br>- Cost & robustness | Pros:<br>- momentum res.;<br>- additional dE/dx;<br>- cost<br>- Low material in<br>barrel | Pros:<br>- Alternative to cylindrical<br>MPGDs arrangement in<br>polygons<br>- Easier fabrication      | N/A                                                          | N/A<br>Radiator size                                                              |
| produce a new<br>groups are jo<br>contingency<br>requirements | v sensor design that meets the EIC<br>bining an ongoing sensor develop<br>plans for modification of existing<br>should this CERN effort be unsucce                                                         | Crequirements a consortiu<br>oment effort at CERN. 1<br>Ig sensor designs to m<br>essful                                   | um of EIC         Power Consumption         < 20 m                                                      | W/cm² (pixel matrix)<br>went/pixel<br>MeV n <sub>og</sub> /cm²<br>ad                                       | Tegion              | Cons:<br>- End cap material<br>- calibration space charge<br>distortion                | Cons:<br>- Momentum res.<br>- Fabrication challenges<br>- Material budget in barrel                                      | Cons:<br>- End cap material<br>- calibration<br>- Stability issues                        | Cons:<br>- Momentum res.<br>- Detector space barrel<br>- Material budget in barrel                     |                                                              |                                                                                   |
| There is gene<br>deliver an EIC<br>resolution pe              | There is general consensus that this is a promising path to pursue to deliver an EIC sensor in the given timeframe. Momentum and pointing resolution performance studies are in progress. EIC requirements |                                                                                                                            | ITS3 like vertexing<br>ITS3 like barrel (up to 1.5m lenath)                                             | Stave X/X0<br>~0.1%<br>0.55 %                                                                              | Hadron              |                                                                                        | N/A                                                                                                                      |                                                                                           | Pros:<br>- Momentum & angular res.<br>- Low material (< 0.4% X/X0 per<br>layer)<br>- Cost & robustness | Pros:<br>- Momentum & angular<br>res.<br>- Cost & robustness | Pros:<br>- Additional tracking<br>- Angular res. for RICH<br>- Additional e/π PID |
| Si + gaseous d                                                | etector vs. all silicon                                                                                                                                                                                    | All Si                                                                                                                     | ITS3 like disc (up to 60 cm diameter)                                                                   | 0.24%                                                                                                      | End Cap             | ı Only p                                                                               | lanar option                                                                                                             | Cons:<br>- Material budget<br>- calibration<br>- Stability issues                         | <u>Cons:</u><br>- ?                                                                                    | Cons:<br>- Material budget                                   | Cons:<br>- Radiator size                                                          |
| Attributes for consideration                                  | <ul> <li>dE/dx in gas for PID</li> <li>Well understood technology - less R&amp;D</li> <li>Costs less (likely)</li> <li>Less material in tracking region</li> </ul>                                         | Readout fai     Readout fai     Better mon     Can be mad     Less materi                                                  | ster than TPC<br>mentum resolution than TPC at higher momen<br>de more compact<br>ial in endcap regions | tum (>~5GeV/c)                                                                                             | Electron<br>End Cap | n<br>Only pi                                                                           | N/A<br>lanar option                                                                                                      | N/A                                                                                       | Pros:<br>- Momentum & angular res.<br>- Low material (<0.4%)<br>- Cost & robustness                    | N/A<br>Mainly because of material<br>budget                  | Pros:<br>- Additional tracking<br>- Complement main e<br>PID in electron end cap  |
|                                                               | Worse single point resolution but more position     samples     Very high single point resolution                                                                                                          |                                                                                                                            |                                                                                                         |                                                                                                            |                     |                                                                                        |                                                                                                                          |                                                                                           | Cons:                                                                                                  |                                                              | Cons:<br>- Radiator size?                                                         |

https://indico.bnl.gov/event/8231/contributions/37908/attachments/28346/43620/2020\_05\_21\_tracking\_summary.pdf

These assessments have been updated and are on the following slides





|                     | TPC + Fast MPGD Layer                                                                                                                                                                                                                                                                                                                                                                                 | Cylindrical MPGD<br>(Micromegas, μRWELL) | Drift Chambers /<br>Straw Tubes                                                                                                                                              | Planar MPGDs (GEM,<br>Micromegas, μRWELL)                                                                                              | Small TGCs                                                                                                                     | MPGD-TRDs                                                                                                                       |     |                      |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----|----------------------|
| Barrel<br>region    | Pros:       Pros:         - momentum res.;       - Space point & angular res.         - additional dE/dx;       - Time resolution (< 10 ns)         - cost       - Low material in barrel         - Low material in barrel       - Cost & robustness         - End cap material       - Cons:         - calibration space charge distortion       - Momentum res.         - Material budget in barrel |                                          | Pros:Pros:- momentum res.;- Space point & angular res additional dE/dx;- Time resolution (< 10 ns)- cost- Low material in End cap- Low material in barrel- Cost & robustness |                                                                                                                                        | <ul> <li>Pros:</li> <li>momentum res.;</li> <li>additional dE/dx;</li> <li>cost</li> <li>Low material in<br/>barrel</li> </ul> | <ul> <li>Pros:</li> <li>Alternative to cylindrical<br/>MPGDs arrangement in<br/>polygons</li> <li>Easier fabrication</li> </ul> | N/A | N/A<br>Radiator size |
| region              |                                                                                                                                                                                                                                                                                                                                                                                                       |                                          | Cons:<br>- End cap material<br>- calibration<br>- Stability issues                                                                                                           | Cons:<br>- Momentum res.<br>- Detector space barrel<br>- Material budget in barrel                                                     |                                                                                                                                |                                                                                                                                 |     |                      |
| Hadron              | N/A                                                                                                                                                                                                                                                                                                                                                                                                   |                                          | Pros:<br>- momentum res.;<br>- additional dE/dx;<br>- cost                                                                                                                   | <ul> <li>Pros:</li> <li>Momentum &amp; angular res.</li> <li>Low material (&lt; 0.4X0 layer)</li> <li>Cost &amp; robustness</li> </ul> | <ul> <li>Pros:</li> <li>Momentum &amp; angular res.</li> <li>Cost &amp; robustness</li> </ul>                                  | <ul> <li>Pros:</li> <li>Additional tracking</li> <li>Angular res. for RICH</li> <li>Additional e/π PID</li> </ul>               |     |                      |
| End Cap             | Only pla                                                                                                                                                                                                                                                                                                                                                                                              | anar option                              | Cons:<br>- Material budget<br>- calibration<br>- Stability issues                                                                                                            | <u>Cons:</u><br>- ?                                                                                                                    | Cons:<br>- Material budget                                                                                                     | Cons:<br>- Available space i.e.<br>radiator thickness                                                                           |     |                      |
| Electron<br>End Cap | N/A<br>Only planar option                                                                                                                                                                                                                                                                                                                                                                             |                                          | N/A N/A N/A - Cost & robustness                                                                                                                                              |                                                                                                                                        | N/A<br>Mainly because of material                                                                                              | <ul> <li>Pros:</li> <li>Additional tracking</li> <li>Complement main e<br/>PID in electron end cap</li> </ul>                   |     |                      |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |                                                                                                                                                                              | Cons:<br>- ?                                                                                                                           | budget                                                                                                                         | Cons:<br>- Available space i.e.<br>radiator thickness                                                                           |     |                      |





Tracking WG: technology input for complementarity - Silicon

- For the vertex, barrel and inner disc detectors, the only identified technology that meets the requirements are MAPS.
- ALPIDE is the only existing MAPS sensor candidate that is available for use now or with planned availability within the next 1-2 years. All others are in prototype status. No currently existing MAPS sensor appears to fully meet all of the EIC requirements (early simulations were based on ALPIDE sensors with a smaller pixel size 20 um^2, current are 10 um^2).
- In order to produce a new sensor design that meets the EIC requirements a consortium of EIC groups have joined the ongoing sensor development effort for ALICE ITS3 at CERN.
- There are contingency (paths in both ITS3 and EIC Silicon Consortium) plans for modification of existing sensor designs to meet EIC requirements should this CERN effort be unsuccessful. Until the project reaches the point where it needs to commit to a particular sensor, it is prudent to monitor sensor progress in other technologies (180nm MAPS, SOI, LGAD, etc.) in order to be in a position to make the best sensor choice for EIC tracking. This is detailed in YR Ch. 14.



Studies have been carried out in the tracking workgroup on the effects of pixel size on pointing and momentum resolution for a variety of pixel sizes.

https://wiki.bnl.gov/conferences/images/1/1c/ERD25-proposal-Jul20.pdf





## ITS3 silicon design parameters

| Parameter                 | Wafer-scale sensor (this proposal)     |
|---------------------------|----------------------------------------|
| Technology node           | 65 nm                                  |
| Silicon thickness         | 20-40 µm                               |
| Pixel size                | O(10 x 10 µm)                          |
| Chip dimensions           | scalable up to 28 x 10 cm              |
| Front-end pulse duration  | ~ 200 ns                               |
| Time resolution           | < 100 ns (option: <10ns)               |
| Max particle fluence      | 100 MHz/cm <sup>2</sup>                |
| Max particle readout rate | 100 MHz/cm <sup>2</sup>                |
| Power Consumption         | < 20 mW/cm <sup>2</sup> (pixel matrix) |
| Detection efficiency      | > 99%                                  |
| Fake hit rate             | < 10 <sup>-7</sup> event/pixel         |
| NIEL radiation tolerance  | $10^{14}$ 1 MeV $n_{eq}/cm^2$          |
| TID radiation tolerance   | 10 MRad                                |

| Tracking detector component           | Stave X/X0 |
|---------------------------------------|------------|
| ITS3 like vertexing                   | 0.05-0.1%  |
| ITS3 like barrel (up to 1.5 m length) | 0.55%      |
| ITS3 like disc (up to 60 cm diameter) | 0.24%      |

|                                 | Si + gaseous                                                                                                                                                                                                                                                                                 | All Si                                                                                                                                                                                                                                          |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Attributes for<br>consideration | <ul> <li>dE/dx in gas for PID (TPC)</li> <li>Well understood technology - less<br/>R&amp;D needed.</li> <li>Costs less (likely)</li> <li>Less material in tracking region but<br/>more in the endcap region.</li> <li>Worse single point resolution but<br/>more position samples</li> </ul> | <ul> <li>Readout faster than TPC</li> <li>Better momentum resolution than TPC at higher momentum (&gt;~5GeV/c)</li> <li>Can be made more compact</li> <li>Less material in endcap regions</li> <li>Very high single point resolution</li> </ul> |





All of these considerations are linked and require optimizations to drive the particular complementarity in the physics topics that will be addressed.

In addition to the two baseline tracking detector configurations addressed in the YR we could consider:

- All silicon option in existing Babar magnet with additional PID (possibly high pressure gas Cerenkov in the space gained from the more compact silicon tracking)
- Compact new magnet at 2-3 Tesla using all silicon option smaller detector overall (possible cost savings) better momentum performance, may limit some PID options, etc.
- Etc., etc., etc.
- This is a large parameter space just in tracking and when the other detector systems are included it becomes too large and interrelated to present in a slide format.
- The approach of the tracking group was to deliver baseline simulations for the two different optimized detector configurations and at two magnetic field settings so that the strengths/weaknesses of various large feature combinations could be judged in the context of prioritized physics goals.

"Final" configurations again will be driven by what overall detector optimizations make sense in the context of performance in specific physics topics and complementarity. We hope that the inclusion of the baseline performance simulations will help stimulate this discussion.



## The Case for MPGD Trackers behind the dRICH in the Hadron



End Cap

### Hybrid option: Preliminary studies at



#### Improved momentum resolution



### "All Silicon" option: LANL studies at FIT



#### Replacing Si-disks with GEM: no negative impact on momentum resolution

E 35

30

25

20

15

10

N



#### EICUG YR workshop LBNL Tracking YR content - 2020 11 20

### **GEM-TRD-T:** e-π separation - JLab test beam



#### Provide additional Tracking in µTPC mode E 35 N 30 25 distance 20 drift 15 10 -15 -10 projection x, mm projection y, mm 10



1

## **Tracking Section Contents**

| Trac | king                                      |                                               | 3                                                                    |  |  |  |  |  |  |
|------|-------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|--|--|--|--|--|--|
| 1.1  | Introdu                                   | uction                                        |                                                                      |  |  |  |  |  |  |
| 1.2  | Main requirements and acceptance coverage |                                               |                                                                      |  |  |  |  |  |  |
| 1.3  | Techno                                    | ology surv                                    | yey 3                                                                |  |  |  |  |  |  |
|      | 1.3.1                                     | Silicon I                                     | Detector Technologies for EIC                                        |  |  |  |  |  |  |
|      |                                           | 1.3.1.1                                       | MAPS 4                                                               |  |  |  |  |  |  |
|      |                                           | 1.3.1.2                                       | 65 nm MAPS SVT detector                                              |  |  |  |  |  |  |
|      | 1.3.2                                     | Alternati                                     | ive Silicon Sensors                                                  |  |  |  |  |  |  |
|      | 1.3.3                                     | Gaseous                                       | Tracking Detector Technologies                                       |  |  |  |  |  |  |
|      |                                           | 1.3.3.1                                       | Time Projection Chambers (TPC)                                       |  |  |  |  |  |  |
|      |                                           | 1.3.3.2                                       | Micro Pattern Gaseous Detectors (MPGDs)                              |  |  |  |  |  |  |
|      |                                           | 1.3.3.3                                       | Drift Chambers & Straw Tubes (DCs)                                   |  |  |  |  |  |  |
|      |                                           | 1.3.3.4 Small-strip Thin Gap Chambers (sTGCs) |                                                                      |  |  |  |  |  |  |
| 1.4  | 4 Comparison of Technology Choices        |                                               |                                                                      |  |  |  |  |  |  |
| 1.5  | Detect                                    | or concept                                    | ts and performance studies                                           |  |  |  |  |  |  |
|      | 1.5.1                                     | All-Silic                                     | on Tracking Option                                                   |  |  |  |  |  |  |
|      | 1.5.2                                     | Baseline                                      | All-Silicon Tracking Option (Barrel & End Caps)                      |  |  |  |  |  |  |
|      | 1.5.3                                     | Alternati                                     | ive Forward Tracking Option: Hadron End Cap with Si disk + MPGDs     |  |  |  |  |  |  |
|      | 1.5.4                                     | Hybrid 7                                      | Gracking System         20                                           |  |  |  |  |  |  |
|      |                                           | 1.5.4.1                                       | Barrel: Silicon Vertex + TPC                                         |  |  |  |  |  |  |
|      |                                           | 1.5.4.2                                       | Barrel: Silicon Vertex + Cylindrical MPGDs 22                        |  |  |  |  |  |  |
|      |                                           | 1.5.4.3                                       | Hadron & Electron End Cap: MPGDs                                     |  |  |  |  |  |  |
|      | 1.5.5                                     | Fast trac                                     | king Layers & Additional PID detectors                               |  |  |  |  |  |  |
|      |                                           | 1.5.5.1                                       | Fast Signal & High Resolution MPGDs for DIRC in the Barrel Region 26 |  |  |  |  |  |  |
|      |                                           | 1.5.5.2                                       | MPGD-based-TRDs for Electron PID and Tracking in the End Caps 27     |  |  |  |  |  |  |
|      |                                           | 1.5.5.3                                       | Readout structures for MPGDs                                         |  |  |  |  |  |  |
| 1.6  | Integra                                   | ation issue                                   | s                                                                    |  |  |  |  |  |  |
| 1.7  | 7 Material Budget Considerations          |                                               |                                                                      |  |  |  |  |  |  |
|      |                                           |                                               |                                                                      |  |  |  |  |  |  |





backup



stave

Stave

e

## Summary of ITS3 like Si tracking



|                                          | Stave X/X0  | Stave transition<br>(per 100 cm^2 of Si<br>surface)                             | Services (per 100<br>cm^2 of Si surface)                                         | Patch panel (per 100<br>cm^2 of Si surface)                       |
|------------------------------------------|-------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------|
| ITS3 like vertexing                      | ~0.5 – 0.1% | 6.66 cm <sup>3</sup> of<br>material with X/X0 of<br>0.031 per traversed<br>cm   | 2.96 cm <sup>2</sup> cross<br>section with X/X0 of<br>0.002 per traversed<br>cm  | 4.32 cm x 1cm x 1 cm<br>with 0.03423 X/X0<br>per traversed cm     |
| ITS3 like barrel (up to 1.5m<br>length)  | 0.55 %      | 4.286 cm <sup>3</sup> of<br>material with X/X0 of<br>0.0306 per traversed<br>cm | 1.905 cm <sup>2</sup> cross<br>section with X/X0 of<br>0.002 per traversed<br>cm | 2.778cm x 1cm x 1<br>cm with 0.03423<br>X/X0 per traversed<br>cm  |
| ITS3 like disc (up to 60 cm<br>diameter) | 0.24%       | 6.66 cm <sup>3</sup> of<br>material with X/X0 of<br>0.031 per traversed<br>cm   | 2.96 cm <sup>2</sup> cross<br>section with X/X0 of<br>0.002 per traversed<br>cm  | 4.321 cm x 1cm x 1<br>cm with 0.03423<br>X/X0 per traversed<br>cm |

Patch panel

e



## Hybrid detector baseline detector layout





Figure 23: New hybrid baseline layout. The silicon layers and disks are shown in green, and the TPC in light blue.

| Layer     | Length  | Radial position | Disk   | z position | Inner radius | Outer radius |
|-----------|---------|-----------------|--------|------------|--------------|--------------|
| Layer 1   | 420 mm  | 36.4 mm         | Disk 1 | 220 mm     | 36.4 mm      | 71.3 mm      |
| Layer 2   | 420 mm  | 44.5 mm         | Disk 2 | 430 mm     | 36.4 mm      | 139.4 mm     |
| Layer 3   | 420 mm  | 52.6 mm         | Disk 3 | 586 mm     | 36.4 mm      | 190.0 mm     |
| Layer 4   | 840 mm  | 133.8 mm        | Disk 4 | 742 mm     | 49.9 mm      | 190.0 mm     |
| Layer 5   | 840 mm  | 180.0 mm        | Disk 5 | 898 mm     | 66.7 mm      | 190.0 mm     |
| TPC start | 2110 mm | 200.0 mm        | Disk 6 | 1054 mm    | 83.5 mm      | 190.0 mm     |
| TPC end   | 2110 mm | 780.0 mm        | Disk 7 | 1210 mm    | 99.3 mm      | 190.0 mm     |
|           |         |                 |        |            |              |              |

(a) Barrel region

(b) Disk region

**Table 8:** Positions and lengths of detector parts in the barrel region and the disk region. In the disk region, the seven disks in the forward region are shown, but this layout is symmetric so it is the same with reversed sign on the *z* position in the backward region.

Hybrid tracking detector layout taken from the current draft of the YR.







## All-silicon tracking detector layout taken from the current draft of the YR.



## ALL-SILICON tracking system:

|              | Tracking performance (All-silicon concept, B = 3 T) |          |                                              |                                                          |                                                     |                            |  |  |  |  |  |  |
|--------------|-----------------------------------------------------|----------|----------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|----------------------------|--|--|--|--|--|--|
|              |                                                     |          | Momen                                        | tum res.                                                 | Transverse pointing res.                            |                            |  |  |  |  |  |  |
| η            |                                                     |          | Performance                                  | Requirements                                             | Performance                                         | Requirements               |  |  |  |  |  |  |
|              |                                                     |          |                                              |                                                          |                                                     |                            |  |  |  |  |  |  |
| -3.5 to -3.0 |                                                     |          | $\sigma n/n \sim 0.1\% \times n \approx 2\%$ | $c_{\rm D}/c_{\rm c} \sim 0.1\% x_{\rm D} \approx 0.5\%$ | $d_{22}(x_{1}) \sim 60/pT$ $\mu m \approx 20 \mu m$ |                            |  |  |  |  |  |  |
| -3.0 to -2.5 | ]                                                   | Bookward | ορ/ρ ~ 0.1 /8~ρ ⊕ 2 /8                       | op/p ~ 0.1 %~p @ 0.3 %                                   |                                                     | dca(xy) ~ 30/pT μm ⊕ 40 μm |  |  |  |  |  |  |
| -2.5 to -2.0 | ]                                                   | Detector |                                              |                                                          |                                                     |                            |  |  |  |  |  |  |
| -2.0 to -1.5 | ]                                                   | Delector | σp/p ~ 0.02%×p ⊕ 1%                          | σp/p ~ 0.05%×p ⊕ 0.5%                                    | dca(xy) ~ 40/pT µm ⊕ 10 µm                          | dca(xy) ~ 30/pT µm ⊕ 20 µm |  |  |  |  |  |  |
| -1.5 to -1.0 | ]                                                   |          |                                              |                                                          |                                                     |                            |  |  |  |  |  |  |
| -1.0 to -0.5 | 1                                                   |          |                                              |                                                          |                                                     |                            |  |  |  |  |  |  |
| -0.5 to 0    | Central                                             | Barrel   |                                              |                                                          |                                                     |                            |  |  |  |  |  |  |
| 0 to 0.5     | Detector                                            |          | op/p ~ 0.02%×p ⊕ 0.5%                        | op/p ~ 0.03%^p 🖶 0.3%                                    | uca(xy) ~ 50/p1 µm @ 5 µm                           | uca(xy) ~ 20/ρ1 μm ⊕ 5 μm  |  |  |  |  |  |  |
| 0.5 to 1.0   | 1                                                   |          |                                              |                                                          |                                                     |                            |  |  |  |  |  |  |
| 1.0 to 1.5   | 1                                                   |          |                                              |                                                          |                                                     |                            |  |  |  |  |  |  |
| 1.5 to 2.0   | 1                                                   | Forward  | σp/p ~ 0.02%×p ⊕ 1%                          | σp/p ~ 0.05%×p ⊕ 1%                                      | dca(xy) ~ 40/pT µm ⊕ 10 µm                          | dca(xy) ~ 30/pT µm ⊕ 20 µm |  |  |  |  |  |  |
| 2.0 to 2.5   | 1                                                   | Detector |                                              |                                                          |                                                     |                            |  |  |  |  |  |  |
| 2.5 to 3.0   | 1                                                   | Delector | gp/p = 0.19/ xp @ 29/                        | $r_{0} = 0.10 \times 0.20$                               |                                                     | dca(xy) ~ 30/pT µm ⊕ 40 µm |  |  |  |  |  |  |
| 3.0 to 3.5   |                                                     |          | 0p/p ~ 0.1%×p ⊕ 2%                           | 0µ/p ~ 0.1%∧p ⊕ 2%                                       | uca(xy) ~ ου/ρτ μπ ⊕ 20 μm                          | dca(xy) ~ 30/pT µm ⊕ 60 µm |  |  |  |  |  |  |



## ALL-SILICON tracking system:

|              | Tracking performance (All-silicon concept, B = 1.5 T) |          |                                  |                                                                      |                                                           |                            |  |  |  |  |  |  |
|--------------|-------------------------------------------------------|----------|----------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------|----------------------------|--|--|--|--|--|--|
|              |                                                       |          | Momen                            | tum res.                                                             | Transverse pointing res.                                  |                            |  |  |  |  |  |  |
| η            |                                                       |          | Performance                      | Requirements                                                         | Performance                                               | Requirements               |  |  |  |  |  |  |
|              |                                                       |          |                                  |                                                                      |                                                           |                            |  |  |  |  |  |  |
| -3.5 to -3.0 |                                                       |          | $an/n \sim 0.2\% xn = 5\%$       | $q_{\rm D}/{\rm D} \sim 0.1\% {\rm xp} \approx 0.5\%$                | $d_{c2}(x_{1}) \sim 60/nT \ um \approx 20 \ um$           |                            |  |  |  |  |  |  |
| -3.0 to -2.5 | ]                                                     | Reckward | ορ/μ ~ 0.2 //~μ ⊕ 3 //           | op/p ~ 0.1 %~p @ 0.0 %                                               | uca(xy) ~ ου/ρτ μπ ⊕ 20 μπ                                | dca(xy) ~ 30/pT μm ⊕ 40 μm |  |  |  |  |  |  |
| -2.5 to -2.0 | ]                                                     | Detector |                                  |                                                                      |                                                           |                            |  |  |  |  |  |  |
| -2.0 to -1.5 | ]                                                     | Delector | σp/p ~ 0.04%×p ⊕ 2%              | σp/p ~ 0.05%×p ⊕ 0.5%                                                | dca(xy) ~ 40/pT µm ⊕ 10 µm                                | dca(xy) ~ 30/pT µm ⊕ 20 µm |  |  |  |  |  |  |
| -1.5 to -1.0 | ]                                                     |          |                                  |                                                                      |                                                           |                            |  |  |  |  |  |  |
| -1.0 to -0.5 | ]                                                     |          |                                  |                                                                      |                                                           |                            |  |  |  |  |  |  |
| -0.5 to 0    | Central                                               | Parrol   |                                  | $\sigma_{0}/\sigma_{\infty} = 0.05\% \times \sigma_{\infty} = 0.5\%$ | $d_{00}(m) \approx 30/5T \text{ um} \approx 5 \text{ um}$ |                            |  |  |  |  |  |  |
| 0 to 0.5     | Detector                                              | Darrei   | οp/p ~ 0.04 % ^ p ⊕ 1 %          | op/p ~ 0.03%^p 	 0.3%                                                | dca(xy) ~ 50/p1 µm @ 5 µm                                 | uca(xy)~20/p1 µm + 5 µm    |  |  |  |  |  |  |
| 0.5 to 1.0   | ]                                                     |          |                                  |                                                                      |                                                           |                            |  |  |  |  |  |  |
| 1.0 to 1.5   | ]                                                     |          |                                  |                                                                      |                                                           |                            |  |  |  |  |  |  |
| 1.5 to 2.0   | ]                                                     | Forward  | σp/p ~ 0.04%×p ⊕ 2%              | σp/p ~ 0.05%×p ⊕ 1%                                                  | dca(xy) ~ 40/pT µm ⊕ 10 µm                                | dca(xy) ~ 30/pT µm ⊕ 20 µm |  |  |  |  |  |  |
| 2.0 to 2.5   |                                                       | Detector |                                  |                                                                      |                                                           |                            |  |  |  |  |  |  |
| 2.5 to 3.0   | ]                                                     | Delector | $\sigma n/n \sim 0.20/ xn = 50/$ | $c_{\rm D}/c_{\rm e} = 0.19(x_{\rm D} = 0.29)$                       | $d_{22}(x_0) \approx 60/pT \mu m \approx 20 \mu m$        | dca(xy) ~ 30/pT µm ⊕ 40 µm |  |  |  |  |  |  |
| 3.0 to 3.5   | ]                                                     |          | op/p ~ 0.2%×p @ 5%               | 0µ/p ~ 0.1%×p ⊕ 2%                                                   | uca(xy) ~ oo/p1 µiii ⊕ 20 µiii                            | dca(xy) ~ 30/pT µm ⊕ 60 µm |  |  |  |  |  |  |



## HYBRID tracking system:

|              | Tracking performance (Hybrid concept, B = 3 T) |          |                                                                                                                                                                                             |                                               |                  |                |                                                   |                                          |  |  |  |  |  |
|--------------|------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------|----------------|---------------------------------------------------|------------------------------------------|--|--|--|--|--|
|              |                                                |          | Momentum re                                                                                                                                                                                 | s.                                            | Minim            | um pT          | Transverse pointing res.                          |                                          |  |  |  |  |  |
| η            |                                                |          | Performance                                                                                                                                                                                 | Requirements                                  | Performance      | Requirements   | Performance                                       | Requirements                             |  |  |  |  |  |
|              |                                                |          |                                                                                                                                                                                             |                                               |                  |                |                                                   |                                          |  |  |  |  |  |
| -3.5 to -3.0 |                                                |          | $\sigma_{D/D} \sim 0.05\% x_{D} \approx 2\%$                                                                                                                                                | $\sigma_{0}/c \sim 0.1\% x c \approx 0.5\%$   |                  | 100-150 MeV/c  | $dca(xy) \approx 50/nT \ um \approx 10 \ um$      |                                          |  |  |  |  |  |
| -3.0 to -2.5 |                                                | Backward | 0p/p ~ 0.05%×p ⊕ 2%                                                                                                                                                                         | ob/b ~ 0.1 /0×b @ 0.0 /0                      |                  | 100-150 MeV/c  | dca(xy) ≈ 30/p1 µm ⊕ 10 µm                        | dca(xy) ~ 30/pT µm ⊕ 40 µm               |  |  |  |  |  |
| -2.5 to -2.0 |                                                | Detector | opckward         op/p ~ 0.11%×p ⊕ 0.4% (0-8 GeV/c)         op/p ~ 0.05%×p ⊕ 0.5%         160-220 M           op/p ~ 0.04%×p ⊕ 1% (8-30 GeV/c)         op/p ~ 0.05%×p ⊕ 0.5%         300 MeV | 160-220 MeV/c                                 | 100-150 MeV/c    |                |                                                   |                                          |  |  |  |  |  |
| -2.0 to -1.5 |                                                | Delector |                                                                                                                                                                                             | σp/p ~ 0.05%×p ⊕ 0.5%                         |                  | 100-150 MeV/c  | dca(xy) ~ 25/pT µm ⊕ 3 µm                         | dca(xy) ~ 30/pT µm ⊕ 20 µm               |  |  |  |  |  |
| -1.5 to -1.0 |                                                |          |                                                                                                                                                                                             |                                               | 300 MeV/c        | 100-150 MeV/c  |                                                   |                                          |  |  |  |  |  |
| -1.0 to -0.5 |                                                |          |                                                                                                                                                                                             |                                               |                  |                |                                                   |                                          |  |  |  |  |  |
| -0.5 to 0    | Central                                        | Barrel   | σp/p ~ 0.11%×p ⊕ 0.2% (0-5 GeV/c)                                                                                                                                                           | $\sigma_{D/D} \sim 0.05\% x_{D} \oplus 0.5\%$ | 400 MeV/c        | 100-150 MeV//c | $d_{c2}(x_V) \sim 15/nT \mu m \approx 2 \mu m$    | $d_{c2}(x_V) \sim 20/pT \mu m = 5 \mu m$ |  |  |  |  |  |
| 0 to 0.5     | Detector                                       | Darrer   | σp/p ~ 0.03%×p ⊕ 0.5% (5-30 GeV/c)                                                                                                                                                          | oh/h ~ 0.02 %vh @ 0.2 %                       | (90% acceptance) |                | uca(xy)~15/p1 µm ⊕ 2 µm                           |                                          |  |  |  |  |  |
| 0.5 to 1.0   |                                                |          |                                                                                                                                                                                             |                                               |                  |                |                                                   |                                          |  |  |  |  |  |
| 1.0 to 1.5   |                                                |          | $g_{\rm D}/p \sim 0.11\% xp \approx 0.4\% (0.8 GeV/c)$                                                                                                                                      |                                               | 300 MeV/c        | 100-150 MeV/c  |                                                   |                                          |  |  |  |  |  |
| 1.5 to 2.0   |                                                | Forward  | $\sigma_{\rm D}/p \sim 0.11 / 8 \times p \approx 0.4 \% (0.0 GeV/c)$                                                                                                                        | σp/p ~ 0.05%×p ⊕ 1%                           |                  | 100-150 MeV/c  | dca(xy) ~ 25/pT µm ⊕ 3 µm                         | dca(xy) ~ 30/pT µm ⊕ 20 µm               |  |  |  |  |  |
| 2.0 to 2.5   |                                                |          |                                                                                                                                                                                             |                                               | 160-220 MeV/c    | 100-150 MeV/c  |                                                   |                                          |  |  |  |  |  |
| 2.5 to 3.0   |                                                | Detector | $\frac{dn}{dn} \approx 0.05\% \text{ xn} \approx 2\%$                                                                                                                                       | $g_{\rm D}/p \approx 0.1\% xp \oplus 2\%$     |                  | 100-150 MeV/c  | $d_{c2}(x_{V}) \sim 50/pT \mu m \approx 10 \mu m$ | dca(xy) ~ 30/pT µm ⊕ 40 µm               |  |  |  |  |  |
| 3.0 to 3.5   |                                                |          |                                                                                                                                                                                             |                                               |                  | 100-150 MeV/c  |                                                   | dca(xy) ~ 30/pT µm ⊕ 60 µm               |  |  |  |  |  |



## HYBRID tracking system:

|              |          |                     | Trac                                              | cking performance (Hy                                   | /brid concept, B = | = 1.5 T)       |                                                |                                                  |                       |                  |               |  |  |
|--------------|----------|---------------------|---------------------------------------------------|---------------------------------------------------------|--------------------|----------------|------------------------------------------------|--------------------------------------------------|-----------------------|------------------|---------------|--|--|
|              |          |                     | Momentum re                                       | s.                                                      | Minim              | um pT          | Transverse pointing res.                       |                                                  |                       |                  |               |  |  |
| η            |          |                     | Performance                                       | Requirements                                            | Performance        | Requirements   | Performance                                    | Requirements                                     |                       |                  |               |  |  |
|              |          |                     |                                                   |                                                         |                    |                |                                                |                                                  |                       |                  |               |  |  |
| -3.5 to -3.0 |          |                     | $\sigma n/n \sim 0.1\% \times n = 1\%$            | $q_{\rm D}/{\rm p} \sim 0.1\% {\rm xp} \approx 0.5\%$   |                    | 100-150 MeV/c  | $dc_2(x_1) \sim 50/nT \mu m = 10 \mu m$        |                                                  |                       |                  |               |  |  |
| -3.0 to -2.5 |          | Backward            | op/p = 0.1 % p @ + %                              | op/p = 0.1 % p @ 0.3 %                                  |                    | 100-150 MeV/c  |                                                | dca(xy) ~ 30/pT µm ⊕ 40 µm                       |                       |                  |               |  |  |
| -2.5 to -2.0 | ]        | Detector            | Dataster 70-130 MeV/c                             | 100-150 MeV/c                                           |                    |                |                                                |                                                  |                       |                  |               |  |  |
| -2.0 to -1.5 | ]        | Delector            | $op/p \approx 0.24 \% a p \oplus 1\% (0-0 GeV/c)$ | σp/p ~ 0.05%×p ⊕ 0.5%                                   |                    | 100-150 MeV/c  | dca(xy) ~ 25/pT µm ⊕ 3 µm                      | dca(xy) ~ 30/pT µm ⊕ 20 µm                       |                       |                  |               |  |  |
| -1.5 to -1.0 | ]        |                     | op/p ~ 0.07 %~p @ 2 % (8-30 GeV/c)                |                                                         | 150 MeV/c          | 100-150 MeV/c  |                                                |                                                  |                       |                  |               |  |  |
| -1.0 to -0.5 | ]        |                     |                                                   |                                                         |                    |                |                                                |                                                  |                       |                  |               |  |  |
| -0.5 to 0    | Central  | Barrol              | σp/p ~ 0.21%×p ⊕ 0.3% (0-5 GeV/c)                 | $\sigma_{\rm D}/{\rm D} \sim 0.05\%$ xp $\approx 0.5\%$ | 200 MeV/c          | 100-150 Mo\//c | $d_{co}(x_{1}) \sim 15/nT \mu m = 2 \mu m$     | $d_{C2}(x_{V}) \sim 20/pT \mu m \approx 5 \mu m$ |                       |                  |               |  |  |
| 0 to 0.5     | Detector | Darrei              | Darrei                                            | Darrei                                                  | Darrei             | Darrei         | Darrei                                         | σp/p ~ 0.06%×p ⊕ 1% (5-30 GeV/c)                 | op/p ~ 0.05%×p ⊕ 0.5% | (90% acceptance) | 100-100 MeV/C |  |  |
| 0.5 to 1.0   | ]        |                     |                                                   |                                                         |                    |                |                                                |                                                  |                       |                  |               |  |  |
| 1.0 to 1.5   | ]        |                     | $\sigma_{0}/c \sim 0.24\% x c = 1\% (0.8 GeV/c)$  |                                                         | 150 MeV/c          | 100-150 MeV/c  |                                                |                                                  |                       |                  |               |  |  |
| 1.5 to 2.0   | ]        | Forward<br>Detector | $op/p \approx 0.24 \% a p \oplus 1\% (0-0 GeV/c)$ | σp/p ~ 0.05%×p ⊕ 1%                                     |                    | 100-150 MeV/c  | dca(xy) ~ 25/pT μm ⊕ 3 μm                      | dca(xy) ~ 30/pT µm ⊕ 20 µm                       |                       |                  |               |  |  |
| 2.0 to 2.5   | ]        |                     | op/p ~ 0.07 %~p @ 2 % (8-30 Gev/c)                |                                                         | 70-130 MeV/c       | 100-150 MeV/c  |                                                |                                                  |                       |                  |               |  |  |
| 2.5 to 3.0   | ]        |                     |                                                   | $c_{\rm D}/c_{\rm m} = 0.19/v_{\rm D} \approx 29/$      |                    | 100-150 MeV/c  | $d_{00}(x_0) \approx 50/pT$ um $\approx 10$ um | dca(xy) ~ 30/pT µm ⊕ 40 µm                       |                       |                  |               |  |  |
| 3.0 to 3.5   |          |                     | 0p/p = 0.1 % p @ 4 %                              | 0p/p = 0.1 % p @ 2 %                                    |                    | 100-150 MeV/c  |                                                | dca(xy) ~ 30/pT µm ⊕ 60 µm                       |                       |                  |               |  |  |