EIC Calorimetry: YR Summary and beyond

A.Bazilevsky, BNL EIC-YR-Detector-Calorimetry Group November 20, 2020

EMCal

Goals:

- DIS kinematics (through scattered electron)
- Decay electrons (e.g. form vector mesons)
- Photons (e.g. from DVCS)
- π0

 (e.g. from SIDIS or exclusive DIS)

Challenges:

- Energy resolution
 (particularly at high |η|, high p)
- Charged hadron suppression for eID
- γ/π0 discrimination (Granularity, projectivity)

Limited space => dense, high granularity, high resolution EMCal

HCal

Goal:

- Jet measurements
- Rapidity gap (tag diffractive events)

Challenges:

- Energy resolution
 (particularly at high |η|)
- Neutral/Charged cluster discrimination (with help of tracking)

Limited space <=> Resolution

eRD1

PbWO₄ crystal: High resolution, high granularity, high e/π power

W/SciFi: Modest resolution, compact, high granularity

W/Shashlik:

Tunable resolution, super-high "effective" granularity

Fe/Sc HCal

SciGlass:

A competitor to PbWO₄

Recent Developments

Jlab-PrimEx eta/NPS PWO EMCal prototype

BNL-sPHENIX: W/SciFi

BNL-fSTAR: Fe/Sc HCal

Key Characteristics

Depth (long. size)

EMCal: Defined by X_0 and energy range (L ~ 20 X_0) HCal: Defined by λ_I and energy range (L ~ 5-7 λ_I)

Granularity

EMCal: Defined by $R_m (\sim X_0 \cdot 21 MeV/E_{crit})$ HCal: Defined by λ_I

Minimal detectable energy

Defined by noise level

Resolution

$$\frac{\sigma_E}{E} = a \oplus \frac{b}{\sqrt{E}} \oplus \frac{c}{E}$$

a: defined by syst. effects (non-uniformity, calibration, leakage)

b: defined by sampling fraction, light yield

c: noise term

YR Summary Table

From YR Wiki

Table.5 Calorimetry for EIC

	ECAL								HCAL				
η	Total depth, cm	Depth, RL	Energy resolution σE/E, %	Spacial resolution σX, mm	Granularity, mm ²	Min. photon energy, MeV	PID e/π, π suppression	Technology examples*	total depth, cm	Energy resolution σE/E, %	Spacial resolution σX, mm	Granularity, mm ²	Technology examples
-4.0:-2.0	38	22	1.0⊕2.2/√E⊕1.0/E	3/√E⊕1	20×20	20	1000	PbWO ₄ crystals	105	50/√E⊕10	50/√E⊕30	100×100	Fe/Sc
-2.0:-1.0	38	20	1.5⊕8.0/√E⊕2/E	3/√E⊕1	25×25	50		W/Sc Shashlyk					
	38	20	2⊕12/√E⊕2/E	3/√E⊕1	25×25	50		W powder/ScFi					
	50	22	1.5⊕(7-8)/√E⊕2/E	6/√E⊕1	40×40	50	300	Pb/Sc Shashlyk	105	50/√E⊕10	50/√E⊕30	100×100	Fe/Sc
	50	13*	?	6/√E⊕1	40×40	30		SciGlass					
	(65)**	16*	1.5⊕4.0/√E⊕2/E	6/√E⊕1	40×40	30		SciGlass					
-1.0:1.0	30	18	2⊕12/√E⊕2/E	3/√E⊕1	25×25	100	300	W/Sc Shashlyk					
	30	18	3⊕14/√E⊕2/E	3/√E⊕1	25×25	100	300	W powder/ScFi	110	100/√E⊕10	50/√E⊕30	100×100	Fe/Sc
	38	22	1.0⊕2.2/√E⊕1.0/E	3/√E⊕1	20×20	20	1000	PWO					
	65 *	16*	1.5⊕4.0/√E⊕2/E	6/√E⊕1	40×40	30	300	SciGlass					
1.0:4.0	38	20	1.5⊕8.0/√E⊕2/E	3/√E⊕1	25×25	100		W/Sc Shashlyk					
	38	20	2⊕12/√E⊕2/E	3/√E⊕1	25×25	100	200	W powder/ScFi	105	50/√E⊕10	50/√E⊕30	100×100	Fe/Sc
	(50)**	22	1.5⊕10.0/√E⊕2/E	6/√E⊕1	40×40	100	300	Pb/Sc Shashlyk					
	(65)**	16 [*]	1.5⊕4.0/√E⊕2/E	6/√E⊕1	40×40	30		SciGlass					

All technologies are either mature or a part of ongoing R&D

7

HCal: Energy Resolution

Jet energy resolution

From M. Arratia:

HCal energy resolution of $\frac{\sigma_E}{E} = \frac{50\%}{\sqrt{E}} \oplus 10\%$ is not enough at $\eta > 2.5$

- ▶ Longer HCal: $5\lambda_{I} \rightarrow 6-7 \lambda_{I}$
- Compensation and coupling with EMCal
- ➤ Tail catcher (would limit eff.)
- Dual readout

... See talk by Tanja Horn

EMCal: Energy Resolution

Resolutions for (x,Q^2)

 $\frac{\sigma_{Q^2}}{Q^2} = \frac{\sigma_{E'}}{E'} \qquad \frac{\sigma_x}{x} = \frac{1}{y} \frac{\sigma_{E'}}{E'}$

(Minimal effect from angular res.)

- Looser requirements for lower energy measurements
- > Tough requirements for higher energy measurements (due to 1/y factor)
- > Most of the (Q^2, x) space relates to the highest electron energy

=> Constant term in energy resolution is of primary importance

EMCal: Granularity (~R_m?)

 $\gamma/\pi 0$ discrimination

 $\theta_{min} = \frac{2m_{\pi 0}}{E_{\pi 0}}$

Scalable with tower size *d* and location *Z*:

 $p \sim Z/d$

W/Shashlik (eRD1 by C.Woody et al.) Each fiber readout by its own SiPM

More detailed info on shower development within a tower Improve position resolution Improve energy res. (const term) Improve $\gamma/\pi 0$ discrimination

EMCal: Projectivity

e/π separation

For DIS electron

Ideal case:

- > No material on the way to EMCal
- Perfect EMCal (no gaps/cracks)
- Gaussian response to electron

Purity = e / (e+h)

Expect to get high *e* purity at >4 GeV/c for 18 GeV electron beam (>3 GeV/c for 10 GeV electron beam)

e-endcup: p < 2 GeV/c will be covered by mRICH barrel: p < 1.3 GeV/c will be covered by DIRC

Additional eID capabilities for 1-2<p<4 GeV/c would be highly desirable

EMCal: Effect of Material Upfront

E/p matching performance for eID will be significantly affected!

Material effect may neutralize the power of high resolution tracking and EMCal for e/π separation

We'd better know when we measure $e vs e + \gamma$ in the EMCal

Preshower?

- May address a number of issues raised above
- Will relax the requirements for the EMCal
- 2-3 X0 absorber + MIP detector
- High probability to initiate EM shower Compared to hadronic shower
- Small shower transverse size (~1mm)
 A few cm in the EMCal

e/π separation

Additional π ± suppression factor of 5-10 is expected

γ/π^0 discrimination

In proposed geometry and *p* range (<50 GeV/c), the minimal distance between decay photons is $\sim1.5 \text{ cm}$ => 0.5 cm granularity may be enough

$e / e + \gamma$ separation

Will mitigate the material effect (e.g. in E/p matching)

e&y position resolution improved

Particularly vs non-projective EMCal

CMS preshower+PWO EMCal

Summary

All requirements initially defined for Calorimetry can be satisfied with the existing technologies

Different technologies can be used in each kin. regions

Larger space would allow more options

Additional e/π capabilities are desirable

New requirement for higher resolution HCal at $\eta > 2.5$

Preshower detector enhances the capabilities and relaxes the requirements for the EMCal (e.g. granularity, projectivity)

Would require more space

Backup

Clean measurements at higher momenta Huge background at lower momenta

EMC: Material upfront

Mat. scan vs n

0.

Radiated photon topology

Outer GEMs

We know quite precisely where to look for radiated photons