Jets and Heavy Flavor Detector Requirements Summary

Leticia, Brian, Frank, Ernst, and Ivan

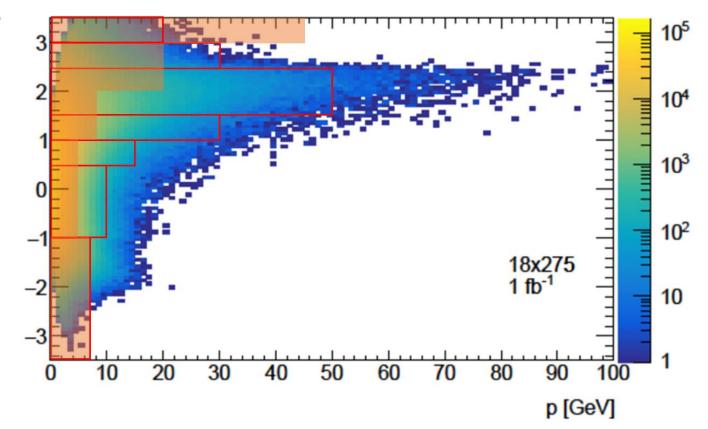
LBL YR Meeting

November 19th, 2020

Chapter 8.3 Overview

- Our detector requirements as they currently stand are all documented in YR Sec 8.3
- The section is not yet final, but as it stands gives a pretty complete picture of our studies
- 8.3.1 Simulation and Detector Modeling
- 8.3.2 Kinematics Summary
- 8.3.3 Tracking
 - Momentum Resolution
 - **Vertex Resolution**
 - Additional Considerations
- 8.3.4 Particle Identification
- 8.3.5 Calorimetry
 - Electromagnetic Calorimetry Hadron Calorimetry Coverage Continuity

- Focus here on PID as this is where the largest tension with detector capability exists
- Briefly discuss some aspects of HCal requirements


Our PID Requests: A Reminder

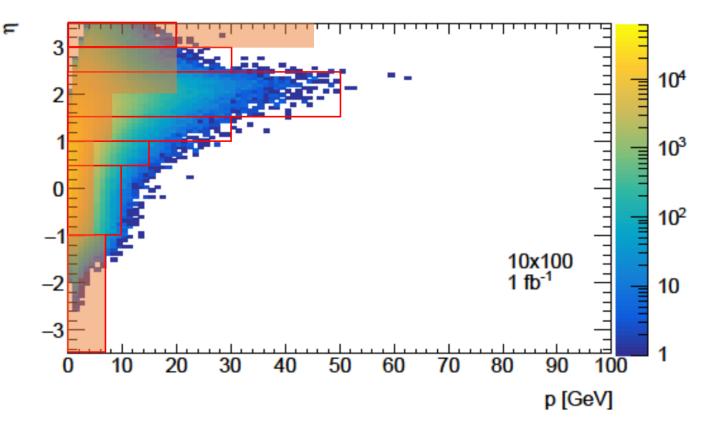
18x275

Eta Range	Default Momentum Coverage	Requested Momentum Coverage
-3.5 < η < -1.0	≤ 7 GeV	Same
-1.0 < η < 0.0		≤ 10 GeV
0.0 < η < 0.5	≤ 5 GeV	
0.5 < η < 1.0	•	≤ 15 GeV
1.0 < η < 1.5		≤ 30 GeV
1.5 < η < 2.0	≤8 GeV	≤ 50 GeV
2.0 < η < 2.5		
2.5 < η < 3.0	≤ 20 GeV	≤ 30 GeV
3.0 < η < 3.5	≤ 45 GeV	Can tolerate ≤ ~20 GeV

PID Momentum Coverage

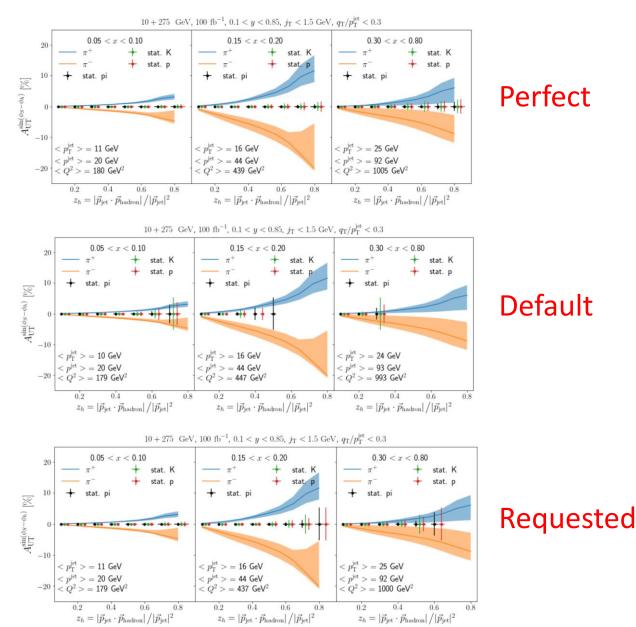
- Plot of pseudorapidity vs momentum of pions found within jets
- Default PID ranges leave significant gaps in coverage
- Reduction of particle momenta at highest (and lowest) eta are due to jet radius

- Shaded boxes = default momentum coverage
- Red outlined boxes = requested momentum coverage

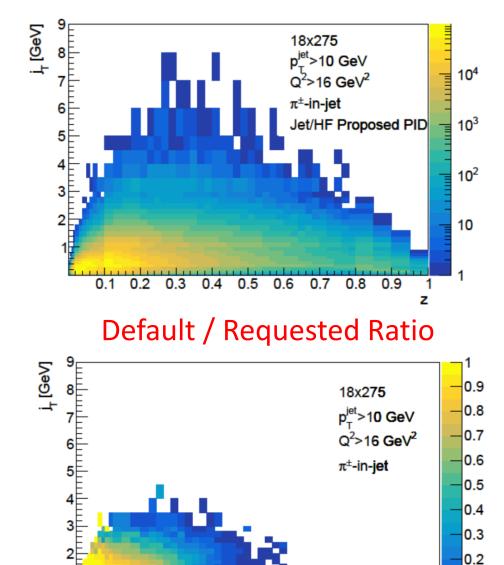

Our PID Requests: A Reminder

10x100

Eta Range	Default Momentum Coverage	Requested Momentum Coverage
-3.5 < η < -1.0	≤ 7 GeV	Same
-1.0 < η < 0.0		≤ 10 GeV
0.0 < η < 0.5	≤ 5 GeV	
0.5 < η < 1.0		≤ 15 GeV
1.0 < η < 1.5		≤ 30 GeV
1.5 < η < 2.0	≤8 GeV	- ≤ 50 GeV
2.0 < η < 2.5		
2.5 < η < 3.0	≤ 20 GeV	≤ 30 GeV
3.0 < η < 3.5	≤ 45 GeV	Can tolerate ≤ ~20 GeV


PID Momentum Coverage

• Even at low COM energy, where particle momenta are lower, default values leave a lot of particle momentum range uncovered



- Shaded boxes = default momentum coverage
- Red outlined boxes = requested momentum coverage

PID Coverage Impact

Requested Coverage: j_T Vs z

0.3

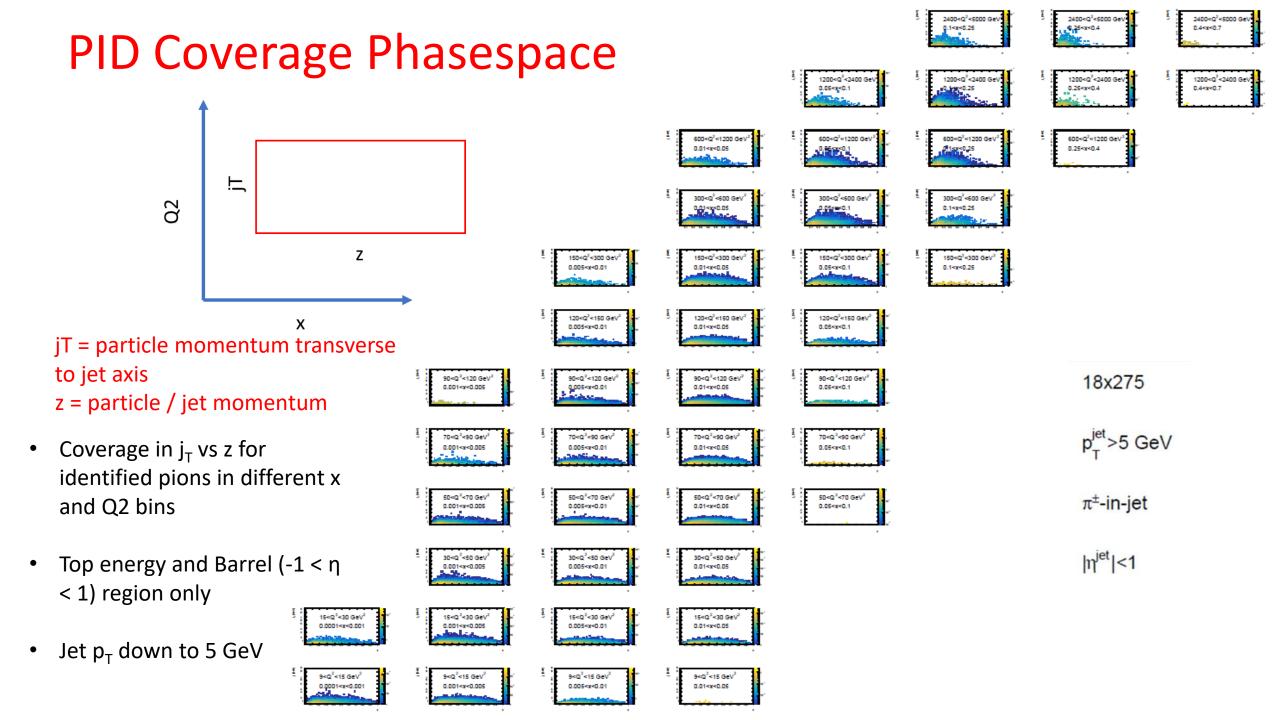
0.1

0.2

0.5

0.6

0.4


1 **z** 5

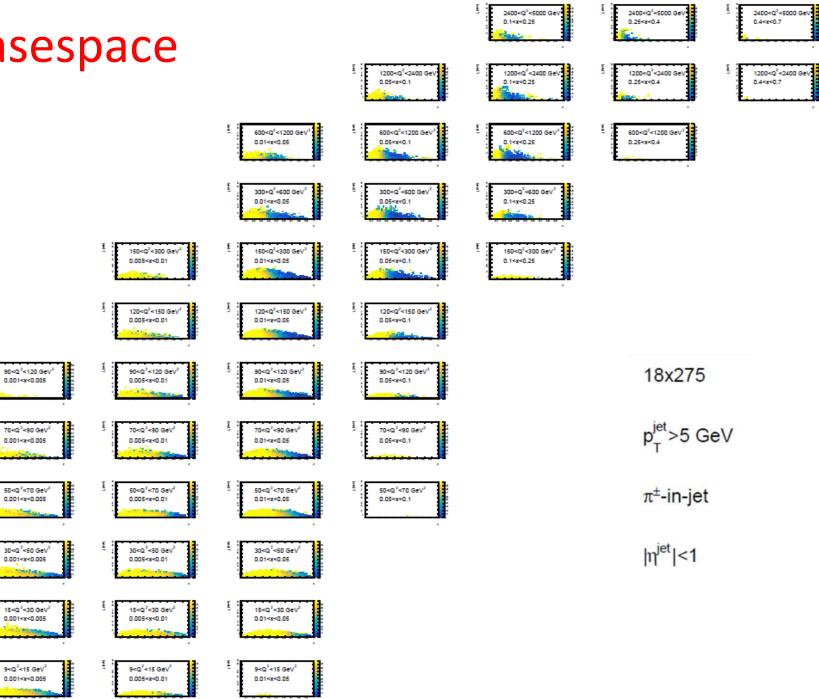
0.8 0.9

0.7

0.1

۱n

PID Coverage Phasespace

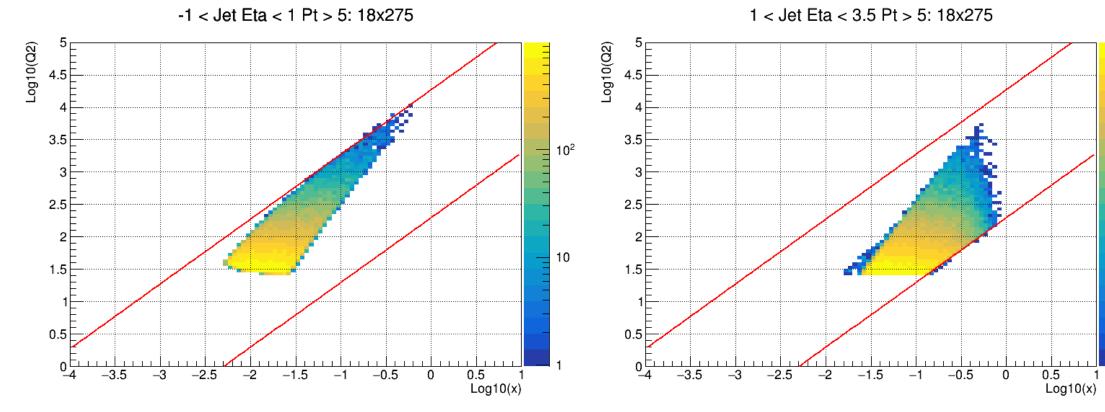

15<Q2<30 GeV2

0.0001<x<0.001

9<Q2<15 GeV2

0.0001<x<0.001

- Ratio of acceptances assuming default PID coverage over perfect coverage
- Note that minimum jet p_T is lowered to 5 GeV so z coverage becomes, by definition, better
- Still see significant degradation at high-x / high-Q²


What about Lower Energies?

 Here "jet" is actually just the struck quark in the LO DIS process – no jet finding is performed

Minimum Q2 = 10 GeV2

- 10²

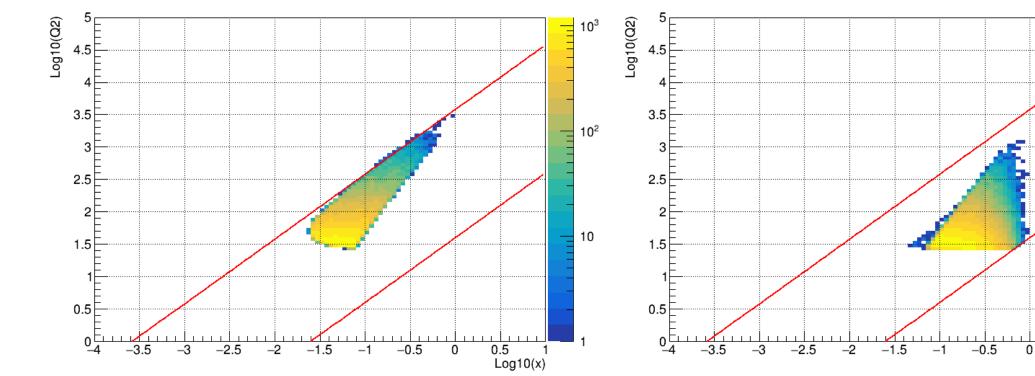
10

- Look at x-Q2 of "jets" with pseudorapidity in the barrel and endcap for different energies
- Require "jet" to have pT > 5 GeV
- Cut on y: 0.01 < y < 0.95 (red lines)

What about Lower Energies?

 As COM energy is lowered, jet distributions move to lower Q2 and higher x – as expected (gain some x-Q2 coverage in endcap)

 10^{3}


10²

10

0.5

Log10(x)

1 < Jet Eta < 3.5 Pt > 5: 10x100

-1 < Jet Eta < 1 Pt > 5: 10x100

In the barrel, phase space probed by jets is almost

x-Q2 probed by jets in barrel at 10x100 is completely

orthogonal between energies

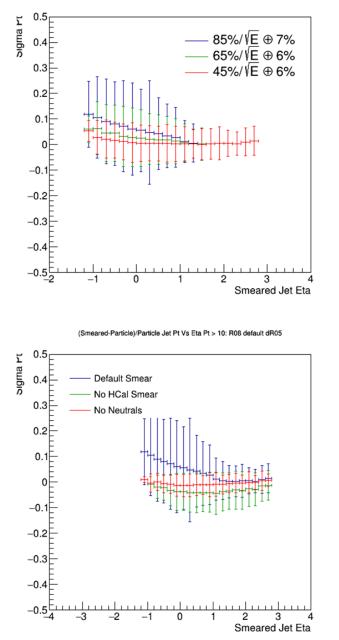
covered by jets in the endcap at 18x275

٠

٠

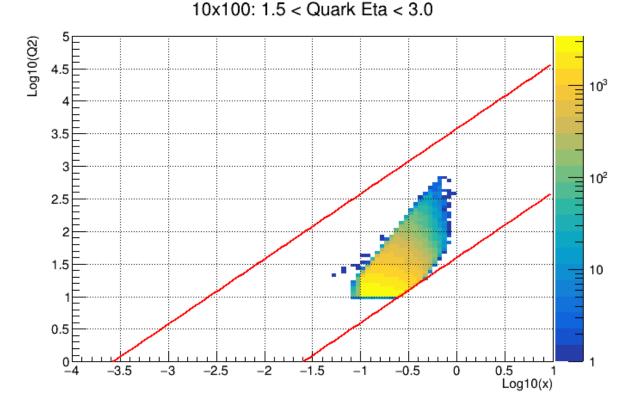
 Lowering COM energy will bring jets at a given x-Q2 from the endcap toward the barrel (where presumably PID coverage is worse) – hard to see the advantage

What about < 3σ Separation?

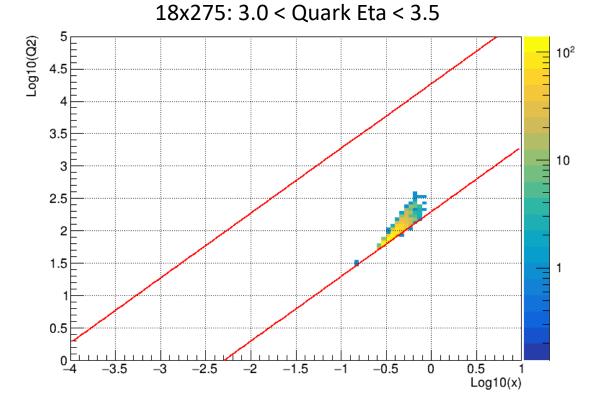

- PID coverage is not a theta function at some critical momentum value, there will be some smooth dropoff in performance
- What is the tradeoff between higher momentum coverage and lower separation power?
- Studies ongoing to quantify pion/kaon efficiency and purity assuming >3σ separation over full particle momentum range and assuming a realistic separation as a function of momentum
- Due to much lower yield, can assume lowering separation power will greatly effect kaon measurements due to pion contamination

Calorimetry: Hadronic

HCal Energy Resolution


Eta Range	Default Resolution (σE/E)	Requested (σE/E)
-3.5 < η < -1.0	50%/√E	Same (~10% constant term is acceptable)
-1.0 < η < 1.0	N/A	85%/√E + 10%
1.0 < η < 3.0	50%/√E	50%/√E + 10%
3.0 < η < 3.5	50%/NE	can likely live with 10%, b
3.5 < η < 4.0	N/A	50%/√E 5 Can likely live with 10%, bins is limiting factor for high E

- Barrel HCal requested for missing transverse energy measurements in CC events (also for Jaguet-Blondel), measurement of neutral hadrons
- 100%/VE sufficient for missing energy, but seen that better resolution . needed for accurate jet reconstruction toward smaller eta values
- No longer believe we need calorimeter coverage to eta of 4 because • same x-Q2 space can be recovered at smaller pseudorapidity for lower hadron beam energies
- More study of position resolution / potential cluster separation needed • as being able to select jets with no neutral hadron shows possibility of greatly improving jet energy resolution, especially at low eta / p_{τ} / x

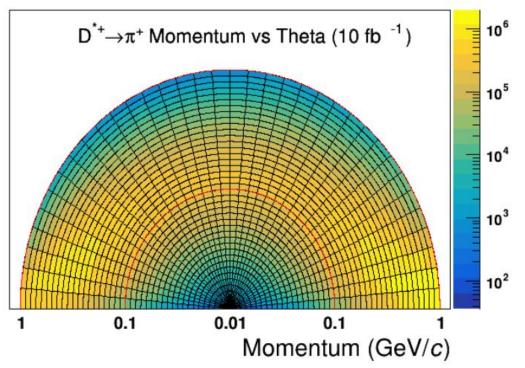


Calorimeter Coverage

- It has been proposed that calorimeter coverage should only extend to eta = 3.5
- What phase space coverage do we lose, and can it be recovered?

 Lost coverage in x-Q2 at top energy can be recovered by moving to lower pseudorapidity at lower hadron beam energies

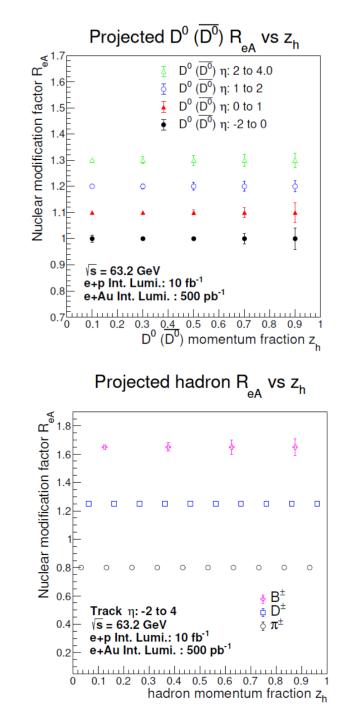
 Phase space lost at top energy if calorimeter coverage is restricted to eta < 3.5 instead of 4.0 (assume jet R = 0.5)


Tracking: Momentum Resolution

Assumed Resolution

Eta Range	Resolution (σP/P)%
-3.5 < η < -2.5	0.1%*P+0.5%
-2.5 < η < -2.0	0.1%*P+0.5%
-2.0 < η < -1.0	0.05%*P+0.5%
-1.0 < η < 1.0	0.05%*P+0.5%
1.0 < η < 2.5	0.05%*P+1.0%
2.5 < η < 3.5	0.1%*P+2.0%

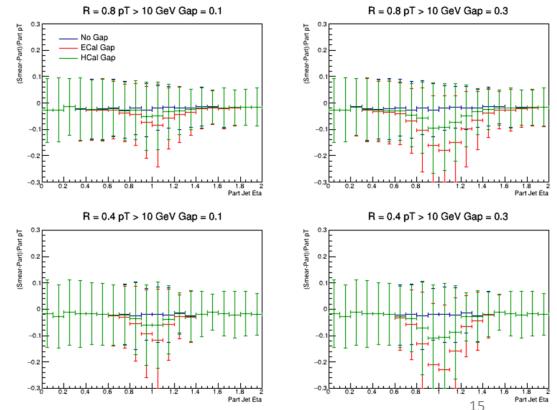
- Most studies assumed the track momentum resolutions listed above (original detector matrix)
- Found to lead to reasonable jet energy resolutions
- Potential new parameterizations need to be run through the various analyses – can correlate change in tracking resolution to change in jet energy resolution


- We request a minimum track transverse momentum of 100 MeV – Driven by detection of soft pion from D* decay
- Will also be relevant for substructure / global event shape measurements and jet energy scale

Tracking: Vertex Resolution

Vertex Resolution		
Eta Range	Default Resolution	Requested Resolution
-3.5 < η < -3.0		N/A
-3.0 < η < -2.5	TBD	$\sigma_{xy} = 30/p_T + 40 \ \mu m$
-2.5 < η < -1.0		$\sigma_{xy} = 30/p_T + 20 \ \mu m$
-1.0 < η < 1.0	σ_{xyz} ~20μm, σ_{xy} ~ σ_z ~ 20μm/p _T + 5μm	Same
1.0 < η < 2.5		$\sigma_{xy} = 30/p_T + 20 \ \mu m$
2.5 < η < 3.0	TBD	σ _{xy} = 30/p _T + 40 μm
3.0 < η < 3.5		σ _{xy} = 30/p _T + 60 μm

- Vertex resolution driven by need to reconstruct charmonium and bottomonium states
- Resolutions listed above enable the high statistics measurements of ReA shown to the right for D and B mesons over a wide pseudorapidity range
- Enhancing (degrading) resolutions will improve (decrease) signal significance and decrease (increase) integrated luminosity needed to reach a given precision



Calorimetry: Electromagnetic

EMCal Energy Resolution		
Eta Range	Default Resolution ($\sigma E/E$)	Requested (σE/E)
-4.5 < η < -2.5	2%/√E	Same (1-3% constant term acceptable)
-2.5 < η < -2.0	2%/√E	Same (1-3% constant term acceptable)
-2.0 < η < -1.5	7%/√E	Same (1-3% constant term acceptable)
-1.5 < η < -1.0	7%/√E	Same (1-3% constant term acceptable)
-1.0 < η < 4.5	10-12%/√E	Same (1-3% constant term acceptable)

- Most analyses used the above ECal parameterizations, including a 1-3% constant term depending on eta
- Found to result in acceptable jet energy resolutions
- New parameterizations will need to be run through analyses – correlate changes in parameters to jet energy resolution
- Many analyses assumed minimum energy threshold of 100 MeV

- Also looked at the effect of a service gap (eta = 0.1 or 0.3) on jet reconstruction
- Advocate for the most complete coverage possible

