EIC Yellow Report Chapter 7 - The EIC Measurements and Studies

Section 7.1 Global Properties and Parton Structure of Hadrons

Barbara Pasquini Università di Pavia & INFN (Italy)

Based on the work of Inclusive Reactions WG Diffractive & Tagging WG Jet, Heavy Quarks WG Semi-inclusive Reactions WG Exclusive Reactions WG

7.1.1 Unpolarized parton structure of the proton and neutron

- -Inclusive NC and CC DIS
- -Positron beam
- -Parity violating DIS
- -Tagged DIS
- -Sea quark PDFs via SIDIS measurements
- -Non perturbative charm
- -Charm jets

7.1.2 Spin structure of the proton and neutron

- -Inclusive A_{LL}
- -Helicity and small x dipole formalism
- -Neutron spin structure from inclusive and tagged DIS with polarized ³He and ²H
- -Orbital angular momentum contribution to nucleon spin
- -Parity violating DIS
- -Sea quark helicities via SIDIS
- - ΔG from dijet A_{LL}

7.1.3 Parton structure of mesons

- -Sullivan process
- -Theoretical background in extracting the data
- -Kinematic of interest to address specific theory questions
- -Meson structure functions projections
- -Impact on global QCD analysis
- -Complementarity with other facilities
- -Synergy with continuum and lattice QCD

7.1.4 Origin of the hadron mass

7.1.5 Multiparton correlations

 $-g_T(x)$ from inclusive DIS

-e(x) from semi-inclusive DIS

7.1.6 Inclusive and hard diffractions

-Inclusive diffraction
-Diffractive dijets
-Large |t| diffractive production of vector mesons

7.1.7 Global event shapes and the strong coupling constant

- -Theoretical methods
- -Predictions
- -Fitting for α_S
- -Experimental projections
- -Jet measurement performance
- au_1^a measurement performance
- -Systematic uncertainties and unfolding

Unpolarized parton structure of the proton and neutron

Inclusive NC and CC DIS

Systematic uncertainties: see sect. 8.1 of YR

based on simulation studies with EIC Handbook Detector and current EIC detector matrix

Z-score: statistical separation in units of σ between two-hypothesis of cross sections

Based on NNPDF3.1PDF set : hyp. 1: central replica; hyp 2: non-central replica

18x275 e-p N.C. Uncertainties

Strong impact (80%) on the valence sector and d/u ratio at large x

Good impact (50%) on the sea sector at low x

Sea quark PDF via SIDIS $e+p \rightarrow e+H+X$ measurements

 $\int L dt=10 \text{ fb}^{-1}$ - charged pion and kaon identification in the main EIC detector

Strongest impact in the strange sector:

substantial reduction of uncertainty for s(x) distribution: up to 75% at low x<10⁻² constraint on the x dependence of the strange ratio *Aschenauer, Borsa, Sassot, Van Hulse, PRD99 (2019)*

Charmed-jet production in CC DIS

Constraints on $R_s = \frac{s+\bar{s}}{\bar{u}+\bar{d}} \longrightarrow SU(3)$ symmetry breaking in the light-quark sea

Demands high-luminosity and specific requirements for the detector *Arratia, Furletova, Hobbs, Olness, Sekula, arXiv:2006.12520*

Spin structure of the proton and neutron At EIC $x\sim 10^{-4}$ At low x: $\partial g_1(x, Q^2) / \partial \ln Q^2 \approx -\Delta g(x, Q^2)$ Present kinematical coverage $x \gtrsim 0.01$ Inclusive $A_{LL} - \int L dt = 10 \text{ fb}^{-1}$ 0.150.30baseline DSSV14 DSSV 14 +EIC DIS $\sqrt{s} = 45 \,\text{GeV}$ 0.25+EIC DIS $\sqrt{s} = 45 - 140 \,\mathrm{GeV}$ $x \Delta g$ 0.10 0.20 0.150.05 $x \Delta \Sigma$ 0.10 0.00 $Q^2 = 10 \,\mathrm{GeV}^2$ 0.050.00 -0.05DSSV 14 $Q^2 = 10 \, {\rm GeV}^2$ -0.05+EIC DIS $\sqrt{s} = 45 \,\mathrm{GeV}$ +EIC DIS $\sqrt{s} = 45 - 140 \,\text{GeV}$ -0.10-0.10 10^{-5} 10^{-4} 10^{-2} 10^{-1} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{-3} 10^{0} xx

SIDIS data (charged pion and kaon) to constrain the sea quark polarization

Orbital angular momentum contribution to nucleon spin

Spin Sum Rule:
$$\frac{1}{2} = \int_{-1}^{1} dx (\Delta g + \frac{1}{2}\Delta \Sigma) + L$$

Orbital angular momentum contribution to nucleon spin

Spin Sum Rule:
$$\frac{1}{2} = \int_{-1}^{1} dx (\Delta g + \frac{1}{2}\Delta \Sigma) + L$$

$$L = L^Q + L^G$$

Individual contributions only from GPDs or Wigner distributions (see talk of A. Vossen)

Inclusive $A_{LL} - \int L dt = 10 \text{ fb}^{-1}$

reduction of uncertainty by a factor 3-4 after including EIC data with ³He and D (baseline g1 from JAM17)

Ethier, Sato, Melnitchouk, PRL119, 2017: (JAM17)

not significant improvement after including EIC data with ³He and D

Zhou, Sato, Ethier, Melnitchouk, in preparation

Neutron spin structure from tagged DIS on ²H

Parity violating DIS

asymmetry with unpolarized electron and polarized proton with JL dt=10 fb⁻¹

Analysis with JAM17 (Zhou, Sato, Ethier, Melnitchouk, in preparation)

50% impact on Δs , 20% impact on valence quarks, no impact on Δg 50% impact on $\int \Delta \Sigma(x) dx$

Structure of mesons: key experimental efforts at the EIC

Science Question	Key Measurement[1]	Key Requirements[2]
What are the quark and gluon energy contributions to the pion mass?	Pion structure function data over a range of x and Q^2 .	 Need to uniquely determine e+p→e'+X+n (low -t) CM energy range ~10-100 GeV Charged and neutral currents desirable
Is the pion full or empty of gluons as viewed at large Q ² ?	Pion structure function data at large Q ² .	 CM energy ~100 GeV Inclusive and open-charm detection
What are the quark and gluon energy contributions to the kaon mass?	Kaon structure function data over a range of x and Q^2 .	 Need to uniquely determine e+p→e'+X+Λ/Σ⁰ (low −t) CM energy range ~10-100 GeV
Are there more or less gluons in kaons than in pions as viewed at large Q ² ?	Kaon structure function data at large Q^2 .	 CM energy ~100 GeV Inclusive and open-charm detection
Can we get quantitative guidance on the emergent pion mass mechanism?	Pion form factor data for $Q^2 = 10-40 (\text{GeV}/\text{c})^2$.	 Need to uniquely determine exclusive process e+p→e'+π⁺+n (low -t) e+p and e+d at similar energies CM energy ~10-75 GeV
What is the size and range of interference between emergent-mass and the Higgs-mass mechanism?	Kaon form factor data for $Q^2 = 10-20 (\text{GeV/c})^2$.	 Need to uniquely determine exclusive process e+p → e'+K+Λ (low -t) L/T separation at CM energy ~10-20 GeV Λ/Σ⁰ ratios at CM energy ~10-50 GeV
What is the difference between the impacts of emergent- and Higgs-mass mechanisms on light-quark behavior?	Behavior of (valence) up quarks in pion and kaon at large x	 CM energy ~20 GeV (lowest CM energy to access large-x region) Higher CM energy for range in Q² desirable
What is the relationship between dynamically chiral symmetry breaking and confinement?	Transverse-momentum dependent Fragmentation Functions of quarks into pions and kaons	 Collider kinematics desirable (as compared to fixed-target kinematics) CM energy range ~20-140 GeV

Parton Structure of Mesons

 $e + p \to e' + X + (N \operatorname{or} Y)$

Tagged inclusive reaction dominated by the Sullivan process at low -t: -t<0.6 GeV² (pion exchange); -t<0.9 GeV² (kaon exchange)

c.s. integrated over t:
$$\frac{\mathrm{d}^3\sigma(ep\to eNX)}{\mathrm{d}x\mathrm{d}Q^2\mathrm{d}z} \propto F_2^{LP(3)}(x,Q^2,E'/E_p)$$

Regge model:
$$F_2^{LP(3)} = \sum_{i=\pi,\rho,\dots} \left[\int_{t_0}^{t_{\min}} f_i(z,t) \right] F_2^i(x_i,Q^2)$$

Model uncertainties: overall systematic th. uncertainty ~ 25%

- corrections to the Sullivan process (non pion-pole, nucleon resonances contributions,...)
- lack of knowledge of pion flux

blue regions: statistical uncertainty with ∫L dt=10 fb⁻¹; beam energies 10X135 GeV

 $\int L dt = 100 \text{ fb}^{-1}$; 1.2% systematic unc.; $\sqrt{s} = 63.25 \text{ GeV}$

uncertainty reduced by a factor 5~10 for gluon and sea PDFs x<0.1; a factor~3 for valence PDF uncertainty reduced by a factor ~15 for first moment of total quark and gluon PDF uncertainties from the model dependence of the pion flux (~10-20%) are not included

$\begin{aligned} \text{Origin of the hadron mass} \\ T^{\mu\nu} &= \overline{\psi}\gamma^{\mu} \frac{i}{2} \overleftrightarrow{D}^{\nu}\psi - G^{a\mu\lambda}G^{a\nu}{}_{\lambda} + \frac{1}{4} g^{\mu\nu}G^{2} \\ \langle P|T^{\mu\nu}_{q,G}(0)|P\rangle &= 2P^{\mu}P^{\nu}A_{q,G}(0) + 2M^{2}g^{\mu\nu}\bar{C}_{q,G}(0) \\ A_{q}(0) + A_{G}(0) &= 1 \\ & \bar{C}_{q}(0) + \bar{C}_{G}(0) = 0 \end{aligned}$

Origin of the hadron mass
$$T^{\mu\nu} = \overline{\psi}\gamma^{\mu} \frac{i}{2} \overleftrightarrow{D}^{\nu}\psi - G^{a\mu\lambda}G^{a\nu}{}_{\lambda} + \frac{1}{4}g^{\mu\nu}G^{2}$$
 $\langle P|T^{\mu\nu}_{q,G}(0)|P \rangle = 2P^{\mu}P^{\nu}A_{q,G}(0) + 2M^{2}g^{\mu\nu}\overline{C}_{q,G}(0)$ $A_{q}(0) + A_{G}(0) = 1$ $\overline{C}_{q}(0) + \overline{C}_{G}(0) = 0$ $\langle T^{\mu\nu} \rangle \equiv \frac{1}{2M} \langle P|T^{\mu\nu}|P \rangle|_{P=0}$ Energy decomposition $M = U_{q} + U_{G}$ $M = I_{q} + I_{G}$

 $U_{q,G} \equiv \langle T_{q,G}^{00} \rangle = \left[A_{q,G}(0) + \bar{C}_{q,G}(0) \right] M$

 $I_{q,G} \equiv g_{\mu\nu} \langle T_{q,G}^{\mu\nu} \rangle = \left[A_{q,G}(0) + 4\bar{C}_{q,G}(0) \right] M$

Gluon trace anomaly

heavy quarkonium photo- and electro-production at threshold

- measurements at JLab (GlueX and SoLID) for J/Ψ - at EIC: J/Ψ and Υ photo- and electro-production (see chapter 8) heavy quarkonium lepto-production at threshold with large photon virtuality $Q^2 >> M^2$

- also sensitive to gluon D-term
- requires high luminosity and large leverage in Q² (simulations at EIC not yet available)

Multiparton correlations - twist-3 PDFs

Measurement of double-spin asymmetry A_{LT} in $\vec{e}p^{\uparrow} \rightarrow e'X$

proton, deuteron, ³He with JL dt=100 fb⁻¹; 1.6% point by point uncorrelated syst. uncertainties

baseline g₁ and g_T from JAM: Sato, Melnitchouk, Kuhn, Ethier, Accardi, PRD93 (2016)

Measurement of beam spin asymmetry ALU in semi-inclusive dihadron production

contribution from twist-2 PDF coupled to twist-3 DiFF is neglected

Inclusive Diffraction $e + p \rightarrow e' + X + Y$

$$\xi \equiv x_{\mathbb{P}} = \frac{Q^2 + M_X^2 - t}{Q^2 + W^2}$$

momentum fraction of the diffractive exchange w.r.t. hadron

$$\beta = \frac{Q^2}{Q^2 + M_X^2 - t}$$

momentum fraction of the parton w.r.t. the diffractive exchange

$$t = (p - p')^2$$

momentum transferred at the proton vertex

$$x = \beta \xi$$

Bjorken variable

Kinematics range of t and x_L

$$\sigma_r^{D(3)} = F_2^{D(3)}(\beta, \xi, Q^2) - \frac{y^2}{Y_+} F_L^{D(3)}(\beta, \xi, Q^2)$$

Diffractive Structure Functions

Diffractive PDF (DPDF): two-component model

$$F_{2/L}^{D(3)}(\beta,\xi,Q^2) = \sum_i \int_{\beta}^1 \frac{dz}{z} C_{2/l,i}\left(\frac{\beta}{z}\right) f_i^{D(3)}(z,\xi,Q^2) - f_i^{D(3)}(z,\xi,Q^2) = \phi_{\mathbb{P}}^p(\xi) f_i^{\mathbb{P}}(z,Q^2) + \phi_{\mathbb{R}}^p(\xi) f_i^{\mathbb{R}}(z,Q^2)$$

$$\sigma_r^{D(3)} = F_2^{D(3)}(\beta, \xi, Q^2) - \frac{y^2}{Y_+} F_L^{D(3)}(\beta, \xi, Q^2)$$

Diffractive Structure Functions $F_{2/L}^{D(3)}(\beta,\xi,Q^2) = \sum_i \int_{\beta}^1 \frac{dz}{z} C_{2/l,i}\left(\frac{\beta}{z}\right) f_i^{D(3)}(z,\xi,Q^2) \qquad Diffractive PDF (DPDF): two-component model$ $F_{2/L}^{D(3)}(\beta,\xi,Q^2) = \sum_i \int_{\beta}^1 \frac{dz}{z} C_{2/l,i}\left(\frac{\beta}{z}\right) f_i^{D(3)}(z,\xi,Q^2) \qquad f_i^{D(3)}(z,\xi,Q^2) = \phi_{\mathbb{P}}^p(\xi) f_i^{\mathbb{P}}(z,Q^2) + \phi_{\mathbb{R}}^p(\xi) f_i^{\mathbb{R}}(z,Q^2)$

At EIC: potential to separate the Reggeon and Pomeron components; potential for extraction of F_L^D and DPDF

Diffractive dijets $e + p \rightarrow e + 2 \text{ jets } + Y + X$

Extending the average p_T from 8 to 14 GeV: to enhance contribution from resolved photon; to access to larger range of x_P and check factorisation breaking at NLO

Guzey, Klasen, JHEP05 (2020) 074

Global event shape and the strong coupling constant

Inclusive production of a single jet in ep scattering: $e + p \rightarrow J + X$

$$\tau_1^b \equiv \frac{2}{Q^2} \sum_{i \in X} \min\{q_B^b \cdot p_i, q_J^b \cdot p_i\} = \tau_Q$$

1-jettiness (corresponding to DIS thrust) measures the jet broadening w.r.t the tree-level expectation, where the jet corresponds to the scattered quark

60

50

40

30

20

10

0.00

 $\mathrm{d}\hat{\sigma}/\mathrm{d}\tau_1$

δ(d∂/d τ₁) [%]

Impressive amount of new work!

~15 new publications in the last months

A lot of new impact studies yet to be published

New ideas and new processes to be further investigated

Thanks to all!