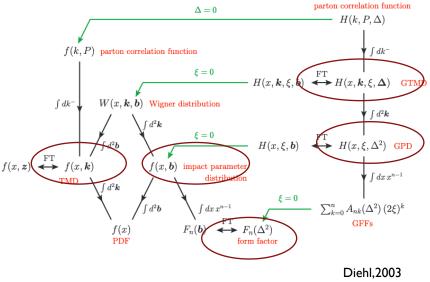
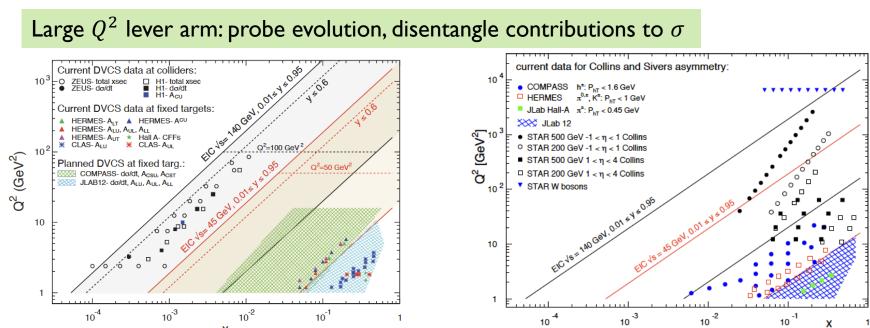
Multi-dimensional Imaging of Nucleons, Nuclei, and Mesons at the EIC

Anselm Vossen

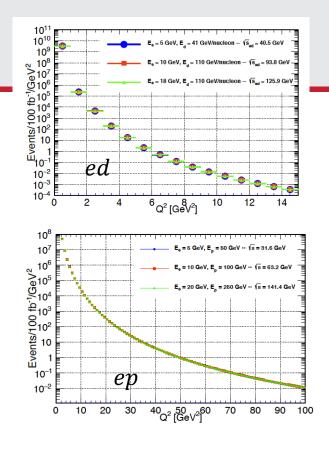

Office of Science

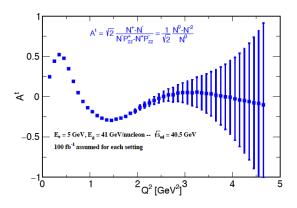
Overview


- <u>Summarizes an impressive amount of</u> <u>work on</u>
 - -Nucleon and Meson Form Factors
 - Generalized Parton Distribution
 Functions (GPDs) from exclusive processes
 - Transverse Momentum Dependent
 Distribution Functions (TMDs) from
 Semi Inclusive Processes
 - -Accessing to Wigner functions
 - Using light, polarized nuclei
 (d, ³He, ⁴He) as neutron targets, investigate nuclear effects and exploit the possibility of tensor polarized targets

Coverage

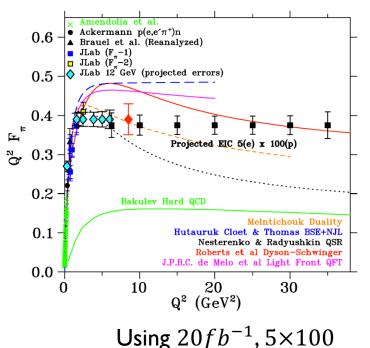
- Common theme on EIC impact
 - Extended kinematic coverage and precision, along with polarization and possible beam charge degrees of freedom allow multi-pronged approach → needed to extract multidimensional objects
 - -TMD factorization is valid


Х



Coverage to low x: access sea and gluon distributions

Nucleon


- Magnetic form factors up to the highest Q^2
- Nucleon FF up to $\sim 45 \ GeV^2$
- Deuteron up to $\sim 5 \ GeV^2$
- Tensor polarized up to $\approx 2.5 \ GeV^2$

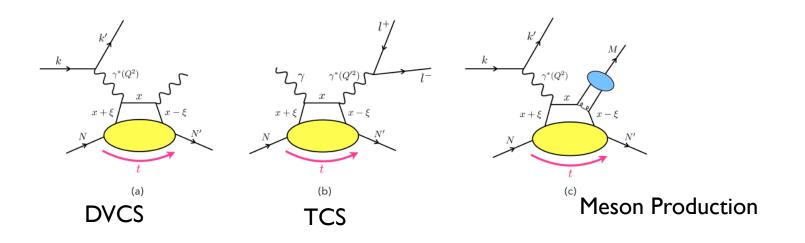
Meson Form Factors

- Interplay between emergent hadronic mass and Higgs-mass mechanism $\rightarrow \pi$ determined due to QCD, $K\frac{1}{2}$ from Higgs
- From factors $e + p \rightarrow e' + n + \pi$, at low -t scattering off pion cloud (also can get $\frac{\sigma_L}{\sigma_T}$ from π^-/π^+ ratios)
- *K* form factor from $e + p \rightarrow e' + \Sigma^0 / \Lambda + K^+$
 - Still under investigation if scattering from K cloud dominates at same kinematics a and how σ_L/σ_T can be verified (probably from Σ^0/Λ)
 - Possibility for first quality F_K measurement at $Q^2 > 0.2$

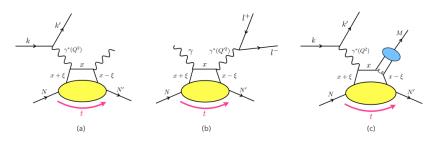
X.

- Four chiral even $(H, E, \tilde{H}, \tilde{E})$, four chiral odd (q_T)
- Depend on x, Q^2, ξ, t
- Can be related to impact parameter $q(x, \vec{b}) = \int \frac{d^2 \vec{q}}{4\pi^2} e^{i\vec{b}\cdot\vec{q}} H^q(x, \xi = 0, t = -\vec{q}^2, \mu^2)$

Energy Momentum Tensor Form Factors

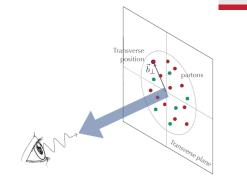

 Need complete set of observables including spin and beam-charge asymmetries to meaningfuly constrain EMT factors including d –term

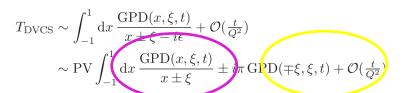
$$\begin{array}{c} \begin{array}{c} \text{mass \& energy} \\ \text{distribution} \end{array} \\ \int_{-1}^{1} \mathrm{d}x \; x \, H^{a}(x,\xi,t) = A^{a}(t) + \xi^{2} \, \textbf{d}_{1}^{\;a}(t) \\ \int_{-1}^{1} \mathrm{d}x \; x \, E^{a}(x,\xi,t) = 2 J^{a}(t) - A^{a}(t) - \xi^{2} \textbf{d}_{1}^{\;a}(t) \\ \text{Angular momentum} \quad \begin{array}{c} \text{Force \& Pressure} \\ \text{distribution} \end{array} \\ \end{array}$$


M. Polyakov, P. Schweitzer, Int.J.Mod.Phys. A33 (2018)

Slide from N d'Hose

- Four chiral even $(H, E, \tilde{H}, \tilde{E})$, four chiral odd (q_T)
- Depend on x, Q^2, ξ, t
- Can be related to impact parameter $q(x, \vec{b}) = \int \frac{d^2 \vec{q}}{4\pi^2} e^{i\vec{b}\cdot\vec{q}} H^q(x, \xi = 0, t = -\vec{q}^2, \mu^2)$
- Accessed in exclusive processes




- Four chiral even $(H, E, \tilde{H}, \tilde{E})$, four chiral odd (q_T)
- Depend on x, Q^2, ξ, t
- Can be related to impact parameter $q(x, \vec{b}) = \int \frac{d^2 \vec{q}}{4\pi^2} e^{i\vec{b}\cdot\vec{q}} H^q(x, \xi = 0, t = -\vec{q}^2, \mu^2)$
- Accessed in exclusive processes

- Meson production channels at the EIC
 - Heavy: access to gluons
 - Vector : similar to DVCS but allows quark flavor separation
 - Light pseudoscalar: access to parity odd and chiral odd GPDs
 → connection to transversity

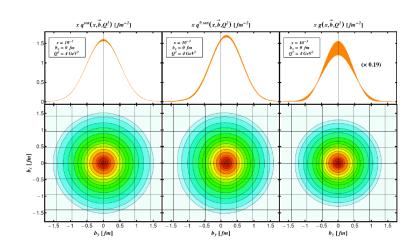
- Four chiral even $(H, E, \tilde{H}, \tilde{E})$, four chiral odd (q_T)
- Depend on x, Q^2, ξ, t
- Can be related to impact parameter $q(x, \vec{b}) = \int \frac{d^2\vec{q}}{4\pi^2} e^{i\vec{b}\cdot\vec{q}} H^q(x, \xi = 0, t = -\vec{q}^2, \mu^2)$
- Accessed in exclusive processes

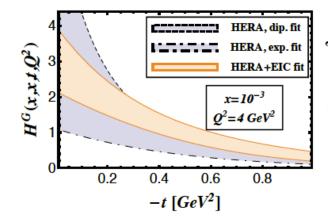
 $H(x, \xi, 0)$

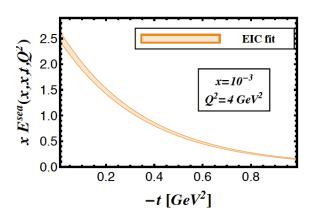
Δσ

- 0.5

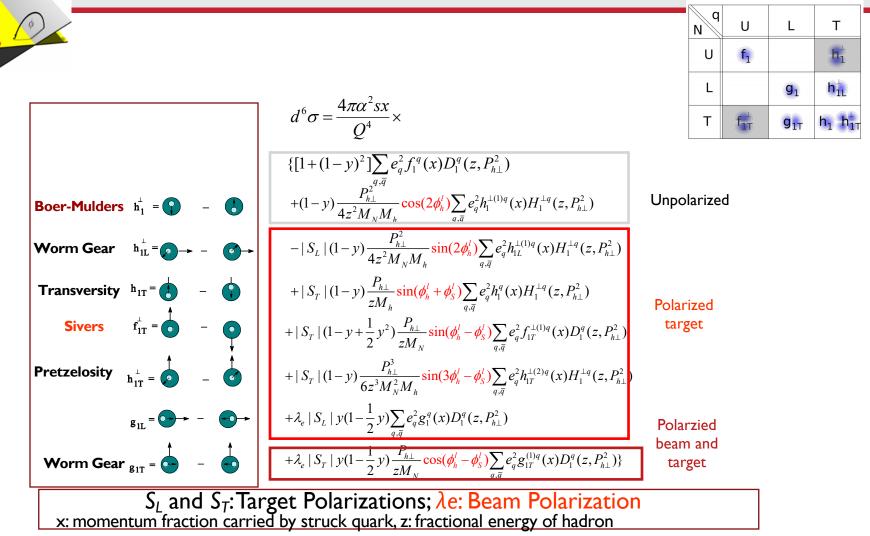
0

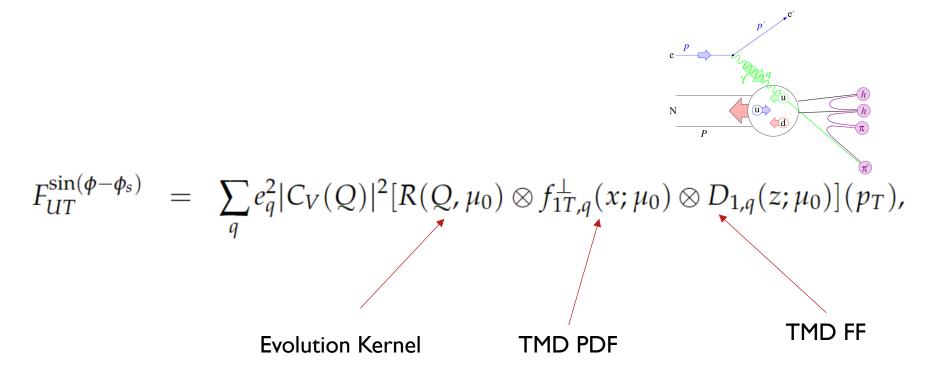

- Measured amplitudes contain complex convolutions of GPDs
- Cross section also contains contributions from competing processes and interferences


→Need many degrees of freedom and long kinematic lever arms to disentangle GPDs from measured cross-section

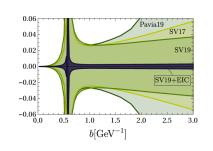

- Flexibility of EIC ideal with wide coverage in Q^2 , t, polarization, possibly beam charge + high precision
- Everything can be measured at the same experiment

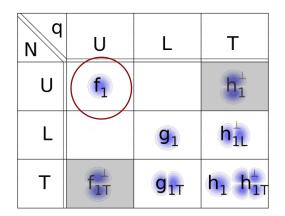
EIC kinematic lever arm

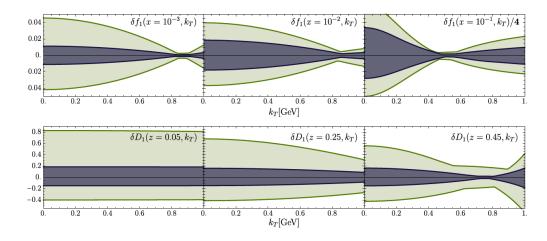

- EIC impact on sea quarks
- Extraction of *E* needs polarized beams
 →no constraints from Hera data
 →E crucial in ingredient in Ji sum rule
- EIC with good forward acceptance will cover a large lever arm in t →needed for spatial imaging



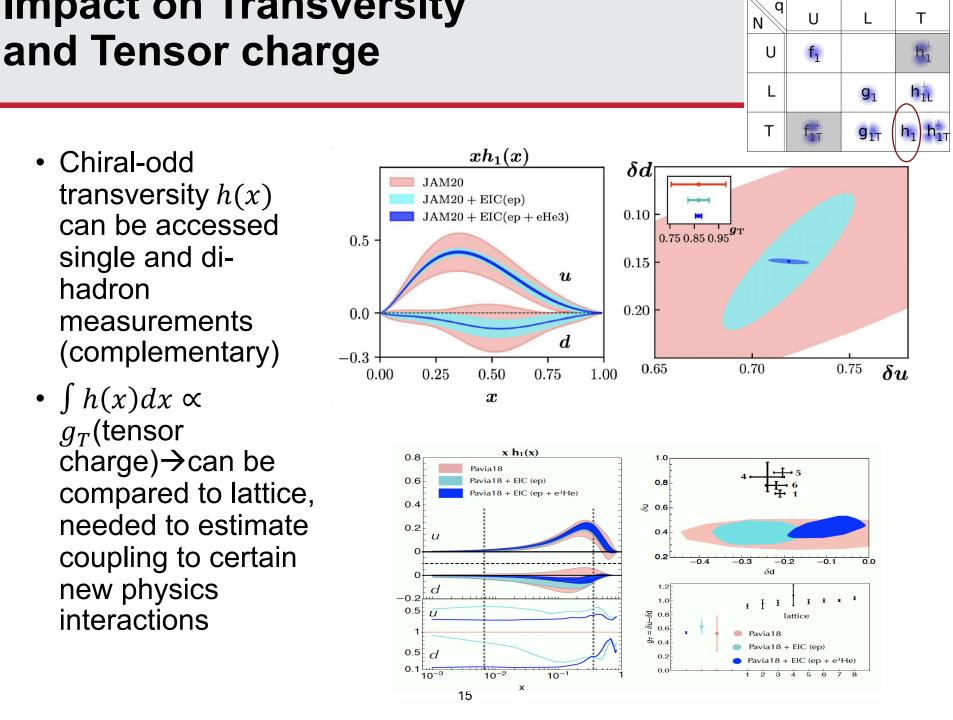
TMD PDFs from SIDIS

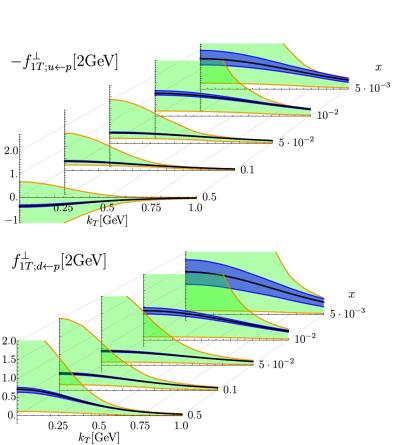

Evolution of TMDs

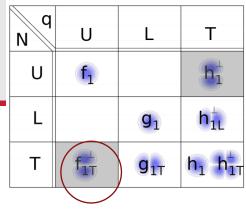



- Need larger lever arm in Q^2 , x, k_T to determine evolution kernel, TMDs
- EIC will have large Q^2 , x coverage \rightarrow pin down evolution kernel, TMDs@low x
- Large p_T coverage \rightarrow larger b coverage, where TMDs are unconstrained
- TMD factorization on more solid ground at EIC then at other high precision facilities (small $\frac{p_T}{o} < \approx 1 \text{ GeV}$)

Impact of EIC on TMD measurements

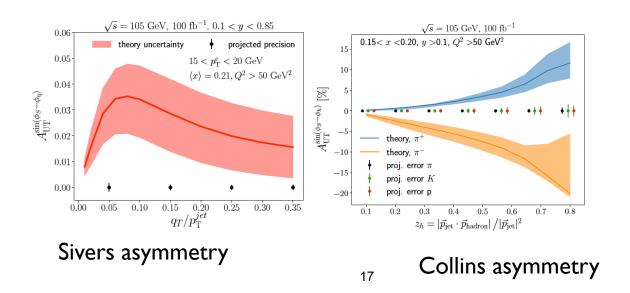

- Results from SV19 refit with EIC pseudodata (10 f b⁻¹), results from Pavia19 consistent
- As expected, biggest reduction in kernel→independent of TMD
- TMD PDF and FF uncert reduction mostly at low *x*, low *z*




TMD PDF $f^{u}(top)$ and FF $D^{\pi^{+}}$ (bottom)

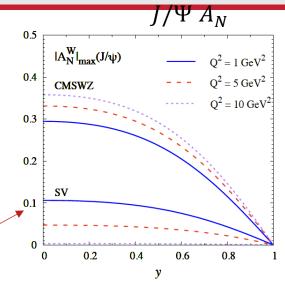
Constrains on T-odd Sivers

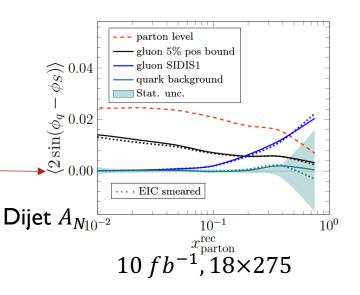
- Sivers function is one of the "original" TMDs
- T-odd, vanishes if there is no OAM
- Modified universality
- Can be precisely determined in single spin asymmetries
- Impact of EIC data will be enormous
- Impact on f_d^{\perp} from He^3 data in particular noteworthy

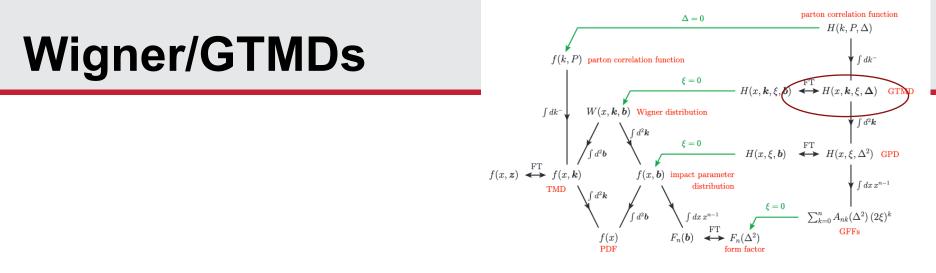


Accessing TMD PDFs and FFs with Jets

- Jets can be used as proxy for outgoing parton
 →Decouple PDF and Fragmentation function (FF)


 →breaks convolution of transverse momenta
- Enables to
 - -measure TMD w/o FF contribution
 - -FF w/o TMD contribution

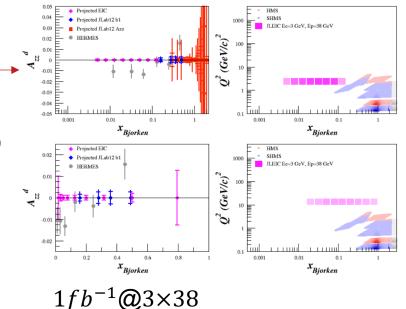



Phys.Rev.D 102 (2020) 7,074015

Access to Gluon TMDs with dijets

- Gluon TMDs structure more involved than quark sector
 - 8 TMDs, two types: Weizsacker-Williams (WW) and dipole
 - -SIDIS unique for WW type
 - Very little known about unpolarized and polarized gluon TMDs
 - Heavy quarkonium ideal channel, but relation of asymmetries to gluon TMDs model dependent
 - Open heavy quark (e.g. D meson pairs) also good, but large uncertainties
 →dijet/dihedron most promising
- Example: Gluon Sivers via dijet asymmetries

- GTMDs ≠ TMDs +GPDs→encode additional correlations between k_T and b_T
- Can e.g. extract orbital angular momentum in intuitive way

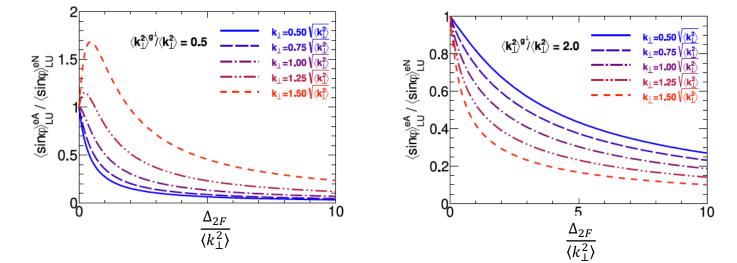

$$L^{z}_{q,g} = \int dx \int d^{2}\mathbf{k}_{\perp} d^{2}\mathbf{b}_{\perp} (\mathbf{b}_{\perp} \times \mathbf{k}_{\perp})^{z} W^{q,g}_{LU}(x, \mathbf{k}_{\perp}, \mathbf{b}_{\perp}, \mathcal{W}).$$

Gluon GTMD at small x from diffractive dijets \rightarrow two momentum vectors, sum and difference of jet momenta: Measure azimuthal modulations between both \rightarrow related to b_{\perp} , k_{\perp} correlation

- Asymmetries of \approx a few percent expected
- More processes? (also to access quark GTMD, currently only in πN scattering)

Light Nuclei

- Coherent DVCS
 - Possible due to EIC ability to detect recoiling nucleon (much easier in collider)
 - -Nuclear tomography, e.g. EMC effect
 - -EMT of nucleus, e.g. "d term" \rightarrow pressure &forces inside the nucleon
 - Deuteron, 3He, 4He complimentary in binding energies and spin complexity. (D: spin 1: more complex structure 3He spin ½: same as proton, structure the same 4He, spin 0 Simpler)
- Tensor polarized deuteron
 - -4 additional structure functions b_{1-4}
 - $-b_1$ has partonic interpretation and ______ is explicitly dependent on surrounding nucleon
 - In quasi elastic regime sensitive to S/D components of deuteron wavefunction
 - Asymmetries significant with spectator tagging

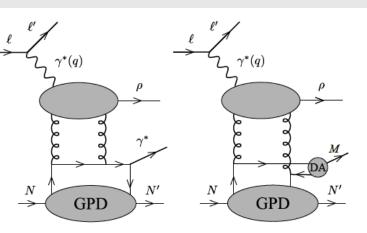

Medium Modification of Azimuthal Asymmetries

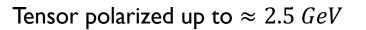
• In gaussian approximation

 $f_1^A(x,k_{\perp}) \approx \frac{A}{\pi \alpha} f_1^N(x) e^{\frac{-\vec{k}_{\perp}^2}{\alpha}}$, with $\alpha = \langle k_{\perp}^2 \rangle + \Delta_{2F}$ Quark transport parameter Δ_{2F} related to gluon density (due to interaction with gluons)

• Jets are sensitive to TMD PDF k_T only

$$\frac{\langle \sin \phi \rangle_{LU}^{eA}}{\langle \sin \phi \rangle_{LU}^{eN}} \approx \frac{\langle k_{\perp}^2 \rangle_A}{\langle k_{\perp}^2 \rangle} \Big(\frac{\langle k_{\perp}^2 \rangle^{g^{\perp}}}{\langle k_{\perp}^2 \rangle^{g^{\perp}}} \Big)^2 \exp\Big[\Big(\frac{1}{\langle k_{\perp}^2 \rangle_A} - \frac{1}{\langle k_{\perp}^2 \rangle} - \frac{1}{\langle k_{\perp}^2 \rangle^{g^{\perp}}} + \frac{1}{\langle k_{\perp}^2 \rangle^{g^{\perp}}} \Big) \vec{k}_{\perp}^2 \Big].$$

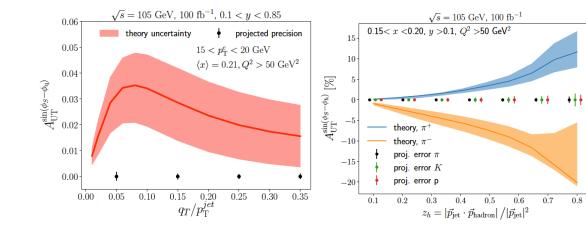


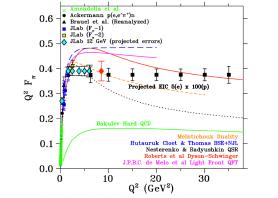

• Thank you all for your contributions!

Backup

Diffractive DVCS and photoproduction of $\gamma\gamma$ / $\gamma\rho$

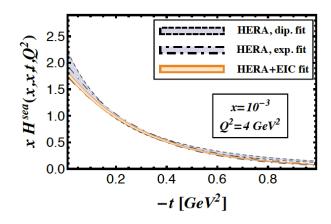
- New processes to be explored
- Diffractive DVCS and meson production
 - Diffractive processes make up large part of the x-section
 - Covers different regime in ξ , decorrelates from x
- Photoproduction of $\gamma\gamma$ and $\gamma\rho$ probe different kinematics in ξ
- Chiral odd GPDs can be accessed using decay distribution of ρ –Connection to transversity

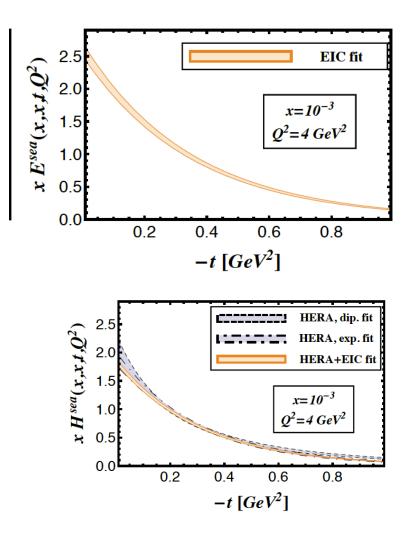


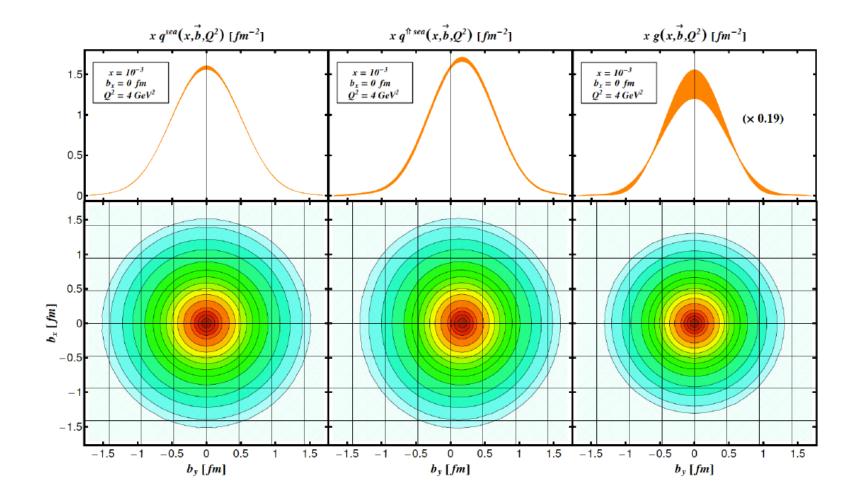

Quark transport parameter Δ_{2F} related to gluon density (interaction with gluons)

$$d^2\ell_\perp e^{-(ec{k}_\perp-ec{\ell}_\perp)^2/\Delta_{2F}}f_q^N(x,\ell_\perp),$$

Meson form factors

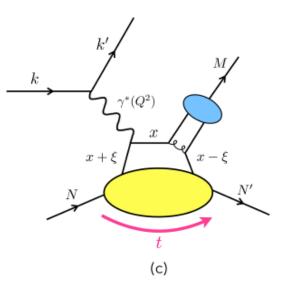

- Elucidating in vis a vis mass generation (see also discussion about mass generation in 7.1) (kaon 1/3 higgs, pion almost 100% QCD)
- (how is F extracted again?)
- Kaon cloud unclear, to be verified by Jlab
 →sigma0/lambda ratio to ge
 \sigma_L/sigma_T




• f

GPD

- GPDs are related to CFF which in general contain convolutions
- Impact picture is FT of t dependence
- →large kinematic coverage essential


TMD

$$F_{UT}^{\sin(\phi-\phi_s)} = \sum_{q} e_q^2 |C_V(Q)|^2 \int \frac{d^2b}{(2\pi)^2} e^{i(bp_T)/z} R(Q, b, \mu_0) f_{1T,q}^{\perp}(x, b; \mu_0) D_{1,q}(z, b; \mu_0)$$

• EMT \rightarrow D term (with positron beam)

GPD measurements in meson production

- -Heavy: access to gluons
- -Vector : similar to DVCS but allows quark flavor separation
- Light pseudoscalar: access to parity odd and chiral odd GPDs, connection to transversity

- "Golden channels"... :.?
- TMDs,
 - -Precision in x,kT
 - -Evolution (\leftarrow strong suite of the EIC)
- Collins/Sivers →Tensor charge
- Gluon TMDs →di-hadrons, jets, heavy quarks
- Di-hadron
- Jets
- Wigner

Light nuclei

- Coherent DVCS by detecting recoling nucleon
- Deuterium →tensor polarization
- Medium Modification azimuthal modulation
- •

Outline

- Imaging in position space and GPDs
- TMDs
- Wigner functions
- Nuclei

Imaging in Position Space

- Form factor
 - →probe magnetic form factors to highest Q2 (I guess at low Q2 one loses sensitivity anyways...)
 - At $\epsilon \approx 1$ (unlike fixed target) $\rightarrow 1$ guess that means no G_E?
 - Q2> 1.0 (acceptance for Q2 < 1.0 not there for electron), proton will need far forward detectors for low Q2
 - No double spin asymmetries (too small)
 - Adding positron beam will help with studying two-photon processes
 - e-d possible up to $Q^2 = 5 \text{ GeV}^2$
 - Tensor polarization measureents up to 2.5GeV2

- Nuclei
 - Tensor polarization possible at EIC?

GPDs

- [306][309],[310]
- See pub in [306]
- Form factor of EMT