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What are the goals of the FF region?

• Tag protons and light nuclei from exclusive reactions.
• Tag protons/neutrons from nuclear breakup events.
• Capture hadrons from lambda decay for meson 

structure studies.
• Measure low-energy photons from heavy nuclear

reactions.
• Far-backward (electron-going) for tagging low-Q2 

electrons.
ØRequires coverage in an area with lots of physical 

constraints!
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EIC Interaction Region layout 

q ~9 m around the IP is reserved for the central detector
q But the far forward and far backward detector components are distributed along 

the beam line within ±35 m 
q Design should be able to operate  with different beam energy and high luminosity
q Very important to keep full detector integration in sync with the accelerator design 

from the early stages on  
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far-forward 
detectors

far-backward 
detectors 



Far forward (hadron going) region 
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𝑛𝑢𝑐𝑙𝑒𝑜𝑛 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =
𝑝!,#$%&'(#
𝑝!,)*+#',-

IP
p/A 

Detector Angular Accep. 
[mrad]

Pt coverage 

ZDC @ ~30m 𝜽 < 5.5 (𝜂 > 6) pT<1.3 GeV 

Roman Pots 0.0* < 𝜽 < 5.0
(𝜂 > 6)

Low pT (t) (*cutoff: beam optics) 

Off-Momentum 
Detectors

0.0 < 𝜽 < 5.0
(𝜂 > 6)

Low-rigidity
particles from nuclear breakup

Forward 
spectrometer

5.5 < 𝜽 < 20.0
(4.6 < 𝜂 < 5.9)

High pT (t) 

𝑝!,)*+#',- refers to the magnet setting for the equivalent proton 
beam (e.g. 𝑝!,)*+#',- = 275 GeV for all top-energy configurations). 
For e+p collisions, this is just the definition of 𝑥. .



How can we classify “alternatives”?
• Detector Technology

• Are there multiple technologies that really provide a 
reasonable set of choices, or is one choice obviously best-
suited?

• Detector Layout and Placement
• Can sub-systems be laid out differently to better optimize 

acceptance/performance?
• How does this affect other constraints?

• Machine optics
• Can different configurations of beam optics, energy, etc.

have a major impact on different physics channels?
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In principle, the answer to each of these questions is yes*, but as the 
asterisk implies, there are many caveats to each of these possibilities.



Detector Technology: Roman Pots
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AC-coupled Low Gain Avalanche Detectors (AC-LGADs)

~2m

Low Gain Avalanche Detectors (LGADs): 
Gain 5-100, Large S/N ratio,  30-50 mm thickness
Fast-timing: ~30-50 ps per hit, dominated by Landau fluctuation

AC-coupling allows fine segmentation 
100% fill factor 
AC-LGAD 2mmx2mm strip sensor.

Strip pitch = 100um

Ø Requirements:
Ø Fast timing (~35ps) to remove 

vertex smearing effect from 
crab rotation.

Ø 500um x 500um pixels.
Ø Radiation hardness (although 

not as stringent as LHC).
Ø Large active area (25cm x 

10cm).
Ø AC-LGADs cover these 

requirements in one package.

10cm

25cm



Machine Optics: Roman Pots
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0.0* (10σ 𝑐𝑢𝑡) < 𝜽 < 5.0 mrad

𝜎(𝑧) = 𝜀 ' 𝛽(𝑧))

~2m

𝜎 𝑧 is the Gaussian width of the beam, 𝛽 𝑧 is 
the RMS transverse beam size.
𝜀 is the beam emittance.

Ø Low-pT cutoff determined by beam optics.
Ø The safe distance is 10𝜎 from the beam 

center.
Ø These optics choices change with energy, but can 

also be changed within a single energy to 
maximize either acceptance at the RP, or the 
luminosity.



e+p Beam Energy Option 1 (high luminosity) Option 2 (high acceptance)

18x275 GeV pT > 0.35 GeV/c pT > 0.2 GeV/c

10x100 GeV pT > 0.2 GeV/c pT > 0.1 GeV/c (or better)

5x41 GeV pT > 0.1 GeV/c N/A
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Machine Optics: Roman Pots

Option 1: higher lumi., larger beam at RP  Option 2: lower lumi., smaller beam at RP  

18x275 GeV DVCS Proton Acceptance

The luminosity trade-off is about a factor of 2 between the different configurations.



Layout: B0-detectors (silicon tracking)
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(5.5 < 𝜽 < 20.0 mrad)  

Ø Charged particle reconstruction.
Ø Precise tracking -> need smaller 

pixels (50um) than for the RP.
Ø Require timing layer for the crab 

rotation and background rejection.
Ø Shape and # of layers of B0 

tracker needs to be further 
evaluated.

Ø Higher granularity detectors needed in 
this area (MAPS, or something similar) 
with layers of fast-timing detectors (e.g. 
LGADs), or timepix (provides high 
resolution space and timing 
information), depending on sensor 
layout and size.

Space for 
detectors 
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(5.5 < 𝜽 < 20.0 mrad)  

• ~1.2 meters of longitudinal space in bore.
• Could potentially have several layers of 

silicon for tracking, and a few layers after 
for some EM calorimetry (compact). 

Ø Tagging photons is also important in 
differentiating between coherent and 
incoherent heavy-nuclear scattering.

Ø Potential inclusion of small EMCAL or 
preshower detector in the B0 bore.

Ø Further study needed to assess.

Layout: B0-detectors (calorimetry)



Layout: Off-Momentum detectors
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Ø Acceptance mostly limited by 
losses of very off momentum 
particles in quadrupoles.

Ø Can use LGAD technology here
too.

(0.0 < 𝜽 < 5.0 mrad) 

Neutron spectator/leading proton case.

e+d -> J/Psi + p + n (18x110GeV)

B1apfB0pf (and detector)

Ø Off-momentum detectors used 
for tagging protons from nuclear 
breakup and decay products 
(e.g. 𝜋/and protons).

Ø Placed outside the beam pipe 
after the B1apf dipole (last 
dipole before long drift section 
that leads to the Roman Pots).
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For detection of  neutrons and 
photons
Acceptance: 
0 < θ < 5.5 mrad
(Limited by bore of magnet where 
the neutron cone has to exit)

Neutrons 

Photons  

HCAL EMCAL

Geant4 
simulation 

photons

neutrons

Technology + Machine: ZDC
Ø HCAL: ~ 50%/√E & 3 mrad/√E or better 
Ø EMCAL: ~ 25%/√E⊕2% or better (EM)

EIC R&D Contact: Michael Murray

~2 meters of longitudinal space available, which 
will help achieve better HCAL resolution.



Far-backward (electron-going) region  
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Beam quadrupole

Tagger 1 Tagger 2

Electron beam

Beam dipole
IP

Luminosity detector (ep -> 
e’p𝛾 bremsstrahlung photons) 

Ø Needs to be fast enough to detect each
bunch crossing (<10 ns).

Ø High radiation and temperature loads due to 
beam proximity and synchrotron radiation.

Ø Angular divergence makes the lowest Q2

coverage challenging.
Ø Various technologies on the table, including 

diamond or silicon sampling calorimetry.

Acceptance up to ~10!" with smearing (not shown).

This area is designed to 
provide coverage for low-Q2

events (photoproduction).



Complementarity/Second IR

• Separate group dedicated to complementarity.
• Different location of “gap region” between the B0

and RP/Off-Momentum Detectors (different beam 
pipe size in the equivalent B0pf magnet in IR 2, for 
example).

• Different crossing angle (will also increase crab-
induced smearing).
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Summary and Takeaways
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• Many issues have been considered during this Yellow 
Report effort, but a few things must be included.
• e.g. timing, maximal acceptance, precision.

• Tagging low energy photons is the most demanding task.
• More study is needed with detailed material 

considerations and beam backgrounds.
• Alternatives should be considered when: 

• required by physics (i.e. technology choice doesn’t meet
requirements) ➝ Reflected in the YR.

• if the cost for a technology is excessive when a final 
design materializes.

The Yellow Report serves as a foundational starting point for the collaboration(s). 
As the machine design is iterated and refined, and as new R&D is completed, new 
alternatives may present themselves that improve on previous work!



IR-related physics requirements
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60cm x60cm x 2m



Forward Proton Acceptance
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5 GeV x 41 GeV 10 GeV x 100 GeV 18 GeV x 275 GeV 

Need both detector 
systems together here!

proton momentum [GeV/c]
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High Divergence: smaller 𝛽∗ at IP, but bigger 
𝛽(𝑧 = 30𝑚) -> higher lumi., larger beam at RP  

High Acceptance: larger 𝛽∗ at IP, smaller 
𝛽(𝑧 = 30𝑚) -> lower lumi., smaller beam at 
RP  



Off-Momentum detectors
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Ø Protons that come from nuclear breakup have 
a different magnetic rigidity than their 
respective nuclear beam (xL<1) 

Ø This means the protons experience more 
bending in the dipoles.

Ø As a result, small angle (𝛳 < 5mrad) protons 
from these events will not make it to the 
Roman Pots, and will instead exit the beam 
pipe after the last dipole.

Ø Detecting these requires “off-momentum 
detectors”.

B0pf Beam 

Pipe Roman Pots

Off-M
omentum 

Detecto
rs p

γ*

e

e'

d p

n

p'

n'

J/ψ

t=(p'-p)2

t'=(n'-d)2-Mp

(0.0 < 𝜽 < 5.0 mrad) 

18

Off-momentum 
detectors

Single B0 
plane

Neutron spectator/leading proton case.
ed (18x110GeV)



Luminosity monitor 
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Ø Luminosity measurements via Bethe-Heitler
process  

Ø Photons from IP collinear to e-beam 
Ø First dipole bends electrons
Ø Photon conversion to e-/e+ pair 
Ø Pair-spectrometer 
Ø Synchrotron photons collimation scheme needs to 

be further refined

dipole

e’

IP

Similar to ZEUS/HERA  concept 



Far-forward physics at EIC 
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Meson structure: 
Ø with neutron tagging 

(ep→ 𝜋 →e’ n X) .
Ø Lambda decays 

(Λ →p𝜋 − and Λ → n𝜋0)

e+p DVCS events with 
proton tagging.

J/Ψ, φ

Saturation 
(coherent/incoherent
J/𝜓 production) 

Rapidity
gap

Diffraction 
e+d exclusive J/Psi events with 
proton or neutron tagging

e+He3 with spectator proton 
tagging.

e+He4 coherent He4 tagging.

e+Au events with neutron 
tagging to veto breakup and 
photon acceptance.
….



Roman Pots resolution
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Angular divergence 

Yulia Furletova 

• Beam angular divergence 
• Beam property, can’t correct for it – sets the lower bound of smearing.
• Subject to change (i.e. get better) – beam parameters not yet set in stone

• *using symmetric divergence parameters in x and y at 100urad.
• Vertex smearing from crab rotation

• Correctable with good timing (~35ps).
• With timing of ~70ps, effective bunch length is 2cm ->.25mm vertex smearing 

(~7 MeV/c)

Primary vertex smearing 
from crab cavity rotation



B0 integration
Ø Beampipe: exit window 

Ø HCAL and vacuum pumps in 
front of B0 tracker  => high 
background area

Ø Detector integration and 
maintenance  
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See Charles Hetzel talk 



ZDC resolution
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Yulia Furletova Neutron samples from Meson 
structure group ( for different 
energies and ZDC 
granularity/spacial resolution   
0.6 cm vs 3cm ):

Distance from beam X [mm] 

Distance from beam X [mm] 
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e p ->  (𝜋)  ->  e’ + 𝑛 + 𝑋

Size of  60x60 cm should be sufficient, 
high granularity is very important for 
high-energy operations 

e-/e+ 𝛾,Z0,W±

e-/𝜈/e+

p p’,n’,Λ0, Σ+,Σ+b

𝜋0, 𝜋+,
K0,K+,B0

X
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Lambda decays 
e p ->  (K)  ->  e’ + Λ + 𝑋

↳ p + 𝜋 −(Br~64%)
↳ n+ 𝜋0 (Br ~36%)

Zvtx [m]

Example (10x100 GeV): ~100% detection for 
protons from Lambda. Significant loss 𝜋 −along 
the beam line (FFQs) due to low momentum of 
those pions.   
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B0

Beam Pipe

Roman Pots

Off-Momentum 

Detectors
p

𝜋 −

𝜋 −

ZDC

Ø Detecting Lambda’s decays  in the target 
fragmentation area is very hard, due to a 
very large decay length (meters).

Ø Would require in addition detection of 
negative charged particles (pi-)  at the OFF-
momentum detector location  
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Machine Optics: Roman Pots

proton momentum [GeV/c]
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High Divergence: smaller 𝛽∗ at 
IP, but bigger 𝛽(𝑧 = 30𝑚) -> 
higher lumi., larger beam at RP  

High Acceptance: larger 𝛽∗ at 
IP, smaller 𝛽(𝑧 = 30𝑚) -> 
lower lumi., smaller beam at RP  

275 GeV DVCS Proton Acceptance



~25 cm
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Need both detector 
systems together here!

Machine Optics: Roman Pots
100 GeV DVCS Proton Acceptance



27

41 GeV DVCS protons

~25 cm

• Only one beam configuration for now. 
• Acceptance gap still observed.
• Lower acceptance at high 𝑝,.
• B0 plays largest role at this beam energy.
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