Sensitivity coefficients for unpolarized TMDs

Results from Pavia group

Alessandro Bacchetta

Background information

- Similar study as the one presented on Aug 31st by Alexey
- Sensitivity coefficients defined as (see, e.g., arXiv:2007.08300)

$$S[f,O] = \frac{\langle O_{\rm th}f \rangle - \langle O_{\rm th} \rangle \langle f \rangle}{\delta O_{\rm exp} \delta f}$$

(no impact) = $0 < |S| \rightarrow (>1)$ large impact

• O is in our case the structure function F_{UUT} , f are the values of the nonperturbative parameters, the averaging is done on the replica set, the relative experimental error comes from Ralf's pseudodata

Starting points

- Pseudodata generated by Ralf and available on <u>https://github.com/VladimirovAlexey/EIC_YR_TMD</u> For the moment, we used Data4_cut, with ACC_opt5
- Grids of SIDIS FUUT structure function based on PV17 fit and available on <u>https://github.com/vbertone/NangaParbat</u>

 To reproduce the following plots, one also needs the 200 sets of parameters from the PV17 fit. They are available upon requests (and actually included inside Nanga Parbat).

Functional form of PV17

arXiv:2007.08300

$$\begin{split} f_{1\text{NP}}^{a}(x, \boldsymbol{k}_{\perp}^{2}) &= \frac{1}{\pi} \frac{\left(1 + \lambda \boldsymbol{k}_{\perp}^{2}\right)}{g_{1a} + \lambda g_{1a}^{2}} e^{-\frac{\boldsymbol{k}_{\perp}^{2}}{g_{1a}}}, \\ D_{1\text{NP}}^{a \to h}(z, \boldsymbol{P}_{\perp}^{2}) &= \frac{1}{\pi} \frac{1}{g_{3a \to h} + \left(\lambda_{F}/z^{2}\right)g_{4a \to h}^{2}} \left(e^{-\frac{\boldsymbol{P}_{\perp}^{2}}{g_{3a \to h}}} + \lambda_{F}\frac{\boldsymbol{P}_{\perp}^{2}}{z^{2}} e^{-\frac{\boldsymbol{P}_{\perp}^{2}}{g_{4a \to h}}}\right) \\ g_{3,4}(z) &= N_{3,4} \frac{\left(z^{\beta} + \delta\right)\left(1 - z\right)^{\gamma}}{\left(\hat{z}^{\beta} + \delta\right)\left(1 - \hat{z}\right)^{\gamma}} \end{split}$$

5x41 configuration

Sensitivity coefficients for TMD PDF width (N₁ parameter of PV17)

Q² bins

5x41 beam configuration

Sensitivity coefficients for low x-dependence of TMD PDF width (σ parameter of PV17)

Q² bins

5x41 beam configuration

Sensitivity coefficients for TMD FF width (N₃ parameter of PV17)

Q² bins

5x41 beam configuration

Sensitivity coefficients for non-Gaussian contribution to TMD FF (λ_F parameter in PV17 parametrization)

5x41 beam configuration

Sensitivity coefficients for nonperturbative evolution parameter (g₂ parameter of PV17)

Q² bins

5x41 beam configuration

10x100 configuration

Sensitivity coefficients for TMD PDF width (N₁ parameter of PV17)

Q² bins

10x100 beam configuration

Sensitivity coefficients for low x-dependence of TMD PDF width (σ parameter of PV17)

Q² bins

10x100 beam configuration

Sensitivity coefficients for TMD FF width (N₃ parameter of PV17)

Q² bins

10x100 beam configuration

Sensitivity coefficients for non-Gaussian contribution to TMD FF (λ_F parameter in PV17 parametrization)

Q² bins

10x100 beam configuration

Sensitivity coefficients for nonperturbative evolution parameter (g₂ parameter of PV17)

Q² bins

10x100 beam configuration