Charm Jet Substructure PID Studies

Dillon Fitzgerald, University of Michigan Advisor: Christine Aidala Collaborator: Joe Osborn, ORNL 11/02/2020

Reminder

- Last Update <u>07/27/2020</u>
 - Statistical projections and resolution of hadronization and jet substructure variables were shown for D⁰s in jets with truth PID used for D⁰ reconstruction
- This update
 - Effect of using default vs requested PID parametrizations for D⁰ reconstruction rather than truth PID is investigated
- Analysis code is available on Github
 - Inclusive jet analysis code found <u>here</u> -- managed by Joe Osborn
 - Heavy flavor jet analysis code found <u>here</u> -- managed by Dillon Fitzgerald

Analysis Chain

Truth Level

- 1. Generate sample of 100 million e+p events for 18x275 GeV and 10x100 GeV collisions
 - a. PYTHIA 6, all e+p sub processes included (MSEL=2 option)
- 2. Use truth level information to filter out events that satisfy the following criteria
 - a. $y^*c \rightarrow c \rightarrow D^0 \rightarrow \{K\pi, K^+K^-, \pi^+\pi^-\}$ -- KK and $\pi\pi$ are negligible contribution (**note:** $y^*q \rightarrow q$ is PYTHIA process number 99)
 - b. D⁰ decay products are within detector acceptance
- 3. Replace D⁰ decay products with D⁰, cluster particles into jets (anti $k_{\tau} R = 1$), only write out those containing a D⁰

Reco Level

- 1. Check smear particle p and η against PID matrix parametrizations for 2 cases {default PID, requested PID}
 - a. use truth mass and smeared momentum to calculate smeared energy if PID detection criteria is satisfied
- 2. Perform D⁰ reconstruction with particles in PID acceptance
- 3. Replace D⁰ decay products with D⁰, cluster particles into jets (anti $k_{\tau} R = 1$), only write out those containing a D⁰

Truth η vs p for $K\pi$

- Pseudorapidity vs momentum of charged D⁰ decay products in jets
- Majority of decay products within requested and default coverage

FID Momentum Coverage			
Eta Range	Default Momentum Coverage	Requested Momentum Coverage	
-3.5 < η < -1.0	≤ 7 GeV	Same	
-1.0 < η < 0.0		< 10.001/	
0.0 < η < 0.5	≤ 5 GeV	≤ 10 Gev	
0.5 < η < 1.0		≤ 15 GeV	
1.0 < η < 1.5	< 9.CoV	≤ 30 GeV	
1.5 < η < 2.0	≤ 8 GeV	150 CoV	
2.0 < η < 2.5	- 20 CoV	≤ 50 Gev	
2.5 < η < 3.0	S 20 Gev	≤ 30 GeV	
3.0 < η < 3.5	≤ 45 GeV	Can tolerate ≤ ~20 GeV	

DID Momentum Coverage

 $Q^2 > 16 \text{ GeV}^2$; 0.05 ≤ y ≤ 0.95; Anti-k_T; R = 1.0; Jet $p_T > 4 \text{ GeV}$

D⁰ in Jet Mass (18x275 GeV)

- Invariant mass for D⁰ in jet shown for truth events, smeared events with requested PID and smeared events with default PID in 18x275 GeV e+p collisions
- Both D⁰ decay products required to be in PID acceptance

This is because sometimes >1 jet is reconstructed with a single D^0 in a smeared event, and some D^0 s are reconstructed but no jet is formed around them in the smeared event

Jet $p_T vs D^0 z$ (18x275 GeV)

- p_T vs z distributions for D⁰ in jets for truth events, smeared events with requested PID, and smeared events with default PID in 18x275 GeV e+p collisions
- Signal lost from requested -> default PID is not too significant

Category	N _{jets}	Losses due to PID
Truth	9792	
Requested PID	9684	182
Default PID	8244	1458

D⁰ in Jet Mass (10x100 GeV)

- Invariant mass for D⁰ in jet shown for truth events, smeared events with requested PID and smeared events with default PID in 10x100 GeV e+p collisions
- Both D⁰ decay products required to be in PID acceptance

Dillon Fitzgerald

Jet $p_T vs D^0 z$ (10x100 GeV)

Default PID

- p_T vs z distributions for D⁰ in jets for truth events, smeared events with requested PID, and smeared events with default PID in 10x100 GeV e+p collisions
- Signal lost from requested -> default PID is again not too significant

Dillon Fitzgerald

a line for all an all an all and have been derived as a state of the second s

1672

252

Conclusions

• Similarly to the inclusive jet substructure program, the largest loss of statistics is for high p_{τ} jets when using default PID requirements

• While high p_T phase space is lost when going from requested to default PID requirements, most of the z phase space is preserved

