Modification of Gas Jet Density Profile with Hydrodynamic Shocks for CO2 Laser Ion Acceleration* in ATF Experiment AE35

Antonio Ting, D. Gordon, M. Helle, Yu-hsin Chen¹ and D. Kaganovich
Naval Research Laboratory
ting@nrl.navy.mil

AE35 collaborators: Zulfikar Najmudin (Imperial College), Peter Shkolnikov, Vladimir Litvinenko (SUNY-Stony Brook), and Igor Pogorelsky (BNL)

* Supported by DOE and NRL 6.1
¹ RSI, Inc., Lanham, MD
Outline

• Objectives
• Introduction
• Approach
• Tasks
• Beam/Laser time request
• Conclusions
Objectives

• To modify the plasma density profile and examine the effects of sharp density gradients on the acceleration of ion from gaseous targets as part of the CO2 laser ion acceleration experiment (AE35).
Introduction

• Most laser ion acceleration schemes require critical density plasma and use solid targets that are single shot and hard to make
• Gas jet provides infinite supply of targets but plasma density can be too low
• CO2 laser can reach critical plasma densities in gas jets.
Shock Wave Ion Acceleration

- Ions can be accelerated by shock wave generated by CO2 laser in plasma
- Double CO2 laser pulses are used, one to form shock, the other to accelerate shock
- Not an efficient way of using the CO2 laser energy
Benefits of a Preformed Plasma Density Profile

• Sharp front gradient reduce ionization defocusing generating smaller laser spot size
• Better laser plasma coupling as sharp gradient simulates solid target conditions
• Sharp rear gradient generates well defined charge separation in TNSA type situations
• Sub-critical or above-critical plasma densities can be generated for various ion accelerating laser wavelengths
• Various plasma density profiles can be generated by adjusting timing of the hydrodynamic shock and the gas jet geometry
Near Critical Plasma from Gas Jets

- Start with supersonic gas jet
- Ignition pulse drives hydrodynamic shock
- Shock wave produces large density gradients (~50 μm)
- Local density enhancement of $\frac{\gamma+1}{\gamma-1}$ times ambient

Hydrodynamic Shock Generation and Experiment at NRL

Experimental Parameters

Drive Laser:
\(\lambda = 800 \text{ nm} \)
\(E = 500 \text{ mJ} \)
\(\tau = 50 \text{ fs} \)
\(f# = 2 \) (OAP)
\(r_0 = 2.6 \text{ um} \)
\(I = 1.0 \times 10^{20} \text{ W/cm}^2 (a_0 \sim 6) \)

Gas Jet:
Diameter = 1 mm
Pressure = 100-1200 PSI

Plasma Diagnostics:
Schlieren Shadowgraphy
Interferometry
Measurement of Hydrodynamic Shock Density

3D SPARC Simulations of Shock Wave in Gas Jet

SPARC (Streamer Propagation and ARCing) code
- Fully nonlinear gas dynamics, including viscosity and heat conduction
- Arbitrarily shaped walls around/within flow region
- Multi-temperature chemical kinetics

A. Ting, Nov. 9, 2011
3D SPARC Simulations of Shock Wave in Gas Jet

FIG. 3. SPARC simulation of shock propagation in gas jet flow, showing (a) false-color images of gas density in a plane that bisects the nozzle and the shock wave initiation point, and (b) lineouts of the gas density along the dotted line in (a) at different times. Lineouts for the different tilt angles presented in Figures 4-6 were acquired by tilting the dotted line to the corresponding angle. The energy deposited into the simulated shock wave was 2.6 mJ. Note that the flow creates a weak shock of its own, roughly in the form of a Mach cone emanating from the nozzle. This explains the small bump in the simulated density curves at ~1600 μm in Figure 4.
Comparison of Simulation and Experiment

NRL Experiment of Laser Accelerated Protons

Hydrodynamic Shocks for Ion Acceleration

Laser Spot

Single Shock

Colliding Shocks

70μm
Accelerated Protons

- Low energy protons extending beyond laser spot
- Energetic protons between 1.5-1.9 MeV contained within laser cone
- Pit counting underway to extract beam characteristics
- Scanning parameter space for efficient acceleration

Simulated Interaction

Shock Density Profile

Experimental density profile (peak at 0.34 n_c) used as input in TurboWAVE PIC Code

Drive Pulse Parameters:
λ = 800 nm
τ = 50 fs
r_0 = 3 μm
a_0 = 4
Simulated Accelerated Protons

Proton Density
(Exit end of plasma region)

Proton energy peaked at 2 MeV

CO2 Laser Ion Acceleration Simulation

3D View in 30 Micron Thick Case

Laser Energy = 1 Joule
Laser Pulse Width = 100 fs
Laser Power = 10 TW
Laser Spot = 30 microns
Gas Thickness = 30 microns/100 microns
Plasma Density = half-critical
Comparison of Acceleration

30 micron thick gas
Max = 400 keV

100 micron thick gas
Max = 900 keV
Scaling with Wavelength for Ion Acceleration

- CO2 laser wavelength ~10 time longer than Ti:Sapphire laser
- The plasma density should be 100 times lower
- Same energy protons should be obtained using a system where all the dimensions are 10 times larger, and the time scales are 10 times longer.
- 500 micron plasma region and 500 fsec laser pulse needed
- The charge obtained can be 10 times greater, but the laser energy required is also 10 times larger (a_0 stays fixed)
- 5 J, 1/2-psec CO2 laser pulse in a 1/2-mm sub-critical gas region
- Thicker plasma region already available from the gas jet
- Only need one hydrodynamic shock to sharpen front gradient
Approach

- Generate hydrodynamic shock using a nsec laser as ignition laser
- Initial shock configuration is to sharpen front density gradient
- Adjust ignition laser delay time from CO2 drive laser while monitoring plasma density profile (over critical density) and shock front location
- Adjust CO2 laser pulse characteristics to optimize ion acceleration.
- Generate sub-critical peak plasma density to access different ion acceleration mechanisms
- Vary hydrodynamic shock configuration to have a sharp rear density gradient to study effect on ion acceleration
- Compare experiment to simulations
- Continue experiments when ATF II upgrade CO2 laser is available
Hydrodynamic Shock Generating Laser

New Wave Laser:
λ = 532 nm
E = 45 mJ
τ = 5 nsec
Tasks

1) Installation of nsec laser at the ion acceleration experimental set up. Laser is provided by NRL.

2) Alignment of nsec laser into chamber.

3) Set up of shadowgraphy/interferometry to image hydrodynamic shock for timing adjustment with respect to CO2 laser pulse and to measure the gas density profile.

4) Measure ion acceleration characteristics as a function of different density profiles, such as sharp front gradient or sharp rear gradient.

5) Analyze ion acceleration data and compare with simulations.

6) Prepare manuscript to document results for publication.
Beam/Laser Time Request

- Concurrent with allocated beam time for AE35
- First two weeks of November, 2014
- Set up time is projected to be one week, tentatively scheduled for the week of October 27, 2014
Conclusions

- NRL proposes to incorporate a hydrodynamic shock generation capability in the existing AE35 experiment of ion acceleration in a gas jet using the ATF CO2 laser.

- The purpose of the hydrodynamic shock is to modify the plasma density profile and examine the effects of sharp density gradients on the acceleration of ion from gaseous targets.

- The hydrodynamic shock generation mechanism has been well studied at NRL.

- Ion acceleration using a Ti:Sapphire laser in a hydrodynamic shock has been observed at NRL.

- Using a hydrodynamic shock can be beneficial to ion acceleration using CO2 laser, such as better laser plasma coupling for ion acceleration.

- NRL will provide the ignition laser for generating the hydrodynamic shock.

- Requested beam time is concurrent with AE35.