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The anomalous magnetic moment

Potential of particle in magnetic field

V(x) = —ji- B(x) (1)
with
i=g(5)S 2)

where S is the spin of the particle.
Relativistic description with classical photon (Dirac) yields
g=2 (3)

but taking into account QFT yields non-zero anomalous magnetic
moment

a=(g-2)/2. (4)

1/26



The anomalous magnetic moment

These anomalous moments are measured very precisely. For the
electron (Hanneke, Fogwell, Gabrielse 2008)

ae = 0.00115965218073(28) (5)

yielding the currently most precise determination of the fine
structure constant

a = 1/137.035999157(33) (6)

via a 5-loop QED computation (Aoyama, Hayakawa, Kinoshita,
Nio 2015).
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The anomalous magnetic moment

a # 0 requires QFT: a can be expressed in terms of scattering of
particle off a classical photon background

e

For external photon index p with momentum g the scattering
amplitude can be generally written as

ot g”

(i) | Fala?) + T T Fale?) 7

with F2(0) = a.
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The muon anomalous magnetic moment

The muon anomalous magnetic moment promises to be useful to
discover new physics beyond the standard model (SM) of particle
physics.

In general, new physics contributions to a; are given by

ag — a?M oc (m2/Np) for lepton ¢ = e, 1,7 and new physics scale
/\Np.

With ¢ = 7 being experimentally inaccessible, £ = 1 promises good
sensitivity to new physics.

f X I

Example contributions: one-loop MSSM neutralino/smuon and chargino/sneutrino contributions to aj,
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The muon anomalous magnetic moment

Currently a tension of more than 3¢ exists:

Total SM prediction 11 659 181.5 (4.9)
BNL E821 result 11 659 209.1 (6.3)

aF — M = (27.6 £8.0) x 101 (8)
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And a new experiment (Fermilab E989) promises a 4x reduction in
experimental uncertainty:
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And a new experiment (Fermilab E989) promises a 4x reduction in
experimental uncertainty:
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Hadronic contributions to a,

Contribution Value x10'9  Uncertainty x10%°
QED (5 loops) 11 658 471.895 0.008
EW 15.4 0.1
HVP LO 692.3 4.2
HVP NLO -0.84 0.06
HVP NNLO 1.24 0.01
Hadronic light-by-light 10.5 2.6
Total SM prediction 11 659 181.5 4.9
BNL E821 result 11 659 209.1 6.3
Fermilab E989 target ~ 1.6

A reduction of uncertainty for HVP and HLbL is needed. For HLbL

only model estimations exist. = First-principles non-perturbative

determination desired.

7/26



The hadronic vacuum polarization from the lattice



Overview of first-principles lattice QCD results
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On-going efforts by ETMC, HPQCD+MILC, RBC+UKQCD, ...

HPQCD2016(CON) neglects the systematic error estimates for the HVP disconnected and QED /isospin-breaking
corrections.
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The Hadronic Vacuum Polarization

Quark-connected piece with > 90% of the con-
tribution with by far dominant part from up and
down quark loops

Quark-disconnected piece with ~ 1.5% of the
contribution (1/5 suppression already through
charge factors); arXiv:1512.09054

QED and isospin-breaking corrections, esti-
mated at the few-per-cent level

9/ 26



% HVP quark-connected contribution

Biggest challenge is to control statistics and potentially large
finite-volume errors (Estimated at O(10%) Aubin et al. 2015)

Finite-volume errors are exponentially suppressed in the simulation
volume but seem to be sizeable in QCD boxes with m,L = 4

Statistics: for strange and charm solved issue, for up and down
quarks existing methodology (such as HPQCD moments approach)
less effective
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HVP quark-connected contribution

Starting from

Z quX X)J )> = (5Wq2 - unIu)n(qz) (9)

with vector current J,,(x) = i > QrWr(x)v,Vr(x) and using the
subtraction prescription of Bernecker-Meyer 2011

(@) - =0 = 3 (=14 S e o

t q2
with C(t) =1>; > j=01.2(Ji(X, t)4;(0)) we may write
HVP Z w; C (11)

where w; captures the QED part of the diagram.
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Integrand wy C(T) for the light-quark connected contribution:
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A closer look at the NLO FV ChPT prediction (1-loop sQED):

We show the partial sum Ztho w; C(t) for different geometries and
volumes:

a®™ 10'® (NLO FV ChPT)
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Compare difference of integrand of 48 x 48 x 96 x 48 (spatial) and
48 x 48 x 48 x 96 (temporal) geometries with NLO FV ChPT:
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m, = 140 MeV, a = 0.11 fm (RBC/UKQCD 483 ensemble)
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Similar agreement from Aubin et al. 2015 (arXiv:1512.07555v2)
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MILC lattice data with mr L = 4.2, m; = 220 MeV; Plot difference of |'|(q2) from different irreps of 90-degree

rotation symmetry of spatial components versus NLO FV ChPT prediction (red dots)

While the absolute value of a;, is poorly described by the two-pion
contribution, the volume dependence may be described sufficiently
well to use ChPT to control FV errors at the 1% level; this needs

further scrutiny
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Regarding statistics:

It is potentially helpful to define stochastic estimator for strict
upper and lower bounds of a,, which has reduced statistical
fluctuations C.L. et al. 2016

1000 — ! ! ! ! , : ,
Strict upper bound
Strict lower bound :--%---
E:
800 4
i
600 - I i ] ]
N x H E z i ¥
g *
] ¥
=
400 4
200 - ]
ol . . . . . . .
10 12 14 16 18 20 22 24

up and down loop shown here: data shown here is from early stages of computation with 5% statistical error,
currently at around 2% statistical error. Within the next year our current setup can produce a continuum limit with
1% statistical error.
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28 HVP quark-disconnected contribution

First results at physical pion mass with a statistical signal
RBC/UKQCD arXiv:1512.09054

Statistics is clearly the bottleneck

New stochastic estimator allowed us to get result
HVP (LO) DI -1
allVP (LO) DISC — 9 6(3.3)444¢(2.3)sys x 10720

from 20 configurations at physical pion mass and 45
propagators/configuration.

(12)
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Our setup (arXiv:1512.09054):

() =5y 3 St + Wi Dsue (13

j=0,1,2 t

where V stands for the four-dimensional lattice volume,
Vi = (1/3)(V/? = V3), and

ZImTr[ th (me)y,] .- (14)

We separate 2000 low modes (up to around my) from light quark
propagator as D=1 =" v(w")T + Dhlgh and estimate the high mode
stochastically and the low modes as a full volume average Foley 2005.

We use a sparse grid for the high modes similar to Li 2010 which has
support only for points x,, with (x,, — XP(LO)) mod N = 0; here we
additionally use a random grid offset x/(io) per sample allowing us to

stochastically project to momenta.
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Combination of both ideas is crucial for noise reduction at physical
pion mass!
Fluctuation of V,, (0):
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Since C(t) is the autocorrelator of V,,, we can create a stochastic estimator whose noise is potentially reduced

linearly in the number of random samples, hence the normalization in the lower panel
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Result for partial sum L+ = Z;O we C(t):
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For t > 15 C(t) is consistent with zero but the stochastic noise
t-independent and w; o< t* such that it is difficult to identify a
plateau region based only on this plot

is
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Resulting correlators and fit of C(t) + Cs(t) to cye Eet + cge~Eot
in the region t € [twin, ..., 17] with fixed energies E, = 770 MeV
and E; = 1020. Cs(t) is the strange connected correlator.
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We fit to C(t) + Cs(t) instead of C(t) since the former has a spectral representation.

We could use this model alone for the long-distance tail to help
identify a plateau but it would miss the two-pion tail
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We therefore additionally calculate the two-pion tail for the

disconnected diagram in ChPT:

a”'SC, 10" (ChPT)
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We then pick a point in the potential plateau region such as

T = 20 and use a combined estimate of the resonance model and
the two-pion tail to estimate 3 .7 ., w; C(t) as a systematic
uncertainty.
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Combined with an estimate of discretization errors, we find
allVP (LO) DISC — 9 6(3.3)414(2.3)sys x 1070, (15)
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% HVP QED corrections

Largely unexplored but finite-volume errors are likely substantial

New methods with potential to control large finite-volume errors in
lattice QCD+QED simulations may prove useful (C* boundary
conditions Lucini et al. 2015, massive QED Endres et al. 2015,
QED, C.L. et al. Lattice 2015)

We are actively working on this measurement using technology
similar to our on-going hadronic light-by-light calculation (next
talk by Luchang)
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» First-principles determination of the HVP contribution
comparable with Fermilab E989 uncertainty (0.3% uncertainty
on HVP) is very challenging

» Substantial progress in the last year both for the HVP light
connected and disconnected contributions

» Active effort on necessary sub-leading contributions such as
QED /isospin-breaking corrections
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First-principles predictions for the HVP on time-scale of and with
errors comparable to Fermilab E989 appear possible!
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Thank you



Experimental setup: muon storage ring with tuned momentum of
muons to cancel leading coupling to electric field
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Because of parity violation in weak decay of muon, a correlation
between muon spin and decay electron direction exists, which can
be used to measure the anomalous precession frequency w,:

Million events per 149.2 ns
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