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What are the criteria?


 
Electroweak symmetry breaking needs to 
explain:


 
Non-zero mass of W and Z gauge bosons



 
Non-zero mass of fermions



 
Unitarity conservation at 1 TeV


 

Must be consistent with all data


 
Precision electroweak data



 
Tevatron searches



 
Flavor changing neutral currents



 
Little hierarchy


 

Much possible physics required to be at >> TeV scale
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The Little Hierarchy


 

L ~ (dimension-6 operator) /2
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Scale of new physics 
often greater than 5- 
10 TeV
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Unitarity


 
Massive W and Z’s have longitudinal 
polarizations



 
Longitudinal interactions spoil nice properties 
of gauge theories:


 

Loops are not finite without Higgs



 

Scattering amplitudes grow with energy



a0

Energy
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The TeV Scale


 
We expect the Higgs or unitarity restoring 
action to be around 1 TeV



 
Symmetry breaking mechanism must:


 

Give mass to vector bosons


 

Not have massless Goldstone boson


 

Be part of a renormalizable quantum field theory

Simplest possibility is weakly 
coupled Higgs boson
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What unitarizes WW scattering?


 

Symmetry breaking could be weakly coupled


 
SUSY (and beyond MSSM), Higgs Portal (lots of 
singlets), Extra-D with multiple vector bosons…..


 

Symmetry breaking could be strongly coupled


 
Technicolor, QCD like models, Higgsless, composite 
Higgs…..
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Precision EW Data


 
Prefer light (Mh < 158 GeV) SM Higgs



 
Quality of fit is good—doesn’t require new physics

Includes direct search limits
Updated
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Higgs Searches

Need reliable predictions for many channels

UpdatedNot updated
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Allowed parameter space shrinking

Tevatron
 

excludes Mh

 

: [100-109; 158-175 GeV]

What is 
error on 
SM line?
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How far can the Tevatron go?



 
Presentation to Fermilab PAC, Aug, 2010
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LHC Higgs Cross Section Working 
Group*



 
Higgs exclusion requires reliable predictions for 
many channels



 
Need to understand theory uncertainties


 

From PDFs


 

From unknown higher order corrections


 

From scale and s variations


 

From ….
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Higgs at the LHC

Goal: Update with comparison of PDFs 
and reliable estimates of uncertainties

h



S. Dawson 13

Many public tools available


 

gg→h


 

NNLO QCD +EW


 

Resummation (threshold)


 

Vector Boson Fusion


 

NLO QCD + EW with decays, NNLO QCD


 

Vh


 

NLO QCD


 

tth


 

LO QCD


 

NLO event generators


 

MC@NLO, POWHEG


 

Decays


 

NLO QCD+EW
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SM calculations in great shape


 

Dominant production mode is gg→h



 
NNLO in heavy Mtop limit



 
Exact t,b loops at NLO



 
N3LL resummation



 
EW and mixed EW/QCD corrections

t,b

Precise predictions allow us to trust error estimates 
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NNLO for Finite Top Mass


 

Previous calculations done in effective field 
theory where Mt

2>>s, Mh
2



 
Include powers of (s/Mt

2)k

Harlander, Mantler, Marzani, Ozeren; Pak, Rogal, Steinhauser




AA GG
v
hcL 

EFT excellent 
approximation 
(~1%)

Increasing k
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gg→ h

Fully differential NNLO rates

The issues:

How to chose central 
scale / scale variation?

How to combine PDF & 
scale uncertainties?

)()(0.389)165( %6.13
%0.12

%1.8
%7.11 PDFscalefbGeVM sTevatronh  


 

Similar size

Anastasiou, Melnikov, Petriello
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Small scale gives better 
convergence

Moch and Vogt
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How big is uncertainty on gg→h?



 

Baglio & Djouadi uncertainty on gg→h: ~38%


 

Roughly 2x’s Anastasiou uncertainty: mainly due to 
method of combining scale and PDF/s uncertainties, 
along with larger variation of scale, Mh /3 < 

 

< 3Mh

Baglio, Djouadi

Tevatron assumes 
17.5% theory 
uncertainty on gg→h

Tevatron
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Compare theory/experiment

Experiments separate Higgs rate into 0, 1, 2 jet bins

Theory precision degrades from 0 to 1 to 2 jet bins

Theory 
uncertainties 
depend on cuts 
& binning

Higgs + 1 jet
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PDF errors are complicated….


 
Prescription for PDF errors:


 

Errors quoted by PDF fitters typically smaller than 
variations between sets



 

PDF4LHC: Use envelope of MSTW,CTEQ,NNPDF predictions



 
Effectively amounts to doubling MSTW error

Thorne
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Interface with NLO Monte Carlos


 

Only 2 public NLO MCs: POWHEG & 
MC@NLO


 
Hardest jet with LO accuracy, other jets 
generated by shower in collinear/soft 
approximations


 

MC@NLO tied to HERWIG


 
POWHEG


 
Can switch shower models



 
No issues with improper cancellations of higher 
order effects



 
Automation: new processes should be faster
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gg→h
 

in MC@NLO & POWHEG


 
Harder pT spectrum in POWHEG than MC@NLO


 

(large) K factor multiplies all pT in POWHEG, not in MC@NLO



 
Dip in MC@NLO understood 


 

Incomplete cancellation (NNLO effect)

Differences understood

Nason, Oleari

POWHEG

MC@NLO
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7 TeV Higgs Reach with 1 fb-1

• This mass region dominated by gg initial channel
• LHC 7 could exclude 140 GeV < MH < 185 GeV
• No Higgs discovery in 1 fb-1

CMS
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Vector Boson Fusion


 

Discovery channel 


 
2nd largest cross section over entire Mh range


 

VBF: h→+- and h→WW give h couplings


 
Probes new vector boson interactions



S. Dawson 25

VBF with NLO QCD + EW



 
Electroweak 
corrections to  vector 
boson fusion are of 
similar size as QCD 
corrections (-4% , - 
7%)



 
QCD contributions 
very sensitive to cuts



 
Partial cancellation 
between EW & QCD

QCD

EW

Ciccolini, Denner, Dittmaier
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VBF at (partial) NNLO


 

NNLO corrections in DIS approximation


 
Prediction for total rate under excellent control

Bolzoni, Maltoni, Moch, Zaro

Scale uncertainty ~ PDF uncertainty ~ 2%
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VBF in POWHEG


 
3rd jet generated by shower 


 
Not accurate in central region as needed for 
pT veto



 
As pT veto gets smaller, shower/hadronization 
as important as NLO scale variation

Nason, Oleari

pT veto 
on 3rd jet
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Jet Substructure


 
At LHC energy, electroweak scale physics 
(W,Z,h,t) inside jets


 

Distinguish between QCD generated jets and those 
due to heavy object decays 



 

Algorithms for unclustering jets


 

Apply technique to Wh, Zh, h→bb


 

Important to get yb



 

Require h & V have high pT (>200 GeV) 


 

Decay products collimated, subjet techniques useful

Butterworth,Davison, Rubin, Salam
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Subjets and Vh, h→bb

3.5 , 30 fb-1, 14 TeV
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Many Alternatives to SM


 
MSSM


 

A favorite


 

Still a lot of work to do to have reliable predictions


 

Beyond the MSSM….



 
Multi-Higgs


 

NMSSM has 1 extra singlet



 
Higgsless



 
Composite Higgs



 
TBD….
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MSSM


 
5 Higgs bosons. h, H, A, H



 
Rates affected by change in couplings


 

For tan 

 

> 10, largest rate is bb

 

at LHC


 

Need NLO generator for bb


 

h decays 90% to bb, 10% to +-
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Theoretical Issues in          
production



 

Inclusive mode:  No tagged b’s


 

Semi-inclusive mode: At least one tagged b


 

Exclusive mode: Two tagged b’s



 

Treating b quarks inclusively leads to large collinear 
logarithms from integration over phase space



 

Expansion parameter becomes s log(mb /Mh )


 

Absorb large logs into b PDFS


 

Relevant process is then bg→b

 

or bb

 

̅̅̅ →

 


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MSSM & Tevatron Limits


 

bb→→++ (NNLO QCD)


 

MSSM corrections included using mb 

approximation 


 

Resums large effects to get effective 
couplings



 

Accurate to < 1%



 
bg→b→+-b, bbb (NLO QCD)


 

bb

 

vertex corrections included in mb 

approximation
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MSSM Higgs production rates


 
Squark/gluino loops important for gg→


 

Rate significantly reduced 

Spira

SQCD corrections 
(relative to LO b loop)

tan 

 

= 20

LHC

LHC
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Calculate SUSY QCD Corrections 
to bg→b


 

O(s
2) NLO SUSY QCD calculation 



 
Use ghbb as above, so subtract off double 
counting



 
Include all contributions from squarks/gluinos

Many contributions 
not included in IBA

mb

 

approximation puts 
bb

 

vertex on shell

Jackson, Dawson
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Can’t neglect SQCD Effects on 
bg→b

s = 7 TeV

Msquark

 

=Mgluino

 

=250 GeV Msquark

 

=Mgluino

 

=1 TeV

SQCD effects large for light SUSY and large tan 
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Do Electroweak Corrections 
Matter?



 
Lowest order rate for bg→bh vanishes for mb =0



 
At 1-loop, there are diagrams which do NOT 
vanish in mb =0 limit



 
Full electroweak calculation

Proportional to Mt

 

not mb
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Standard Model: EW Corrections 
to pp →

 
b h

 EWSQCDQCDbhpp  1)( 0

Dawson, Jaiswal

 

[arXiv:1002.2672] 

For Mh ~ 400 GeV 
corrections 2-4%

IBA captures 
weak corrections 
accurately

Mh

 

(GeV)

EW
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PDF Uncertainties on bb

Differences between PDF sets larger than 
proponents claims of PDF uncertainties
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Limits from Tevatron

Note dependence of limits on 
assumptions about loop (mb

 

) effects

b→bbb



S. Dawson 41

LHC Expectations

MA (GeV)

• Higgs Discovery Channel

ta
n 

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STU 



 
If new physics is at scale >> MZ , then STU 
describe precision electroweak measurements
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Precision data restrict BSM 
scenarios



 
General 2 Higgs doublet



 
Kaluza Klein particles



 
Little Higgs with T parity



 
MSSM



 
4 generations

Can accommodate 
heavy Higgs with 
some types of new 
physics

4th generation
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Light Higgs and 4th Generation



 
Heavy fermions decouple from gg→h production

Tevatron excludes 4G and Mh : [131-204 GeV]

Anastasiou, Boughezal, Furlan, arXiv:1003.4677



S. Dawson 45

4th Generation with MSSM


 
Arrange parameters carefully


 

Requires tan ~1

Dawson, Jaiswal, arXiv:1009.1099
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Conclusions


 
Higgs Hunting just starting


 

Theory/experimental dialog critical


 

Theory calculations under excellent control for SM


 

Need to come to consensus about treatment of 
theoretical uncertainties



 

BSM scenarios need more work to obtain reliable 
predictions
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