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Light Quark Masses in MS

Can be determined non-perturbatively through the use of Lattice 
Simulations of QCD.

This needs to be brought back to MS schemes

Renormalization on the lattice can be done through 
                                                  regularization independent schemes

Dimensional Regularization is not viable in latttice simulations

We do this by perturbativelly calculating the 
                                              Renormalization Constants in both schemes
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Masses and Errors

RBC/UKQCD Coll.

mMS
ud (2GeV ) = 3.72(0.16)stat(0.18)syst(0.33)renMeV

Dominant error comes from renormalization constants. 

More than 60% of the total error.

C. Allton et al. 

~10%

mMS
s (2GeV ) = 107.3(4.4)stat(4.9)syst(9.7)renMeV



RI Momentum Subtraction Scheme  (RI/MOM)

Regularization Invariant Schemes

Remove UV divergences at certain momentum  (subtraction point)
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We will study...

RI/MOM

are the renorm. amputated Greens function for Bilinear Operators
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O = {1, γµ, γ5, γ
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Ward Identities allow us to relate renorm. condition on SR ΛO,Rto

Zγµγ5 = Zγµ = 1 Zγ5 = Z1 = 1/Zm

ΛO,R

Ward Identities lead to relations among renorm. constants 

and renormalization condition on  ΛO,R



RI/MOM scheme
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Asymmetrical momentum configuration

Renormalization Conditions on ΛO,R for RI/MOM scheme



Matching Factors

mMS
R = CRI/MOM

m mRI/MOM
R

CRI/MOM
m

CRI/MOM
m = 1− 0.1333..− 0.0759− 0.0557

CRI’/MOM
m = 1− 0.1333..− 0.0816..− 0.0603...

Known up to 3 loops  G. Martinelli et al.; Franco, Lubicz; Chetyrkin, Retey; Gracey

Poor Convergence:    ~13%,   ~8%,    ~6%  
leads to a large uncertainty in MS quark masses

Numerically with nf = 3 αs/π = 0.1



Symmetric Subtraction Point  more favorable for lattice simullations

RI/SMOM schemes

Suppresses contamination from unwanted infrared effects

p12 = p22 = q2 = −µ2, µ2 > 0,

For Asymm. point effects from chiral sym. break. vanish slowly,

1/p6

1/p2

while for Symm. point such effects vanishes much faster,  

Find a more convergent scheme:

It is important to check if these SMOM schemes converge faster...



Similarly we can use a different set of projectors

RI/SMOM schemes

lim
mR→0

1

12
Tr[γ5Λ

µ
P,R(p1, p2)]

∣∣∣
sym

= 1 lim
mR→0

1

12q2
Tr[qµΛµ

A,R(p1, p2)γ5/q]
∣∣∣
sym

= 1

lim
mR→0

1

12q2
Tr[qµΛµ

V,R(p1, p2)/q]
∣∣∣
sym

= 1 lim
mR→0

1

12
Tr[Λµ

S,R(p1, p2)]
∣∣∣
sym

= 1

lim
mR→0

1

48
Tr[Λµ

V,R(p1, p2)γm]
∣∣∣
sym

= 1 lim
mR→0

1

48
Tr[Λµ

A,R(p1, p2)γ5γm]
∣∣∣
sym

= 1

RI/SMOM

RI/SMOMγµ



NNLO Calculation for RI/SMOM
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Figure 1: Two-loop Feynman diagrams which contribute to the computation of the nonsin-
glet, amputated Green’s functions. The spiral lines denote gluons, the solid lines represent
fermions, the dashed lines ghost fields and the black box indicates the inserted operator.

based implementation. The rational functions in the space time dimension d which ap-
pear during solving the arising linear system of equations have been simplified with the
program FERMAT [22].

In the case of the computation of the amputated Green’s function with the insertion
of the pseudoscalar or axial-vector operator we use a naive anti-commuting definition of
γ5 for the treatment of γ5 in dimensional regularization [5, 23] which is a self-consistent
prescription for the flavor nonsinglet contributions considered here [24, 25].

3.2 Master integrals

After the IBP reduction of the two-loop amplitude there survive seven massless master
integrals. The one- and two-loop master integrals are shown in Fig. 2. They are defined
in minkowskian space in d = 4− 2ε space-time dimensions by
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LO, NLO  1 diagram each (C. Sturm et al 09)

NNLO: 12 diagrams

IBP/Laporta’s algorithm

Computation of master Scalars Integrals
reduction to 7 master integrals

Calculation: Completely Automated



Analytical results are rather lengthy     

Results at NNLO

nf = 3 αs/π = 0.1

C
RI/SMOMγµ
m = 1− 0.049471...− 0.0228421...

CRI/SMOM
m = 1− 0.0161380...− 0.00660442...

in agreement with Jaeger, Gorbahn 

Numerical results with 



Analytical results are rather lengthy     

Results at NNLO

nf = 3 αs/π = 0.1

C
RI/SMOMγµ
m = 1− 0.049471...− 0.0228421...

CRI/SMOM
m = 1− 0.0161380...− 0.00660442...

in agreement with Jaeger, Gorbahn 

Numerical results with 

CRI/MOM
m = 1 ! 0.1333... ! 0.0759... ! 0.0557...

CRI’/MOM
m = 1− 0.1333..− 0.0816..− 0.0603...



Conclusions

The use of the RI/SMOM schemes will reduce the 
systematic error and improve precision of light quark 

mass determinations from lattice simulations 

This results can be used to convert quark masses to MS 
scheme once one has masses in RI/SMOM schemes

Matching Factors are now  known up NNLO for the
 two RI/SMOM schemes

We also computed the mass anomalous dimensions to three 
loops in RI/SMOM which allows one to evolve the masses to 
any scale


