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Why we need ?

High-Q cavity

VZ

2
vV High-Q provides
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lower cryogenic load for
future CW SRF machines.

How to achieve?

[’
Qo =

Rs = Rpcs(T)
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Determined by cavity shape

<€— Determined by cavity shape

Minimizing Rs is the Key
I:> for future High-Q

R applications.
residual



@ Low Rs
Rg (T, B) = Rpcs (T: B) Rresidual(B)

" Rpcs is determined by Surface finish.

e 120C bake / HF rinse
* Nitrogen doping

R, is reduced by Flux control.

* Magnetic shielding
 cool down procedures
 thermo currents effect

I:> Depends on the surface finishing,
the best way of flux control will be different.
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Thermo currents effect

* Different Seebeck coefficients for Nb and Ti

Titanium tank (S,) —> thermocurrent
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U — (S AT Once symmetry is broken, larger AT over
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cavity near T. provides more thermo
currents, more chance of flux trapping,
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Oliver’s slide in SRF2013
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/R, VS. dT over cavity

1.8K Arrhenius plot:

T . : - 100f r . .
= Residual resistance Cycle 3
from asymptote

AT=90K

—|

& 20 40 60 tIminl

Initial cooldown
Q,=1.6x10"°@ 1.8 K

CC: Cycle 8
«” m AT=67K
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Oliver Kugeler,

TTC high-Q working
group 17 Feb 2014 . L. . .
dT over cavity need to be minimized to avoid any increase of R ..
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High-Q cavities R&D

Lesson 1. Cornell ERL
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. HGRP support post
Cavity parameters -

Qo0=2.0e10 at Eacc=16.2MV/m, 1.8K.
=4 IDdiss/cavity ~ 11w

~40K thermal
shield

Surface preparations
Bulk BCP + high temp. bake + light BCP
+ 120C bake + HF rinse.

7-cell cavity
Gate valve

Number of 7-cell cavities 6

Beamline HOM
absorber

HGRP

Superconducting
magnet & BPM

= Number of HOM loads 7

= HOM power per cavity 200 W
= Couplers per cavity 1

= RF power per cavity 5 kW

= Amplitude/phase stability 104/ 0.05° (rms)
= Module length 9.8 m

HALL
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= Acceleration gradient 16.2 MV/m
— S - = R/Q (linac definition) 774 Ohm
i 1 STOCKINGHA| = Qext 6.5x107
I | -A = = Total 2K/ 5K / 80K loads: 76W / 70W / 1500W
"_ "l S
I WINGHALL L B ; —
e E o
s o : - J ‘—.[
' |1 ‘ ' Linac A; North Linac
A SERERa . 344mw/ 35 cryomodules

Linac B; South Linac

285m w/ 29 cryomodeles
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Average Qo at 16.2MV/m=(3.0+0.3)e10 at 1.8K (design Qo=2.0e10).
FE free, no quench, admin. limit.

Ave. Ry =(5.0+0.8) nQ at low field, 1.8K.

Ave. R,

=(4.0£1.0) nQ at low field, varied with mag shielding, cool down rates.

2 4 6 8 10 12 14 16 18
Eacc [MV/m]
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HTC has much better mag. shielding than VT dewar.
R, was reduced from 11nOhm (VT) to 3.2nOhm (HTC-1)
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&) Flux control w/ cool down

LQED A

A Tnitial cooldown
BCS 4+ 3.20 nf?
@ Post 0K

-8 BCS + 1.34 n{)

Initial cool down
R/.s=3.2n0hm

e

Post thermal cycle

S E E E E E
- 10 1 1 1 1 1 1 1 T
RFES 1.3n0Ohm 14 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2

Temperature [K]

Surface Resistance [Q2]

Initial Cooldown at 16.2 MV/m 10 K thermal cycle at 16.2 MV/m
Qy(2.0K) = 2.5 x 10%° Qy(2.0K)= 3.5x10%° (df€°°r\d
Qy(1.8 K) =3.5x 10%° Qy(1.8K)= 6.0x10%° \N;O\ pT
Qy(1.6 K) =5.0 x 10%° Qy(1.6 K) = 10.0 x 100

N e, Ty Topical Meeting on —+ Slow cool down rate through Tc; ~0.4K/h

— ¢ Small cavity temp. gradient; ~0.2K
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&) MLC status

Sl (WSS = 7/ = ' MLC assembly was completed
”r« # el UIHV&'I‘SI?-“ W 2% WY Cool down will start July,
- S - o [ ) Measurement will be after

i ¥ )
4 ! -~
——
¥ | S
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High-Q cavities R&D

Lesson 2. SLAC LCLS-II
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(&) SLAC LCLS-II

LED A

Cavity parameters
Qo0=2.7e10 at Eacc=16MV/m, 2.0K

280 S

———=

50% of cryomodules: 1.3 GHz

Cryomodules: 3.9 GHz

Cryomodule engineering/design

Helium distribution

Processing for high Q (FNAL-invented gas doping)

..-' ) . . 50% of cryomodules: 1.3 GHz
] ,&"_L‘;_J 3 U r | I_. :.! D . Cryoplant selection/design
ExPLORTAN = WATURE DETATIER .

Processing for high Q

2= Fermilab

~ . Undulators

) A + e gun & associated injector systems
FeEeEreer ‘Ill‘

Undulator Vacuum Chamber
’ . Also supports FNAL w/ SCRF cleaning facility
Argon n e . Undulator R&D: vertical polarization

NATIONAL LABORATORY

R&D planning, prototype support
processing for high-Q (high Q gas doping)
€ gun option

2
¥\ Comell Laboratory for
Accelerator-based Sciences
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Temperature, °C

200

1001}

0 i I I i I -7
0 2 7} 6 8 10 120
Time, hours

N2-dope parameter (FNAL)
N2 2min. ~20mTorr / 6min. Vac.

Cornell Laboratory for
Accelerator-based Sciences
and Education (CLASSE)

LCLS-lispec * o _

F-ll--lll ol LU LT . b N

TE1ACCO005 - typical electropolished FG ‘ i
TE1AESO016 - nitrogen treated LG .
TE1NROOS5 - nitrogen treated FG u .
TE1AESO003 - nitrogen treated FG |.
TE1AESO005 - nitrogen treated FG %
TE1AES013 - nitrogen treated FG T=2K
TE1AES011 - nitrogen treated FG

TE1CATO0O03 - argon treated FG

TE1AESO008 - nitrogen treated FG

e +toevwvhPoo

0 5 10 15 20 25 30
E_ (MV/m)

acc

A. Grassellino et al, 2013 Supercond. Sci. Technol. 26
102001 (Rapid Communication) — selected for highlights of
2013

10°
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E 3 @ BCP+120C
o : © A-EP
v O X t " w- EP+120C
‘Erm i ® .‘. #® - EP+nitrogen treatment
6 - ° € EP+nitrogen treatment
4 : .
: > o
4 . 1 . 1 . 1 A 1
0 20 40 60 80
A. Grassellino, SRF2013
B (mT)

N2-dope provides much lower Ry than other
surface finish in medium field.

R i (CLASD Furuta, ERL2015, 8June2015, Stony Brook 16 5



Nanostructural studies provide first clues

Y. Trenikhina (IIT/FNAL), A. Romanenko — to be published

Electron diffraction patterns from the penetration
TE M on Fl B_prepa rEd cutouts depth taken at 94K reveal the difference

¥

Doped Nb
Nb lattice
-
Secondary
diffraction peaks
appear
signalling the

formation of
lossy niobium
hydrides

Non-doped Nb Nb lattice

* Hydrides may be the cause of the medium and high field Q slopes [seé A. Romanenko, F. Barkov,
L. D. Cooley, A. Grassellino, 2013 Supercond. Sci. Technol. 26 035003]
* Nitrogen doping may fully trap hydrogen => only intrinsic Nb behavior is then manifested?

£= Fermilab
A. Romanenko, LINAC’2014

ST,
&T8BI%) Comell Laboratory for
t [ Accelerator-based Sciences
zg?  and Education (CLASSE)
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1 Trapped Flux
0 1 2 _ 3 4
A Thne [min]
TT‘ Dan Gonnella, TTC Meeting,

KEK, December 2014
External External

Field On Field Off

Single cell with
* Helmholtz Coil
* Fluxgate

Applied mag field vs. Trapped flux was measured
under the different conditions cooling.
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B N-doped - FNAL Cavity R_=2950+334
@ Comell N-doped: 5 pm EP R =368%+555
¢ Comell N-doped: 12 pm EP
11 ¥ Comell N-doped: 18 pm EP Rre = 3.14® + 248
50| 4 comel N-doped: 24 urn EP Rige =257%+ 717
1 B
| |
@

Cornell N-dloped: 30 pm EP R = 2160 +15
e R, =187®+143
120C Baked R, =008+ 171
R =03730+245

= N2-dope

B~
O
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res

Residual Resistance [nQ)]
w
S

N
o
Ll

Dan Gonnella, TTC Meeting,

7 KEK, December 2014
0 5 10 15

Trapped Flux [mG]

Trapped flux contributes stronger to R . in N2-doped cavities than
un-doped cavities. R . in N-doped is sensitive on flux trapping.

Furuta, ERL2015, 8June2015, Stony Brook 19 &g

uuuuuuuu




20 T T T T T T T T

18 B e Fast cooling from 300K -
- m  Slow cooling from 20K
= °r . )
%14 — - [ ] [ | u -
g 12 - . = " Slow cooling (<0.3K/min).
210 .
e L
=< 8 -
> L
e
‘B 6 I .
()
s ®
4 M P R R XA 7]
2 | Fast cooling(1.8-2.4K/min)
I 1 | 1 | 1 | 1 |
0 5 10 15 20
E.__ (MV/m) A. Grassellino, AWLC14, Fermilab May 13t 2013

acc

Fast cooling gives N2-doped cavities lower R __ (higher Qo)

than Slow cooling.

res
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0 10 20 30 40

Longitudinal AT [K]

Small longitudinal temperature gradients suppress thermo
currents, and give lower residual resistance.
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&) Flux control with dT ., in HTC
50
B No Applied Field
® 20 mG Applied Field
40{ @
. Dan Gonnella for the Cornell Team
TTC Meeting, KEK, December 2014
= 301
L, @
o
o 204
101 m
- O mE B
0 T T T 1
0 20 40 60 80

Vertical AT [K]
large vertical temperature gradients give more flux expulsion

and lower residual resistance.
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Courtesy of Dan Gonnella

".H.ll

HTC9-1 ACCO11
HTC9-2 AES012
HTC9-3 AES018
HTC9-4 AES018
LCLS-ll Spec |

] ] |l

0 5 10 15 20
[MV/m]

rqoon

CICC

* Cornell has completed four HTC tests with success so far.
 HTC9-5 assembly with high power coupler, tuner, and
HOM antennas is ongoing, will be tested in July.
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® Qo preservation from VT to HT

5.0E+10 -
-2-ACC012
== AESO11

X 4.0E+10 -

- == AES021
§ == AES027
S 3.0E+10 - —o—AES035
© 2.2.7el10 o T~ ——AES018
)
© *

g 2.0E+10 - _
VT bare VT dressed :> Horizontal Test
1.0E+10 - N=6' 2K Based on the table from A. Grassellino

TTC working group 23 Apr 2015

* LCLS-Il specs have been achieved during horizontal tests.

 Q-degradation ( ~2nOhm increase in Rs) have been seen between
initial VT and horizontal test. It seems to be caused by surface
oxidation during the long duration of HPR.
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& Optimization for highest-Q

» Different surface finishes require different flux controls to
especially on cool down procedures.

e Cornell ERL SLAC LCLS-I

minimize R,

1.3GHz SRF cavity

Highest Qo in HT
at 16MV/m, 2K

Estimated P iss/cell
at 16MV/m, 2K

Surface finish

Cool down

Trapped flux effect

7-cell 9-cell
3.5el10 3.2e10
0.9W 0.9W
120C bake
+ HF rinse N2-dope

Fast cool with
minimized longitudinal AT
large verica AT

Slow cool with minimized
AT over cavity

Not sensitive High sensitive

Furuta, ERL2015, 8June2015, Stony Brook



& Summary

* High-Q cavity challenges on Cornell ERL and SLAC LCLS-Il have
been done successfully by the optimized combinations of Ry and
R, control.

* Ry is determined by surface finishing, especially Nitrogen doping
gives lower Ry than EP’ed or BCP’ed surface in medium field.

* Flux control is essential for lower R, . Depends on the surface
finish, optimized cool down procedures are required in horizontal
cryomdules.

* Preserving high-Q performance from bare to dressed cavity, and
vertical to horizontal test has been demonstrated successfully.
Small Q-degradations were caused by surface oxidation during the
long duration of HPR.

* High-Q of >3e10 at 2K in medium field is in hand now with high
vield at horizontal test.
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Thank you for your attentions.

Cornell Laboratory for
ccelerator-based Sciences
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