Searches For Hidden Valleys

(Self-Interacting Dark Sectors with Mass Gap)

at the LHC

Dark Interactions

Matt Strassler

Harvard

October 2016

in memory of Guido Ciapetti

Plan of the Talk

- Why Hidden Valleys?
- Why is the LHC a good place to look for them?
- Three basic methods to look for HV particles
 - Quasi-inclusive
 - Unusual objects or events
 - Decays of known objects
- What do we know from LHC studies?
 - Very few direct searches for HVs
 - Very few "recasts" of existing searches as constraints on HVs

Consequently, we don't know very much at all.

MJS + Zurek 06

"Hidden Valley"?

A unexpected place ...

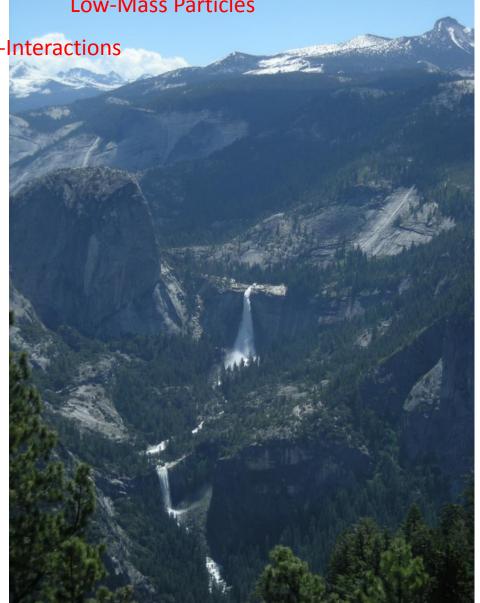
... of beauty and abundance ...

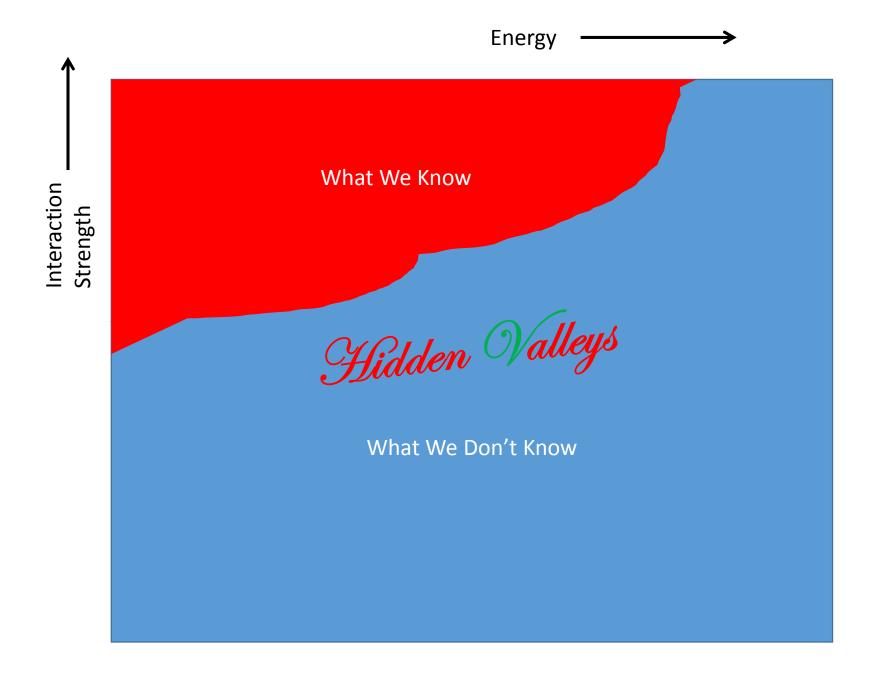
... discovered only after a long climb ...

MJS + Zurek 06

"Hidden Valley"?

Hidden/Dark Sector

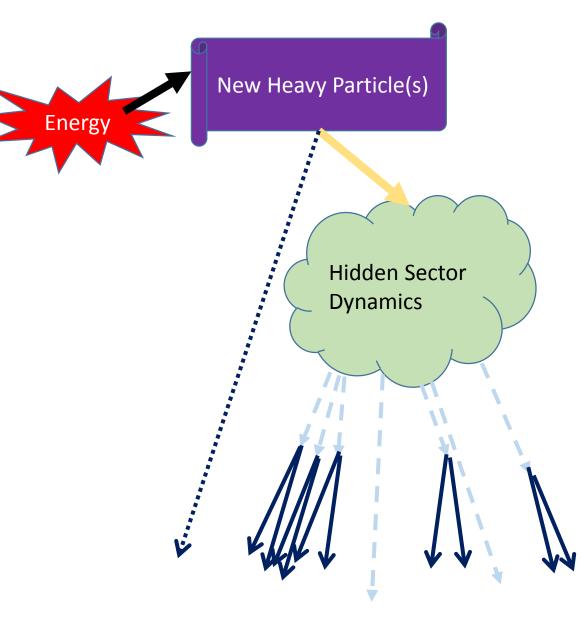

Low-Mass Particles


With Self-Interactions

A unexpected place ...

... of beauty and abundance ...

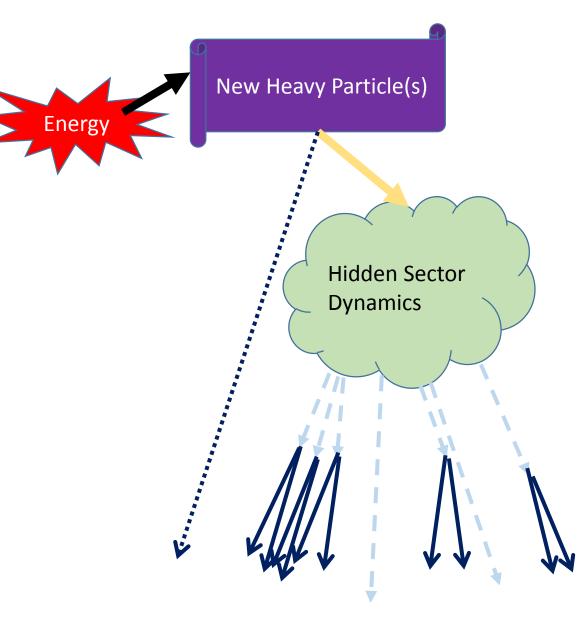
... discovered only after a long climb ...



Motivations

- Top-Down Theory: String theory
 - Abundance of sectors even at TeV scale
- Cosmology: Dark Matter
 - "Dark Sectors"
 - WIMPless miracle, etc.
 - SIMPs, AsymDM
 - ...
- Bottom-Up Theory: Naturalness
 - Supersymmetry Breaking
 - Neutral Naturalness
- Opportunity: Higgs Portal

Hidden Valleys


MJS + Zurek 06

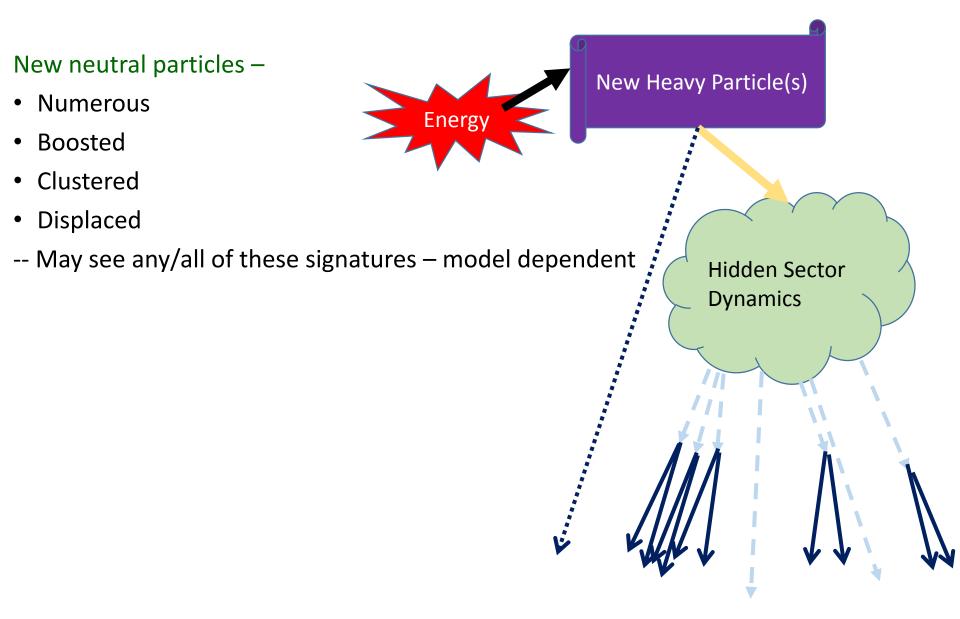
Why LHC?

HV particles – how heavy?

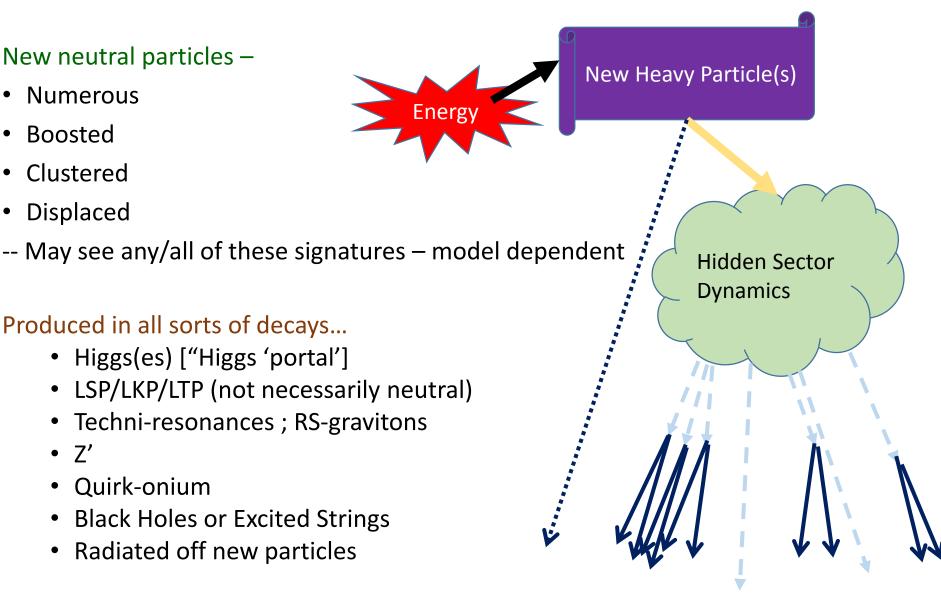
- In 2006, LHC imminent and urgent; we focused on > GeV
 - 2006: LHC experiments were not prepared (not even triggers)
 - Below GeV, many particles develop lifetimes > km
- Many of the same phenomena extend to 10s of MeV
 - Especially for dark vector or scalar

Hidden Valleys

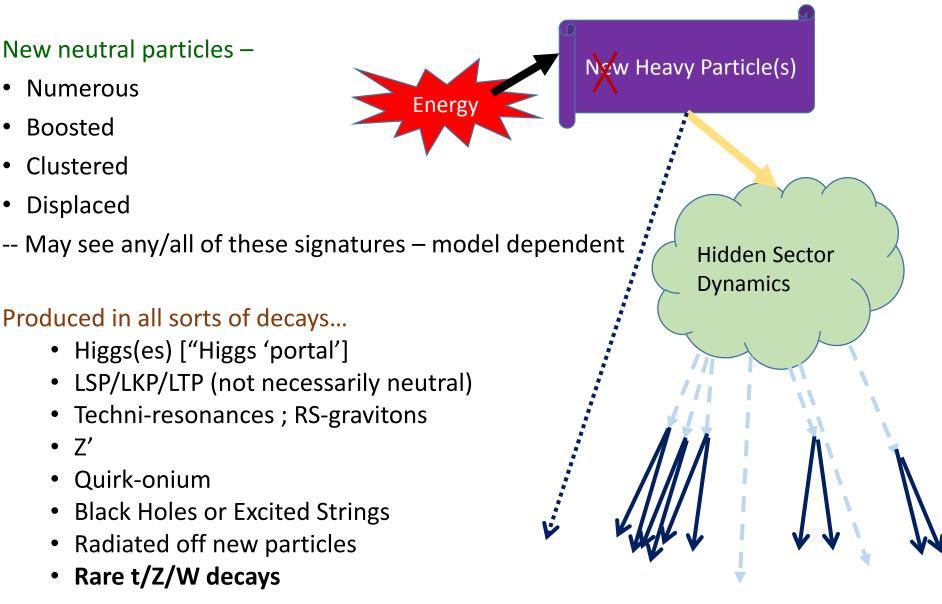
MJS + Zurek 06


"Portals"

In an HV, must be possible to go back/forth from SM sector to hidden sector


- Z'/Z mass mixing
- Higgs
 - (including SM extensions)
- Quirks
- LSP of SUSY
 - (similar in T-parity Little Higgs, KK-parity Extra Dims)
- Photon/Z kinetic mixing
- Neutrinos
- RS Gravitons/Black Holes/Strings

...


Typical of Hidden Valleys (and not of minimal models)

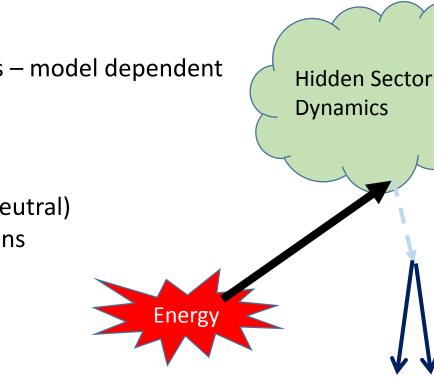
Typical of Hidden Valleys (and not of minimal models)

Typical of Hidden Valleys (and not of minimal models)

10/4/2016

M.J. Strassler

Typical of Hidden Valleys (and not of minimal models)


New neutral particles -

- Numerous
- Boosted
- Clustered
- Displaced
- -- May see any/all of these signatures model dependent

Produced in all sorts of decays...

- Higgs(es) ["Higgs 'portal']
- LSP/LKP/LTP (not necessarily neutral)
- Techni-resonances ; RS-gravitons
- Z'
- Quirk-onium
- Black Holes or Excited Strings
- Radiated off new particles
- Rare t/Z/W decays

10/4/2016

Can produce at

luminosity frontier

Some Typical Classes of HV Particles

- Neutral Bosonic Resonances
 - Spin 0
 - Heavy flavor decays (b's, tau's, mu's)
 - Gauge boson decays (gluons, W's, Z's, photons)
 - Spin 1
 - Quasi-democratic decays (quarks, leptons, W's)
 - Spin 2
 - Gauge boson decays (jets, W's, Z's, photons)
- Neutral Fermionic Resonances
 - Spin ½
 - W^(*)+lepton, MET + bosonic resonance
- Cascades
 - Boson/fermion → boson/fermion/MET + **non-resonant** quark/lepton pair
- Invisible (stable, or stable on detector time-scales)

10/5/2016

M.J. Strassler

Some Typical Classes of HV Particles

- Neutral Bosonic Resonances
 - Spin 0
 - Heavy flavor decays (b's, tau's, mu's)
 - Gauge boson decays (gluons, W's, Z's, photons)
 - Spin 1
 - Quasi-democratic decays (quarks, leptons, W's)
 - Spin 2
 - Gauge boson decays (jets, W's, Z's, photons)
- Neutral Fermionic Resonances
 - Spin ½
 - W^(*)+lepton, MET + bosonic resonance
- Cascades
 - Boson/fermion → boson/fermion/MET + **non-resonant** quark/lepton pair
- Invisible (stable, or stable on detector time-scales)

10/5/2016

M.J. Strassler

Why LLPs?

- Normally, Width ~ Mass * Coupling
- As in QCD, decays for many states can be suppressed by
 - Approximate Symmetries
 - Weak couplings
 - High dimension operators
 - Natural degeneracies

With complex spectrum, many possible patterns

- Alone
- Clustered
- Seeded
- Cascades

10/4/2016

Why LLPs?

- Normally, Width ~ Mass * Coupling
- As in QCD, decays for many states can be suppressed by
 - Approximate Symmetries
 - Weak couplings
 - High dimension operators
 - Natural degeneracies

With complex spectrum, many possible patterns

- Alone
- Clustered
- Seeded
- Cascades

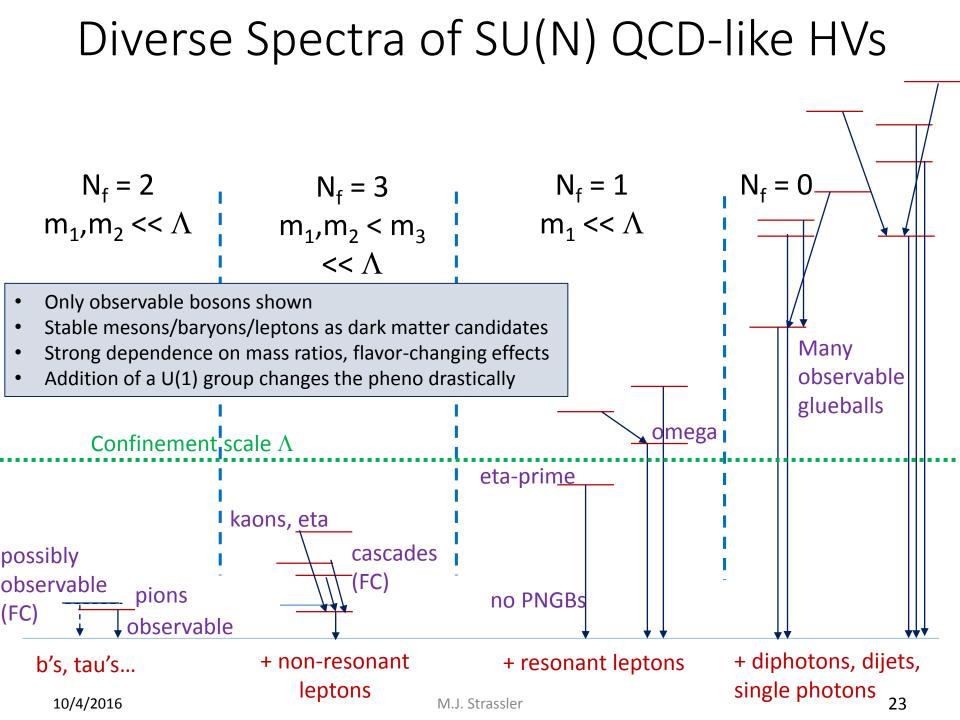
Why LLPs?

- Normally, Width ~ Mass * Coupling
- As in QCD, decays for many states can be suppressed by
 - Approximate Symmetries
 - Weak couplings
 - High dimension operators
 - Natural degeneracies

With complex spectrum, many possible patterns

- Alone
- Clustered
- Seeded
- Cascades

Why LLPs?


- Normally, Width ~ Mass * Coupling
- As in QCD, decays for many states can be suppressed by
 - Approximate Symmetries
 - Weak couplings
 - High dimension operators
 - Natural degeneracies

With complex spectrum, many possible patterns

- Alone
- Clustered
- Seeded
- Cascades

Some Example HVs to Illustrate Diversity

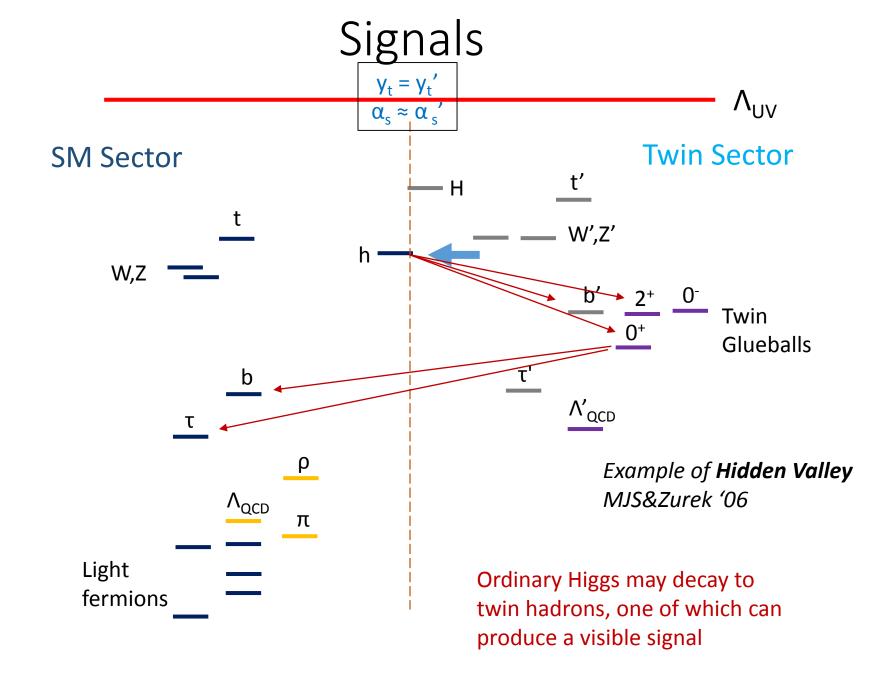
- Hidden Valleys **do** require interactions and a mass gap (or ledge)
- Confinement, however, is not required
- However, confining theories are useful examples
 - because they show how complex physics can be even with simple inputs
- Complex results can and do arise in Higgsed theories too
 - via cascade decays and perturbative showering
 - but there (because of weak coupling) you mostly get out what you put in

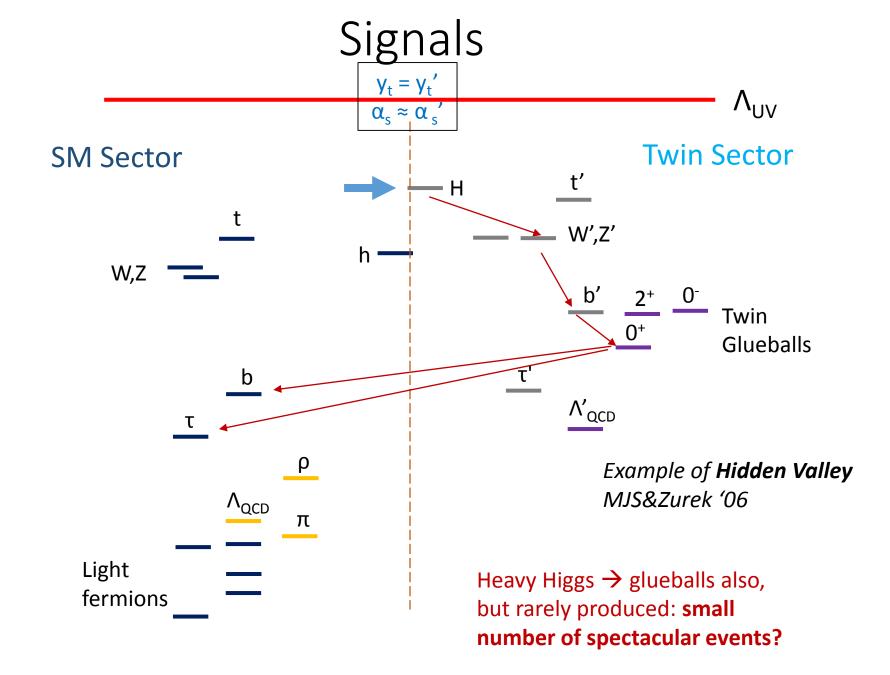
Strategies to Find HV Particles

- Look for class of HV particle (semi-)inclusively (production-agnostic)
 - Require only the particle and put no/few other demands on the event

• Select unusual events or objects, then look within for HV particles

• Look for HV particles in decays of known particles (h,Z,t,W)


Example from Neutral Naturalness


Main HV object is 0⁺⁺ glueball decaying through Higgs portal to b's

- Mass m₀
- May be prompt if 30-60 GeV, will be long-lived if << 50 GeV

Produced in

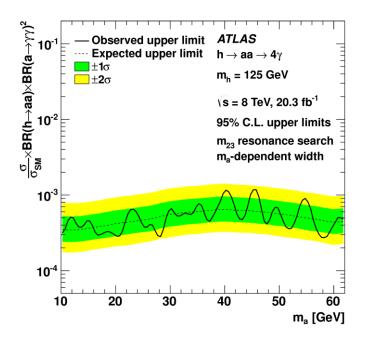
- 125 GeV Higgs decay
 - $h \rightarrow 2$ (or more if m_0 small) glueballs
 - Br at least few x 10^{-4} , possibly as large as 10%-20%
- Heavy Higgs (300-1500 GeV) decay
 - $H \rightarrow many glueballs$
 - Events very rare but high energy, MET, multiplicity spectacular
- In Folded SUSY, squirk annihilation
 - Similar to H decays, plus additional soft activity

Strategies for Fraternal Twin Higgs

- Look for class of HV particle (semi-)inclusively (production-agnostic)
 - Require only the particle and put no/few other demands on the event
 - Boosted b-pair resonance or boosted tau pairs
 - Displaced tau-pair or two displaced jets (or jet pairs) ٠
- Select unusual events or objects, then look within for HV particles
 - High S_{T} (m_{eff}) or MET
 - High jet multiplicity or displaced-track multiplicity
 - Then look for prompt b-pair resonances or displaced vertex(vertices)
- Look for HV particles in decays of known particles (h,Z,t,W)
 - h \rightarrow bbbb, bbµµ, $\tau \tau \mu \mu$ prompt
 - $h \rightarrow$ single displaced vertex
 - requiring associated VBF jets or lepton(s)/MET from W,Z

H decays

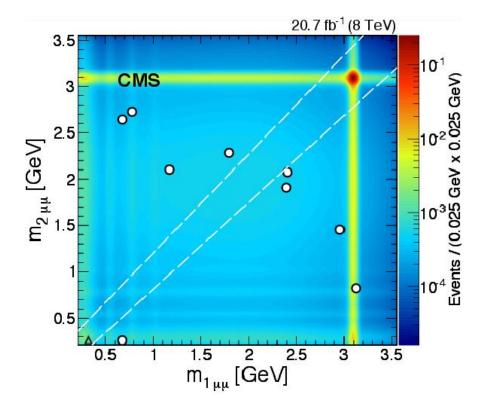
h or H decays


Single Object Searches: Prompt Bosons

- Fully Inclusive not effective
 - Not easy to find hidden low-mass bosons in inclusive dilepton search, etc.
- Highly Boosted (e.g. produced in decay) very poorly covered
 - Lepton pair
 - Low-mass "simple" lepton-jet only
 - Photon pair
 - Low-mass "simple" photon-jet in Higgs decays only
 - Bottom quark pair
 - None?

Double Object Searches: Prompt Bosons

Constraints on models where >1 resonance \rightarrow leptons or photons:


- Multi-lepton searches
- ATLAS multi-photon search
 - 3 photons: order 10 fb's

- Caution: ineffective if HV particles boosted or clustered
 - isolation cuts

Simultaneous pairs of prompt dimuon pairs

Limits at fb level on two pairs of muons with same mass.

Single/Double Object Searches for LLPs

We heard a lot about this yesterday (talks by T. Kolberg, A. Coccaro)

- Leptonic
 - CMS dilepton; e+mu;
 - ATLAS lepton-jet
- Jets
 - CMS dijet
 - ATLAS (2 vertices required, or 1 with high trigger threshold)
 - LHCb
- Semileptonic
 - ATLAS (but high trigger threshold)
- Photonic
 - ATLAS (2 required HCAL)
- Quasi-Generic
 - ATLAS (2 required HCAL)

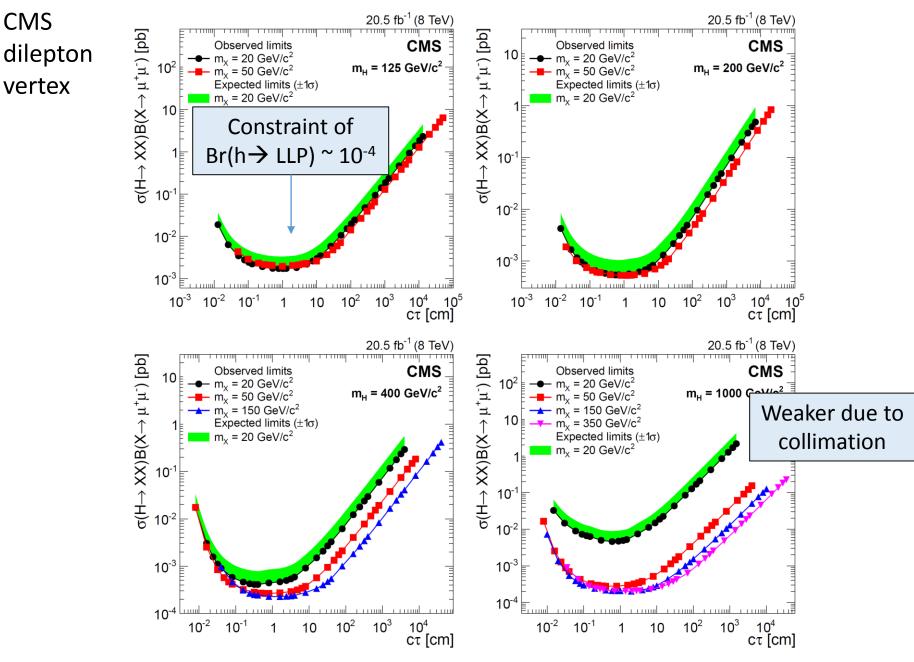
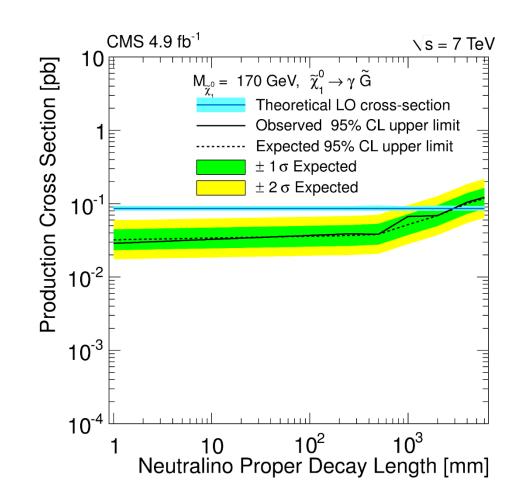


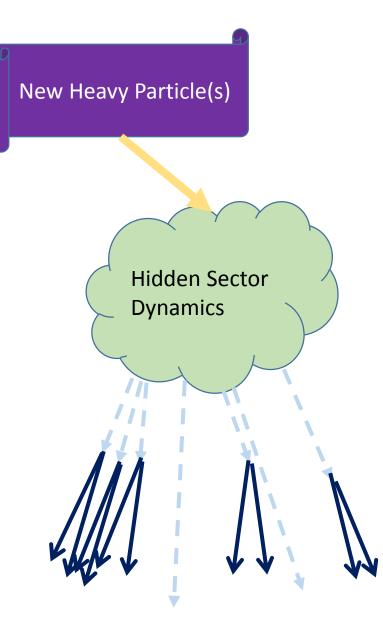
Figure 5: The 95% CL upper limits on $\sigma(H \to XX)\mathcal{B}(X \to \mu^+\mu^-)$, as a function of the mean proper decay length of the X boson, for Higgs boson masses of 125 GeV/ c^2 (top left), 200 GeV/ c^2 (top right), 400 GeV/ c^2 (bottom left), and 1000 GeV/ c^2 (bottom right). In each plot, results are


10/4/2016

Displaced Photons

Displaced diphotons using time of flight

But requires jets and MET...


So not generally applicable...

Searches in Unusual Conditions

Why Unusual Conditions?

- Possibly high energy or high MET
- Possibly high multiplicity
 - Possibly b-heavy
 - Possibly tau-heavy
- Possibly high boost

Searches in Unusual Events

Prompt

- Require event with
 - High # jets (or b-jets)
 - High # non-isolated leptons
 - High S_T and/or MET
 - High [accidental] jet mass(es)
- Then search for resonance in leptons, photons, b's, etc.
- Some limits from non-resonance SUSY searches...

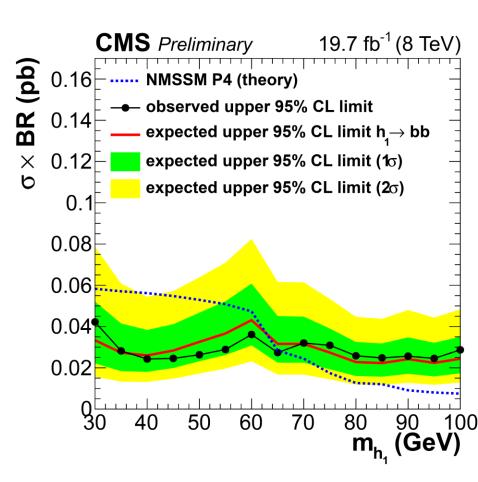
Searches in Unusual Events

ATLAS-CONF-2016-052: Search for pair production of gluinos decaying via top or bottom squarks in events with b-jets and large missing transverse momentum at 13 TeV with the ATLAS detector

A search for ... pair production of gluinos decaying via third-generation squarks to the lightest neutralino ...The signal is searched for in events containing several energetic jets, of which at least 3 must be identified as b-jets, large MET, and, potentially, isolated electrons or muons. A topological observable formed from the mass of large-radius jets in the event is used to enhance signal discrimination. No excess is found above the predicted background. For c₀ masses below ~ 200 GeV, gluino masses of less than 1.89 TeV are excluded at the 95% CL in simplified models of the pair production of gluinos decaying via sbottom or stop...

- This clearly excludes some classes of HVs
 - At least 2 b pairs and MET from decay of a heavy resonance
- But why not look for a di-b resonance in these events?

Searches in Unusual Events


ATLAS-CONF-2016-094: Search for new physics in a lepton plus high jet multiplicity final state with the ATLAS experiment using sqrt(s) = 13 TeV protonproton collision data

A search for new physics in final states characterized by high jet multiplicity, an isolated lepton (electron or muon) and either zero or at least three b-tagged jets is presented... No significant excess of events is observed ... constraining supersymmetric models where the gluino is pair-produced, and decays to a pair of top quarks and jets through the R-parity violating decay of either the neutralino into three quarks or the top squark into a b- and an s- quark. In addition model-independent limits are set on the contribution of new phenomena to the signal region yields of up to 8 fb at 95% confidence level.

- This clearly excludes some classes of HVs
 - Lots of b pairs and occasional tau pairs from decay of a heavy resonance
 - With very little MET
- But why not look for a di-b resonance in these events?

B-pair resonance in events with jets + MET

- Looking for SUSY Higgs
 - NMSSM Higgs
- Events are dramatic
 - at least two very energetic jets
 - large missing energy
- Then for 30 < m < 100 GeV, <40 fb
- But note
 - Result very model-dependent
 - No similar searches without MET
 - No searches for boosted resonance

Easy Searches Not Yet Performed

Select events with high S_T/MET and/or many (b-)jets

- Search for dilepton resonance
 - Possibly non-isolated, possibly collimated
 - Possibly non-resonant with edge/endpoint

• Challenge/Opportunity: do this systematically and optimally

• Same applies for diphoton resonance

Searches for Unusual Composite Objects

Prompt

- complex lepton-jets (all leptons, or leptons+hadrons)
- complex photon-jets
- Accidental/nonaccidental substructure (from clustered decays)

LLPs

- Clusters of displaced lepton-jets (ATLAS LJO)
- Clusters of displaced hadronic vertices ("Emerging jets")
- Displaced photon jets (ATLAS LJ2)

Exotic Decays of Known Particles

Potentially difficult due to trigger

- Higgs at Br < 10⁻⁽¹⁻⁵⁾
- Z at Br ~ 10⁻⁽⁶⁻⁸⁾

Much easier to trigger

- W, t at Br ~ 10⁻⁽⁵⁻⁷⁾
- b (LHCb? Compete with other B factories?)

Exotic Decays of Higgs to Prompt Final States

Our Study of Non-SM Decays of Higgs boson: 1312.4992

• Bounds relevant if $Br(H \rightarrow Exotic) < 0.25$ or so

	Final State Br	Total Exotic Br	Expt
h → a a → bbbb	< 1	h \rightarrow a a not constrained	ATLAS
h → a a → bbµµ	< 5 x 10 ⁻⁴	h \rightarrow a a not constrained	CMS
h → a a → ττμμ	< few x 10 ⁻⁴	h → a a < .1 (if no a → bb)	ATLAS,CMS
h → a a → μμμμ	< few x 10 ⁻⁴	h → a a < ~ 10^{-2} (m _a < 3 GeV)	CMS
$h \rightarrow V V \rightarrow 4$ leptons	< 5 x 10 ⁻⁵	$h \rightarrow V V < 5 \times 10^{-4}$	ATLAS
h \rightarrow a a \rightarrow 4 photons	< 3 x 10 ⁻⁴	Same, if a decays only to $\gamma\gamma$	ATLAS
$h \rightarrow \chi \chi \rightarrow MET + \gamma$	<.1		CMS

Caution: Rough estimates! See the papers for detailed limits!!

- A few of these (without a mass constraint) relevant to Z decays (?)
 - No explicit searches for rare Z decays

Exotic Decays of Higgs to LLPs

- See experimental talks from yesterday; limits still at 10⁻¹ 10⁻³ level for lifetimes in few cm to few m range,
 - but very different for jets than for leptons
- Neutral naturalness motivates aiming for 10⁻³ 10⁻⁴ level across a much wider range for decays to b's and tau's

Exotic Top/W Decays

- Trigger on lepton
- Reconstruct leptonic top
- Check decay of the other top or W
 - e.g. 5-body decays [jj][jj]c
 - e.g. [bb]c decays
 - e.g. b + [W \rightarrow lepton + jets + MET]
 - Leptonic decays probably excluded by multilepton if isolated;
 - collimated case?
 - Photonic decays? (diphoton [collimated?] + lepton search?]
- Missing: good benchmark models

Conclusions

- Hidden Valleys (Interacting Dark Sectors w/ Mass Gap) offer rich opportunities for theory, cosmo/astro and collider pheno
- LHC is sensitive to wide classes of HVs, but few dedicated searches and very few "recasts" of existing analyses, so little is known
 - Most hidden valleys are still hidden, and one may be hiding in LHC data now
- HV's predict new resonances, possibly displaced, that can be sought individually (semi-inclusively) or in pairs
- HV's predict that resonances may be produced boosted and/or clustered and/or displaced, so requiring unusual objects or events may make it much easier to find them.
- Z, W, t and especially Higgs (cf. neutral naturalness) can have non-SM decays to HVs, offering discovery opportunities
 - Warning for h, Z: triggers!!!!!
- More (and accurate) Monte Carlos, more benchmark models and more studies needed to motivate program of directed searches.