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Motvations

+ Rare kaons decays K — m{*7¢~ and K — 7wvv are flavour
changing neutral current processes (FCNC)

* They are heavily suppressed in the Standard Model and sensitive
to New Physics

“ Each type of process contains 3 decays: K = g and K 2
* K — wor will be discussed in the next talk (X. Feng)
« KT — w7470 :long-distance dominated

Kk 2 s 70T ¢~ feature indirect/ direct CP-violation interference



+ Euclidean formulation

¢ Ultraviolet & infrared behaviour

“ Preliminary lattice results

* Summary & perspectives



FEuclidean formulation



Minkowski amplitude
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Minkowski amplitude

EM current (weak contribution negligible)

>

L) = / Atz (r°(p)| T[J, (0) Hw (x)] | K°(K))

<

Effective AS = 1 weak Hamiltonian

Spectral representation:

oo o [T 4 p(E) (7¢(p)] Ju(0) |E, k) (E, k| Hw (0) | K°(k))
%(Q)_Z/O o Fr(k) — E + ic

: Z./“O 1p Ps(E) (m°(p)| Hw (0) |E, p) (E, p| J.(0) | K*(k))
: oF E — E.(p)+ic
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I e(z,k,p) = (dre(tr, P)T[J.(0) Hw (z)| ke (tx, k)T)

S &

pion and kaon interpolating operators

For —t,,tg — +00:

Zﬂ_ Z}{e—tw EW (p) etKEK (k)

4E(p)Ex (k)
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can be obtained from 2-point functions
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Fuclhidean correlation function

I e(z,k,p) = (dre(tr, P)T[J.(0) Hw (z)| ke (tx, k)T)

S &

pion and kaon interpolating operators

For —t,,tg — +00:

ZWZ}L{e_tWEw(P)etKEK(k) - :
5,2 st

can be obtained from 2-point functions f£L4) 5 (CE, k, p)

Ao e
F/(,l,) ($7k7p) o
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uark Wick contractions

l 4
K@W
s l

C: “Connected”

S 14

/
B bve:

Names: E. Goode

¢ ¢
s l

W: “Wing”

S: “Saucer”



uark Wick contractions
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uark Wick contractions

Neutral case additional diagrams:
deoi i w,d
0 O
Ty
S u,d
d u, c u,d
Sk e
T
S u, d



KEuclidean spectral representation

Integrated correlator on a finite time interval |1, 1)

Th > oo C c
fa [t = - [ a5 42 EOILOIER 5K iy 0150

ot 2L
+/+OO 1 Ps(E) (1°(p)| Hw (0 )! D) (E, p| J.(0) [KE(k))

2F — E.(p)
% (1 =50 [E B (p)]Tb)
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KEuclidean spectral representation

Integrated correlator on a finite time interval |1, 1)

Th > oo C c
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FEuclidean spectral representation

Integrated correlator on a finite time interval |1, 1)

Th > oo C c
fes [ T tnier = [ ap HE OB (M By Q)

ro T T o)l i (0)|E. ) (Bl Ju(0) |K*(k))
i /0 d b SQE T
(e & Bl

“ growing exponential for E < Ex (k)
* need to be removed to obtain the Minkowski amplitude

« generated by 1, 2 and 3-pion intermediate states
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Removing the single-pion divergence

1. Reconstruct the divergent single-pion term by
computing J,, and Hy, matrix elements for m — 7~
and K — m transitions
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Removing the single-pion divergence

1. Reconstruct the divergent single-pion term by
computing J,, and Hy, matrix elements for m — 7~
and K — m transitions

2. One can show that the physical amplitude is invariant
under Hyw — Hyw + cssd, cg can be tuned to cancel
the K — 7 matrix element
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T'wo-pion intermediate states
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T'wo-pion intermediate states
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T'wo-pion intermediate states
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After integrating /, only two independent momenta.
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T'wo-pion intermediate states

//, o
LA
ooo.ro‘ :
\ .
\\-_// q
k—12 L4

5,u,1/paplljpgng(Sv tv U)

After integrating /, only two independent momenta.

No two-pion intermediate state
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Removing the 3-pion divergence

* One needs K — mmm matrix elements

* On the lattice: unknown and probably very challenging

« [arXiv:1408.5933] proposed a theory for the quantisation
of 3-pion states in a finite volume
(cf. also S. Sharpe’s talk yesterday)

* Only a problem for pion masses less than ~165 MeV

155



Ultraviolet & infrared behaviour



Individual operator renormalisation

+ The vector current is conserved and does not need
renormalisation
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Individual operator renormalisation

+ The vector current is conserved and does not need
renormalisation

+ The renormalisation of the weak hamiltonian is also
know and is much more simple with chiral fermions

(e e.o. [Z Bat ctal BRI TI500) p 112003, 20141
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Short distance operator product

UV divergences may appear in loops between J,, and Hyy :
Ju
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Short distance operator product

UV divergences may appear in loops between J,, and Hyy :

5

, ZF ,uV zg HZV ] (q)]

i f f '
s Wil D - (e, e

Same divergence structure than HVP
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Short distance operator product

OPE with lattice regularisation:

Bl ) = . a0l TP

pv,ij 2y

17



Short distance operator product
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Short distance operator product

OPE with lattice regularisation:
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Short distance operator product

OPE with lattice regularisation:

7 = E T
H,ul/,ij (q) a:>0 C,ull/,ij 7P C,uyl,ij <mfff> = l
dim 2 dim -2 irrelevant

“ vector case: WI lower dimensions by 2: mass
independent logarithmic divergence

“ GIM subtraction cancels mass independent divergences
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Finite-size effects

“ Cuts in diagram: power-law finite volume effects
(cf. e.g. S. Sharpe’s talk yesterday)
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Finite-size effects

“ Cuts in diagram: power-law finite volume effects

(cf. e.g. S. Sharpe’s talk yesterday)

« Possible with 3-pion on-shell intermediate states:

E p /” /_;\ p 7
> // \ /(
= S
Pcoer” I oo —— - -
k \ k ) T
\ q \\ E /7
\\_,/“\,\’\ 2 q
L = 1%

« All other finite-size effects: exponentially suppressed
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Preliminary lattice results
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Lattice setup

« DWEF action, 64 x 24° lattice with spacing ~0.12 fm
* Ne=2+4+1, M, ~ 420 MeV and Mg ~ 600 MeV
+ K(2n/L,0,0) = 7(0,0,0), g2 ~ —0.09 GeV?

“ only W and C connected diagrams
« gauge fixed wall sources, sequential current insertion

K+ Ju 7TjL

° : ®
0 5 14 25 28
T integration range o
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2-point function fit
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EM current matrix element
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Weak Hamiltonian matrix element
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cg determination
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Rare kaon decay correlation function
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Rare kaon decay correlation function
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Summary & outlook
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Summary

» We know how to define the di-lepton rare kaon decay matrix element in
Euclidean space-time

* Intermediate states with energy less than the kaon one have to be
subtracted: possibly 1,2 or 3-pion states

* Two methods for the single-pion state
» No 2-pion intermediate state

* Short-distance behaviour completely regulated by GIM mechanism and
gauge-invariance

+ If no on-shell 3-pion intermediate state: exponentially suppressed finite-
size effects

» Preliminary lattice calculations agree with theory
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Outlook

« Try different kinematics, time positions

* How to include etficiently S, E and disconnected

diagrams?
* Aim at lighter quark masses

* How to deal with the 3-pion intermediate state at the
physical point?

29



Thank you!



