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RHIC electron lenses

— Electron lenses for head-on compensation under
installation at RHIC

% Beam-beam interaction

Y Electron lenses

— Commissioning next run
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Coherent effects
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— Due to the symmetry of collision points bunches couple 3x3 — expect 6 coherent
beam-beam modes — without electron lens Landau damping acts on the inner modes

— Head-on compensation reduces the tune spread and Landau damping is lost for all
modes — coherent modes will be far outside the tune spread and overlap the 2/3™
resonance: stability?

— To be noted: Temode is generally not observed in the horizontal plane — a possible
explanation could be an exchange of Landau damping between planes
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Machine impedance

— RHIC impedance model includes BPM,
bellows and resistive wall contributions computed

Operating point

from analytical formulas g
— Using this model one can compute the TMCI .
threshold at Q'=0.0 for a longitudinal airbag 2
Distribution 3

— RHIC operates far off the threshold (250 GeV)
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- model within a factor ~2
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Electron lens driven TMCI

» Low energy electrons acquire a transverse momentum when interacting with the protons
and as a result will start spiraling around the solenoid field lines. The kick received by the
protons will therefore depend on their longitudinal position. This electron lens transverse
impedance was introduced in: A. Burov et al. “Iransverse beam stability with an electron lens”,
Phys/Rev. E, 59.

* The s-dependent momentum change of the protons can then be modeled using a wake

function: ®,

(1+B,)c

Wis a constant and w is the Larmor angular frequency which depends on the field. The kick
depend on both the horizontal and vertical displacement of preceding slices.

Ap, ,=WI[A, sin(ks)=A (1—cos(ks))], k=

* Using a linearized model (no Landau damping or chromaticity) one can derive a threshold
field required to provide stability:

_ 1.3eN g,

Bh 2
" VA QOQ,

o For RHIC parameters (sz 3.0e11, ¢ =0.011, 40=0.011, Q =5.0e-4, r=20) we find a
threshold of about 14T. Well above the design field of 6T.
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Tracking simulations

* The electron lens is now modeled by a zero length electron beam going against the 6D
proton beam sliced longitudinally

— Solenoid field scan with Gaussian
distributions and linear beam-beam kicks

— The mode coupling at 14T which is in
agreement with theory
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Mitigations
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Summary and possible experiments

 The electron lenses will reduce the beam-beam tune spread and hence
Landau damping:

» Coherent modes far outside the tune spread
« Simulation in the presence of machine impedance show no sign of instabilities

» Interaction inside the electron lens can drive a TMCI a low solenoid field:

* RHIC is by design below the threshold and coherent beam-beam further degrades the
situation

« Simulations indicate that either a transverse bunch-by-bunch damper or an increased 3-
function at the electron lens could mitigate the instability

 Experiments:

« |nstability threshold as function of electron current and solenoid field
» Impact of the damper and chromaticity

« Correlation with B-function at the electron lens is more difficult but one could think of
having a knob to tune 3* in IP10 allowing for some beta-beating around the ring
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Electron lens lattice - constraints

tothe B__ in Q2
— T2 between two p-p collisions

compensates for beam-beam driven non-

linear resonances

— Tt between electron lens and p-p

Phase advances for DA optimization:
— TU2 between two low (3 insertions will
compensate for chromatic aberrations due
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— Issue with the 3rd order resonance? It
was a major issue with the elens lattice

tried this year
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Achievable by modifying the integer
tune and with phase shifter:
— Changes the FODO cell phase advance
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Preliminary Lattices

1600 T 2.5
By ——
1400 Dy 2
1200
115
1000
1 —_
E 800 k)
= 05 °
600 Blue
400 0
200 05
0 0 500 1000 1500 2000 00 000 3500 4000
s [m]
Qxb be Qxy yy
IP6 0.0 0.0 0.0 0.0
IP8 5.25 4.25 3.75 5.75
Elens 9.25 9.75 9.25 10.25
Ring 27.695 | 29.685 | 27.695 28.685
19/12/13

B [m]

1600

1400 H A

1200

1000

800 N

600

400

200

0
0 500

1000

jwkeryes
]

Yellow

phase shifter

1500 2000 2500 3000 3500 4006

s [m]

2.5

1 1.5

1

D [m]

— Blue: solution found without phase

shifters

— Yellow: phase shifters required.
Power supply currents: (150,156)

— Tried to minimize current in phase

shifters: optics distortion in IR10
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Phase advance per cell and phase shifter
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— Keep both Q and Qy with fractional tunes close to the resonance (0.67,0.685)

— Phase space trajectory for an initial amplitude of 8ag, the phase advance per is
changed using the integer tune. Ak=0.005 — Al~150A for the phase shifters

— Both the phase shifter and the integer tune can have strong detrimental effects:
expect some degradation of dynamic aperture with the elens lattice

— Phase shifters are to be used with great care
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« Off-momentum DA (no collisions):
— Clear improvement in the Yellow lattice due to the reduced non-linear chromaticity
— Blue was already ok for the standard lattice: only minor improvements

« Beam-beam only (zero amplitude particles at 0.68,0.67):
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— All lattices behave similarly except for the standard yellow: DA dominated by beam-beam

* With half compensation(zero amplitude particles at 0.68,0.67):
— DA independent of the bunch intensity for Blue, in Yellow the 3rd order resonance
could be the reason for the degradation at low intensity
— Overall there is a degradation of DA with and w/o compensation: tune optimization
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High-[3 at the electron lens?
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— Non negligible D* in IR10 (0.2m).

Large B function in Q4 and Q5. Is that
an issue? Could be fixed by relaxing a*

— Still need to fix T phase advance.

(0.8,0.53). Optimizations possible.
Work ongoing.

— A 3* of 30 m could mitigate the fast stability

— Existing optics solution including 172
Phase advance between IP6 and IP8
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Summary and possible experiments

 The phase advances constraint for the electron lens poses a conceptual problem:

* |deally adjust it with matching sections keeping the FODO cell to its optimum: not possible due to
powering scheme

» Changing the FODO cell (integer tune or phase shifter) drives the 3rd order resonance

— Although improvements are seen with respect to the standard lattice, the current
solutions are not fully satisfactory, especially in Yellow

 Possible alternatives:

* Relax * and try rematching with insertions only, loss in luminosity compensated with higher bunch
intensities

» Give up 172 between the two low 3 insertions: requires carefull correction of non linear chromaticity

» Solutions with high-[3 in the electron lenses were studied for stability: so far not possible to
adjust phase advances

 Experiments:

 3rd order resonance driving terms as function of phase shifter current
« Off momentum optics and lifetime as a function of the phase advance between IPs
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